首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulsatile flow development past a caged ball valve in a model human aorta was studied using laser Doppler anemometry. Velocity profiles measured in the ascending aorta and in the mid-arch region were strongly influenced by the geometry of the valve at the root of the aorta. Velocity profiles distal to the valve were asymmetric with jet-like flow in the peripheral region having larger velocity magnitudes towards the left lateral wall. In early diastole, a streamwise vortex motion was observed throughout the model aorta with fluid moving towards the downstream direction along the left lateral wall and reversed flow along the right lateral wall. With the caged ball valve at the root of the aorta, no reversed flow was observed along the inner wall of curvature in the mid-arch region.  相似文献   

2.
3.
Atherosclerotic plaques in human coronary arteries are focal manifestations of systemic disease, and biomechanical factors have been hypothesized to contribute to plaque genesis and localization. We developed a computational fluid dynamics (CFD) model of the ascending aorta and proximal sections of the right and left coronary arteries of a normal human subject using computed tomography (CT) and magnetic resonance imaging (MRI) and determined the pulsatile flow field. Results demonstrate that flow patterns in the ascending aorta contribute to a pro-atherosclerotic flow environment, specifically through localization of low and oscillatory wall shear stress in the neighborhood of coronary orifices. Furthermore, these patterns differ in their spatial distribution between right and left coronary arteries. Entrance effects of aortic flow diminish within two vessel diameters. We examined relationships between spatial distributions of wall shear stress and reports of plaque occurrence in the literature. Results indicate low wall shear stress is co-located with increased incidence of lesions, and higher wall shear stresses are associated with lesion-resistant areas. This investigation does not consider plaque progression or advanced lesions, inasmuch as the CFD model was developed from a normal individual and the clinical data used for comparisons were obtained from autopsy specimens of subjects who died from non-cardiovascular causes. The data reported are consistent with the hypothesis that low wall shear stress is associated with the localization of atherosclerotic lesions, and the results demonstrate the importance of aortic flow on flow patterns in the proximal segments of the coronary arteries.  相似文献   

4.
In this paper, laser-Doppler anemometry measurement of steady flow development in a model human aorta has been reported. Studies were made with uniform entry flow at the root of the aorta and our measurements showed the establishment of a pair of Dean vortices in the mid-arch region. Subsequently, the nature of flow development past centrally occluding caged ball valves in the model aorta was investigated. Our studies showed that in the ascending aorta, an asymmetric velocity profile is obtained with larger velocity gradients towards the inner wall of tertiary curvature (anatomically the left lateral wall) with centrally occluding valves. The peripheral flow past these valves prevented the development of Dean vortices in the mid-arch region. The caged ball valves at the root of the aorta had no discernible effect on the velocity profiles in the brachio-cephalic artery.  相似文献   

5.
A three-dimensional and pulsatile blood flow in a human aortic arch and its three major branches has been studied numerically for a peak Reynolds number of 2500 and a frequency (or Womersley) parameter of 10. The simulation geometry was derived from the three-dimensional reconstruction of a series of two-dimensional slices obtained in vivo using CAT scan imaging on a human aorta. The numerical simulations were obtained using a projection method, and a finite-volume formulation of the Navier-Stokes equations was used on a system of overset grids. Our results demonstrate that the primary flow velocity is skewed towards the inner aortic wall in the ascending aorta, but this skewness shifts to the outer wall in the descending thoracic aorta. Within the arch branches, the flow velocities were skewed to the distal walls with flow reversal along the proximal walls. Extensive secondary flow motion was observed in the aorta, and the structure of these secondary flows was influenced considerably by the presence of the branches. Within the aorta, wall shear stresses were highly dynamic, but were generally high along the outer wall in the vicinity of the branches and low along the inner wall, particularly in the descending thoracic aorta. Within the branches, the shear stresses were considerably higher along the distal walls than along the proximal walls. Wall pressure was low along the inner aortic wall and high around the branches and along the outer wall in the ascending thoracic aorta. Comparison of our numerical results with the localization of early atherosclerotic lesions broadly suggests preferential development of these lesions in regions of extrema (either maxima or minima) in wall shear stress and pressure.  相似文献   

6.
7.
The flow development in the model human aorta with uniform entry as well as with centrally occuluding valves mounted at the root of the aorta was described in Part I of this two-paper sequence. Part II deals with the flow development in the model aorta with tilting disc valves mounted at the root of the aorta. Bjork-Shiley and Hall-Kaster tilting disc valves were mounted in three different orientations with respect to the root of the aorta. The velocity profiles and turbulent stresses were measured with laser-Doppler anemometry. Our results under steady flow conditions in the model human aorta show quantitatively that the flow development in the ascending aorta as well as in the brachio-cephalic artery are strongly dependent on the orientation of the tilting disc valves. With the valves tilting towards the outer wall of curvature, our results suggest a tendency for flow separation at the flow divider region of the brachio-cephalic artery.  相似文献   

8.
The pulsatile flow in an anatomically realistic compliant human carotid bifurcation was simulated numerically. Pressure and mass flow waveforms in the carotid arteries were obtained from an individual subject using non-invasive techniques. The geometry of the computational model was reconstructed from magnetic resonance angiograms. Maps of time-average wall shear stress, contours of velocity in the flow field as well as wall movement and tensile stress on the arterial wall are all presented. Inconsistent with previous findings from idealised geometry models, flow in the carotid sinus is dominated by a strong helical flow accompanied by a single secondary vortex motion. This type of flow is induced primarily by the asymmetry and curvature of the in vivo geometry. Flow simulations have been carried out under the rigid wall assumption and for the compliant wall, respectively. Comparison of the results demonstrates the quantitative influence of the vessel wall motion. Generally there is a reduction in the magnitude of wall shear stress, with its degree depending on location and phase of the cardiac cycle. The region of slow or reversed flow was greater, in both spatial and temporal terms in the compliant model, but the global characteristics of the flow and stress patterns remain unchanged. The analysis of mechanical stresses on the vessel surface shows a complicated stress field. Stress concentration occurs at both the anterior and posterior aspects of the proximal internal bulb. These are also regions of low wall shear stress. The comparison of computed and measured wall movement generally shows good agreement.  相似文献   

9.
Aortic dissection is a disease whereby an injury in the wall of the aorta leads to the creation of a true lumen and a false lumen separated by an intimal flap which may contain multiple communicating tears between the lumina. It has a high associated morbidity and mortality, but at present, the timing of surgical intervention for stable type B dissections remains an area of debate. Detailed knowledge of haemodynamics may yield greater insight into the long-term outcomes for dissection patients by providing a greater understanding of pressures, wall shear stress and velocities in and around the dissection. In this paper, we aim to gather further insight into the complex haemodynamics in aortic dissection using medical imaging and computational fluid dynamics modelling. Towards this end, several computer models of the aorta of a patient presenting with an acute Stanford type B dissection were created whereby morphometric parameters related to the dissection septum were altered, such as removal of the septum, and the variation of the number of connecting tears between the lumina. Patient-specific flow data acquired using 2D PC-MRI in the ascending aorta were used to set the inflow boundary condition. Coupled zero-dimensional (Windkessel) models representing the distal vasculature were used to define the outlet boundary conditions and tuned to match 2D PC-MRI flow data acquired in the descending aorta. Haemodynamics in the dissected aorta were compared to those in an equivalent ‘healthy aorta’, created by virtually removing the intimal flap (septum). Local regions of increased velocity, pressure, wall shear stress and alterations in flow distribution were noted, particularly in the narrow true lumen and around the primary entry tear. The computed flow patterns compared favourably with those obtained using 4D PC-MRI. A lumped-parameter heart model was subsequently used to show that in this case there was an estimated 14 % increase in left ventricular stroke work with the onset of dissection. Finally, the effect of secondary connecting tears (i.e. those excluding the primary entry and exit tears) was also studied, revealing significant haemodynamic changes when no secondary tears are included in the model, particularly in the true lumen where increases in flow over \(+200\,\%\) and drops in peak pressure of 18 % were observed.  相似文献   

10.
Cheer AY  Dwyer HA  Barakat AI  Sy E  Bice M 《Biorheology》1998,35(6):415-435
Arterial hemodynamic forces may play a role in the localization of early atherosclerotic lesions. We have been developing numerical techniques based on overset or "Chimera" type formulations to solve the Navier-Stokes equations in complex geometries simulating arterial bifurcations. This paper presents three-dimensional steady flow computations in a model of the rabbit aorto-celiac bifurcation. The computational methods were validated by comparing the numerical results to previously-obtained flow visualization data. Once validated, the numerical algorithms were used to investigate the sensitivity of the computed flow field and resulting wall shear stress distribution to various geometric and hemodynamic parameters. The results demonstrated that a decrease in the extent of aortic taper downstream of the celiac artery induced looping fluid motion along the lateral walls of the aorta and shifted the peak wall shear stress from downstream of the celiac artery to upstream. Increasing the flow Reynolds number led to a sharp increase in spatial gradients of wall shear stress. The flow field was highly sensitive to the flow division ratio, i.e., the fraction of total flow rate that enters the celiac artery, with larger values of this ratio leading to the occurrence of flow separation along the dorsal wall of the aorta. Finally, skewness of the inlet velocity profile had a profound impact on the wall shear stress distribution near the celiac artery. While not physiological due to the assumption of steady flow, these results provide valuable insight into the fluid physics at geometries simulating arterial bifurcations.  相似文献   

11.
A right-sided aorta is a rare malformation which may be associated with other various types of congenital heart disease. We utilised haemodynamic, echocardiographic measurements, computerised tomography and image reconstruction software packages that were integrated in a computational fluid dynamics model to determine blood flow patterns in patient-based aortas. In the left-sided aorta, a systolic clockwise rotational component was present, while helical flow was depicted in the aortic arch that was converted in the descending aorta as counter-rotating vortices with accompanying retrograde flow. The right-sided configuration has not altered the orientation of the three-dimensional vortex, but intensification of polymorphic flow patterns, alterations in wall shear stress distribution and development of a lateral pressure gradient at the area of an aneurysmal anomaly was observed. Moreover, increments of Reynolds, Womersley and Dean numbers were evident. These phenomena along with the formation of the aneurysm might influence cardiovascular risk in patients with right-sided aortas.  相似文献   

12.
Image-based computational fluid dynamics (CFD) studies conducted at rest have shown that atherosclerotic plaque in the thoracic aorta (TA) correlates with adverse wall shear stress (WSS), but there is a paucity of such data under elevated flow conditions. We developed a pedaling exercise protocol to obtain phase contrast magnetic resonance imaging (PC-MRI) blood flow measurements in the TA and brachiocephalic arteries during three-tiered supine pedaling at 130, 150, and 170 % of resting heart rate (HR), and relate these measurements to non-invasive tissue oxygen saturation \((\hbox {StO}_{2})\) acquired by near-infrared spectroscopy (NIRS) while conducting the same protocol. Local quantification of WSS indices by CFD revealed low time-averaged WSS on the outer curvature of the ascending aorta and the inner curvature of the descending aorta (dAo) that progressively increased with exercise, but that remained low on the anterior surface of brachiocephalic arteries. High oscillatory WSS observed on the inner curvature of the aorta persisted during exercise as well. Results suggest locally continuous exposure to potentially deleterious indices of WSS despite benefits of exercise. Linear relationships between flow distributions and tissue oxygen extraction calculated from \(\hbox {StO}_{2}\) were found between the left common carotid versus cerebral tissue \((r^{2}=0.96)\) and the dAo versus leg tissue \((r^{2}=0.87)\). A resulting six-step procedure is presented to use NIRS data as a surrogate for exercise PC-MRI when setting boundary conditions for future CFD studies of the TA under simulated exercise conditions. Relationships and ensemble-averaged PC-MRI inflow waveforms are provided in an online repository for this purpose.  相似文献   

13.
Blood flow in human arteries has been investigated using computational fluid dynamics tools. This paper considers flow modeling through three aorta models reconstructed from cross-sectional magnetic resonance scans of female patients. One has the normal control configuration, the second has elongation of the transverse aorta, and the third has tortuosity of the aorta with stenosis. The objective of this study is to determine the impact of aortic abnormal geometries on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDLs) concentration, and oxygen flux along the arterial wall. The results show that the curvature of the aortic arch and the stenosis have significant effects on the blood flow, and in turn, the mass transport. The location of hypoxia areas can be predicted well by ignoring the effect of hemoglobin on the oxygen transport. However, this simplification indeed alters the absolute value of Sherwood number on the wall.  相似文献   

14.
Using a novel technique developed in our own laboratory, an isolated transparent arterial segment containing the whole descending aorta and its four major branches was prepared from a dog. The flow patterns at each aortic T-junction were studied in detail under the conditions of steady flow by means of flow visualization and cinemicrographic techniques. It was found that a standing recirculation zone consisting of a pair of thin-layered spiral secondary flows located symmetrically about the common median plane of the aorta and side branches was formed at each T-junction over a wide range of flow conditions including the time-averaged estimated mean values of physiological flow rates and flow rate ratios. The results support the recent in vivo findings by other investigators that flow reversal occurs at some junctions of the dog abdominal aorta during each cardiac cycle. The flow patterns at the aortic T-junctions were very much similar to those previously observed in various glass model T-junctions. However, due to the particular anatomical structure of the vessel wall at each branching site (the curvature of the wall was very sharp at the flow divider, but gently rounded at the bend opposite to it) no recirculation zone was formed in the side branches. At a given flow rate ratio, the measured critical Reynolds numbers for the formation of spiral secondary flows and fully developed disturbed flows were much higher in aortic T-junctions than those in glass model T-junctions having equivalent branching angles and diameter ratios. These results indicate that, in the circulation, conditions at arterial T-junctions appear to be optimal for minimizing the formation of disturbed flows.  相似文献   

15.
PURPOSE: Recently, some numerical and experimental studies of blood flow in large arteries have attempted to accurately replicate in vivo arterial geometries, while others have utilized simplified models. The objective of this study was to determine how much an anatomically realistic geometry can be simplified without the loss of significant hemodynamic information. METHOD: A human femoral-popliteal bypass graft was used to reconstruct an anatomically faithful finite element model of an end-to-side anastomosis. Nonideal geometric features of the model were removed in sequential steps to produce a series of successively simplified models. Blood flow patterns were numerically computed for each geometry, and the flow and wall shear stress fields were analyzed to determine the significance of each level of geometric simplification. RESULTS: The removal of small local surface features and out-of-plane curvature did not significantly change the flow and wall shear stress distributions in the end-to-side anastomosis. Local changes in arterial caliber played a more significant role, depending upon the location and extent of the change. The graft-to-host artery diameter ratio was found to be a strong determinant of wall shear stress patterns in regions that are typically associated with disease processes. CONCLUSIONS: For the specific case of an end-to-side anastomosis, simplified models provide sufficient information for comparing hemodynamics with qualitative or averaged disease locations, provided the "primary" geometric features are well replicated. The ratio of the graft-to-host artery diameter was shown to be the most important geometric feature. "Secondary" geometric features such as local arterial caliber changes, out-of-plane curvature, and small-scale surface topology are less important determinants of the wall shear stress patterns. However, if patient-specific disease information is available for the same arterial geometry, accurate replication of both primary and secondary geometric features is likely required.  相似文献   

16.
The flow through a curved tube model of a coronary artery was investigated computationally to determine the importance of time-varying curvature on flow patterns that have been associated with the development of atherosclerosis. The entry to the tube was fixed while the radius of curvature varied sinusoidally in time at a frequency of 1 or 5 Hz. Angiographic data from other studies suggest that the radius of curvature waveform contains significant spectral content up to 6 Hz. The overall flow patterns were similar to those observed in stationary curved tubes; velocity profile skewed toward the outer wall, secondary flow patterns, etc. The effects of time-varying curvature on the changes in wall shear rate were expressed by normalizing the wall shear rate amplitude with the shear rate calculated at the static mean radius of curvature. It was found that the wall shear rate varied as much as 94 percent of the mean wall shear rate at the mid wall of curvature for a mean curvature ratio of 0.08 and a 50 percent change in radius of curvature. The effects of 5 Hz deformation were not well predicted by a quasi-static approach. The maximum values of the normalized inner wall shear rate amplitude were found to scale well with a dimensionless parameter equivalent to the product of the mean curvature ratio (delta), normalized change in radius of curvature (epsilon), and a Womersley parameter (alpha). This parameter was less successful at predicting the amplitudes elsewhere in the tube, thus additional studies are necessary. The mean wall shear rate was well predicted with a static geometry. These results indicate that dynamic curvature plays an important role in determining the inner wall shear rates in coronary arteries that are subjected to deformation levels of epsilon delta alpha > 0.05. The effects were not always predictable with a quasi-static approach. These results provide guidelines for constructing more realistic models of coronary artery flow for atherogenesis research.  相似文献   

17.
Bicuspid aortic valve (BAV) is associated with aortic dilatation and aneurysm. Several studies evidenced an eccentric systolic flow in ascending aorta associated with increased wall shear stresses (WSS) and the occurrence of an helical systolic flow. This study seeks to elucidate the connections between jet asymmetry and helical flow in patients with normally functioning BAV and dilated ascending aorta. We performed a computational parametric study by varying, for a patient-specific geometry, the valve area and the flow rate entering the aorta and drawing also a tricuspid valve (TAV). We considered also phase-contrast magnetic resonance imaging of four BAV and TAV patients. Measurement of normalized flow asymmetry index, systolic WSS and of a new index (positive helix fraction, PHF) quantifying the presence of a single a single helical flow were performed. In our computation, BAV cases featured higher values of all indices with respect to TAV in both numerical and imaged-based results. Moreover, all indices increased with decreasing valve area and/or with increasing flow rate. This allowed to separate the BAV and TAV cases with respect to the jet asymmetry, WSS localization and helical flow. Interestingly, these results were obtained without modeling the leaflets.  相似文献   

18.
Steady flow studies were conducted in a transparent canine aortic cast. The cast segment stretched from the aortic valve to beyond the renal arteries and included all major branches. Flow was visualized by analysis of dye streaklines. Flow rates for basal and exercising cardiovascular states were simulated. The Reynolds numbers in the ascending aorta for basal and exercising conditions were 900 and 1587 respectively. Aortic core flow was laminar in basal simulations. Disturbed flow commenced in the upper descending aorta with exercising flow rates. Separation zones existed along the inner curvature of the aortic arch and the proximal walls of the brachiocephalic, left subclavian, and coeliac arteries. Such zones may exist over a portion of the cardiac cycle. If either renal artery was occluded, then a vortex formed. This vortex is associated with high shear regions which correlate well with sites where sudanophilic lesions have been reported in cholesterol-fed nephrectomized rabbits.  相似文献   

19.
The main purpose of the study was to verify if helical flow, widely observed in several vessels, might be a signature of the blood dynamics of vein graft anastomosis. We investigated the existence of a relationship between helical flow structures and vascular wall indexes of atherogenesis in aortocoronary bypass models with different geometric features. In particular, we checked for the existence of a relationship between the degree of helical motion and the magnitude of oscillating shear stress in conventional hand-sewn proximal anastomosis. The study is based on the numerical evaluation of four bypass geometries that are attached to a simplified computer representation of the ascending aorta with different angulations relative to aortic outflow. The finite volume technique was used to simulate realistic graft fluid dynamics, including aortic compliance and proper aortic and graft flow rates. A quantitative method was applied to evaluate the level of helicity in the flow field associated with the four bypass models under investigation. A linear inverse relationship (R = -0.97) was found between the oscillating shear index and the helical flow index for the models under investigation. The results obtained support the hypothesis that an arrangement of the flow field in helical patterns may elicit damping in wall shear stress temporal gradients at the proximal graft. Accordingly, helical flow might play a significant role in preventing plaque deposition or in tuning the mechanotransduction pathways of cells. Therefore, results confirm that helical flow constitutes an important flow signature in vessels, and its strength as a fluid dynamic index (for instance in combination with magnetic resonance imaging flow visualization techniques) for risk stratification, in the activation of both mechanical and biological pathways leading to fibrointimal hyperplasia.  相似文献   

20.
Intranasal drug delivery has attracted significant attention because of the opportunity to deliver systemic drugs directly to the blood stream. However, the mucociliary clearance poses a challenge in gaining high efficacy of intranasal drug delivery because cilia continuously carry the mucus blanket towards the laryngeal region. To better understand mucus flow behaviour on the human nasal cavity wall, we present computational model development, and evaluation of mucus motion on a realistic nasal cavity model reconstructed from CT-scans. The model development involved two approaches based on the actual nasal cavity geometry namely: (i) unwrapped-surface model in 2D domain and (ii) 3D-shell model. Conservation equations of fluid motion were applied to the domains, where a mucus production source term was used to initiate the mucus motion. The analysis included mucus flow patterns, virtual saccharin tests and quantitative velocity magnitude analysis, which demonstrated that the 3D-shell model results provided better agreement with experimental data. The unwrapped-surface model also suffered from mesh-deformations during the unwrapping stage and this led to higher mucus velocity compared to experimental data. Therefore, the 3D-shell model was recommended for future mucus flow simulations. As a first step towards mucus motion modelling this study provides important information that accurately simulates a mucus velocity field on a human nasal cavity wall, for assessment of toxicology and efficacy of intranasal drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号