首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Synthesis and radioiodination of a stannyl oligodeoxyribonucleotide were undertaken to evaluate a gamma ray emitting ODN ligand for thrombus imaging in vivo . Synthesis of the ODN was based on modified automatedbeta-cyanoethyl phosphoramidite chemistry with an organotin nucleoside (dU*) coupled to a thrombin binding aptamer sequence to give d(U*GGTTGGTGTGGTTGG). The synthesis accommodated dU*, which is destannylated by iodine or acids. Fourteen standard synthesis cycles were followed by one 'stannyl synthesis cycle', distinguished by Fmoc protection, omission of capping, oxidation by an organic peroxide and cleavage by ammonium hydroxide. The organotin nucleoside phosphoramidite ¿5'-[fluorenylmethoxycarbonyl]-5-(E)-[2-tri-n -butylstannylvinyl]-2'-deoxyuridine-3'-(2-cyanoethyl N,N-diisopropyl phosphoramidite)¿ was prepared from 5-iodo-2'-deoxyuridine. A customized mild rapid workup included deprotection with methylamine, and reverse phase HPLC with CH3CN/triethylammonium bicarbonate. Pure stannyl ODN was highly retained by reverse phase HPLC. Radioiodination of stannyl ODN (100 microg) provided 123I-labeling yields up to 97%. Five alternative oxidants were effective. High specific activity [123I]- ODN (15 000 Ci/mmol) was recovered, separated from unlabeled isomers. Excellent reverse phase HPLC resolution of ODN isomers (alternatively I, Cl, H or Br in vinyl deoxyuridine) was essential. The affinity of the iodovinyl aptamer analog (Kd = 36 nM) for human alpha-thrombin was similar to the native aptamer (Kd = 45 nM).  相似文献   

2.
Interaction of oligodeoxynucleotides (ODN), 18-mer, which included sequence of BCL2 mRNA translation start, with K562 cells has been studied. The kinetic curves of interaction showed that oligonucleotide total binding with the cells at 37 degrees C and low oligonucleotide concentration (< or = 30 nM), as well as under lipofection, were composed of two processes: 18-mer surface binding with cell membranes and its non-proportional internalization into the cells. The last, in turn, consisted of three consequent steps. The enhanced extent and rate of oligonucleotide internalization was diminished after first hour incubation and later they were increased again. This reflected rising additional binding sites that provided internalization. At chosen time-points the internalization of ODN into cells, been proceeded at 37 degrees C, were at most abruptly abrogated by cooling down. ODN to K562 cell membrane binding constants and specific number of binding sites have been determined. Time-intervals, providing equilibrium for each successive stage of multistep ODN bound/free determination, were maintained. It was established that receptor binding with increased binding constant (more than 2 x 10(9) M(-1)) promoted ODN internalization. Oligonucleotide binding and internalization with prolonged incubation were also up-regulated due to priming new binding sites of higher affinity. Lipofection enhanced ODN binding to cell membrane but conserved the main features of ligand-receptor interaction. During lipofection constants and ODN binding site numbers increased without changing the overall time-pattern of the process, observed for ODN without liposomes. Extent and rate of internalization of ODN in liposomal formulation did not differ substantially from ODN in solution.  相似文献   

3.
A simple and label-free electrochemical sensor for recognition of the DNA hybridization event was prepared based on a new functionalised conducting copolymer, poly[pyrrole-co-4-(3-pyrrolyl) butanoic acid]. This precursor copolymer can be easily electrodeposited on the electrode surface and shows high electroactivity in an aqueous medium. An amino-substituted oligonucleotide (ODN) probe was covalently grafted onto the surface of the copolymer in a one step procedure and tested on hybridization with complementary ODN segments. The cyclic voltammogram of ODN probe-modified copolymer showed very little change when incubated in presence of non-complementary ODN, while a significant, and reproducible, modification of the voltammogram was observed after addition of complementary ODN. The AC impedance spectrum showed an increased charge transfer resistance (Rct) and double layer capacitance of the sensor film after hybridisation. Sensors with thinner films showed higher sensitivity than thicker films, suggesting that hybridisation at or near the surface of the film produces a larger change in electrical properties than that within the body of the film.  相似文献   

4.
Antisense strategies targeting skin conditions are attractive in concept, with a number of possible pathologic conditions, such a psoriasis, apparently suitable for such an approach. Because in vitro screening of candidate sequences is usually desirable, we have attempted to use a range of new generation cationic lipids to produce significant antisense oligodeoxynucleotide (ODN) uptake in an immortalized keratinocyte cell line (HaCaT). A large number of commercially available lipids were screened for the ability to induce nuclear ODN localization: Tfx-50, Tfx-20, Tfx-10, Superfect, Cytofectin GSV, Perfect lipids 1-8, Lipofectin, and Lipofectamine. All lipids were used at a range of concentrations (1-20 microg/ml) and with a range of ODN concentrations (1-1000) nM). Of all lipids used, only Cytofectin GSV and Superfect produced significant (>30% of cells) levels of nuclear positive cells, with Superfect also producing significant toxicity at the effective concentration used. Only two treatments produced a significant reduction in target mRNA: insulin-like growth factor-1 receptor (IGF-1R)-ODN 64 complexed with Cytofectin GSV (27.1% +/- 3.5% of IGF-1R mRNA in untreated cells,p < 0.01) and ODN 64 complexed with 10 microg/ml Lipofectin (62.2% +/- 3.4% of IGF-1R mRNA in untreated cells, p < 0.05). Only one treatment, ODN 64 complexed with Cytofectin GSV, produced a reduction in cell growth and survival as assessed by amido black assay. These results demonstrate that in HaCaT keratinocytes, Cytofectin GSV alone of all commercially available cationic lipids was effective in delivering antisense ODN into cell nuclei such that a profound antisense effect could be demonstrated.  相似文献   

5.
L Tondelli  A Ricca  M Laus  M Lelli    G Citro 《Nucleic acids research》1998,26(23):5425-5431
c-myb antisense oligonucleotides (AS ODNs) were reversibly immobilized to a novel polymeric core shell nanosphere and their cellular uptake and inhibitory effect on HL60 leukemia cell proliferation studied. The nanosphere surface was so designed as to directly bind ODNs via ionic interactions and reversibly release them inside the cells. Compared with the cellular uptake of free oligonucleotide, the use of AS ODN (immobilized to the nanospheres) produced a 50-fold increase in the intracellular concentration. Specifically, a single dose of 320 nM of AS ODN immobilized to the nanospheres was capable of inhibiting HL60 cell proliferation with the same degree of efficiency obtained using a 50-fold higher dose of free AS ODN. Flow cytometric experiments with fluoresceinated ODNs showed a temperature-dependent uptake, which was detectable as early as 2 h after the beginning of treatment. The inhibitory effect on cell proliferation was maintained for up to 8 days of culture. Moreover, the level of c-Myb protein decreased by 24% after 2 days and by 60% after 4 days of treatment, thus indicating a continuous and sustained release of non-degraded AS ODN from the nanospheres inside the cells.  相似文献   

6.
An excised patch membrane sensor for arachidonic acid (AA) is described, whose response stems from AA-induced channel-type transport of ions across the excised patch membrane. The patch membrane sensor was prepared in situ by excising mouse hippocampal cell membranes with patch pipets having a tip diameter of < 0.5 microm. The sensor responds to AA, giving rise to a channel-type current, and its magnitude (apparent conductance) increased with increasing AA concentration in the range from 10 to 30 nM. The detection limit was 2.1 nM (S/N = 3). The induction of channel-type currents was selective to AA over fatty acids such as palmitic acid, stearic acid, oleic acid, gamma-linolenic acid, and docosahexaenoic acid and AA metabolites such as 12-HETE, 5-HETE, and prostaglandin D(2). The sensor was applied to quantification of AA released from various neuronal regions (CA1, CA3, and DG) of mouse hippocampus under stimulation of 100 microM L-glutamate. The release of AA from each region was observed 1 min after the stimulation and the concentration of AA 5 min after the stimulation varied among the neuronal sites, i.e., 8+/-1 nM (n = 5) for CA1, 15+/-3 nM (n = 3) for CA3, and 6+/-2 nM (n = 9) for DG. The L-glutamate-evoked release of AA was partly inhibited by ionotropic glutamate receptor antagonists (APV and DNQX) and completely blocked by phospholipase A2 (PLA2) inhibitor (MAFP), suggesting that the release of AA occurred by glutamate receptor-mediated activation of PLA2. The potential use of the present sensor for detecting local concentration of AA at various neuronal sites is discussed.  相似文献   

7.
Antisense oligonucleotides provide a promising therapeutic approach for several disorders including cancer. Chemical stability, controlled release, and intracellular delivery are crucial factors determining their efficacy. Gels composed of nanofibrous peptide network have been previously suggested as carriers for controlled delivery of drugs to improve stability and to provide controlled release, but have not been used for oligonucleotide delivery. In this work, a self-assembled peptide nanofibrous system is formed by mixing a cationic peptide amphiphile (PA) with Bcl-2 antisense oligodeoxynucleotide (ODN), G3139, through electrostatic interactions. The self-assembly of PA-ODN gel was characterized by circular dichroism, rheology, atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM and SEM images revealed establishment of the nanofibrous PA-ODN network. Due to the electrostatic interactions between PA and ODN, ODN release can be controlled by changing PA and ODN concentrations in the PA-ODN gel. Cellular delivery of the ODN by PA-ODN nanofiber complex was observed by using fluorescently labeled ODN molecule. Cells incubated with PA-ODN complex had enhanced cellular uptake compared to cells incubated with naked ODN. Furthermore, Bcl-2 mRNA amounts were lower in MCF-7 human breast cancer cells in the presence of PA-ODN complex compared to naked ODN and mismatch ODN evidenced by quantitative RT-PCR studies. These results suggest that PA molecules can control ODN release, enhance cellular uptake and present a novel efficient approach for gene therapy studies and oligonucleotide based drug delivery.  相似文献   

8.
Since antisense oligodeoxynucleotides (AS-ODNs) have been recognized as a new generation of putative therapeutic agents, we established a delivery technique that could transfect AS-ODNs, which are designed for endothelin type B receptor (ETB), into cultured human coronary endothelial cells (HCECs) by exposure to ultrasound in the presence of echo contrast microbubbles. Ultrasound offers several advantages such as being nontoxic, nonantigenic and providing rapid gene transfer. We standardized the optimal conditions, which consisted of 2 x 10(6) cells suspended in phosphate buffer with 900nM ODN, 50 microl of echo contrast microbubbles (Optison), and ultrasound exposure (1.0 W/cm(2), 10% duty cycle, and 10s duration). The percentage of transfected cells was 25.2+/-2.0% after ultrasound treatment. This is the first demonstration of the use of the ultrasound exposure technique in conjunction with microbubbles in HCECs.  相似文献   

9.
A sequence of the rabbit alpha-globin mRNA is the primary target for ODN1, an unmodified 15-nucleotide (nt) antisense oligodeoxyribonucleotide (oligo). ODN1 prevented in vitro translation of both alpha- and beta-globin mRNAs in wheat germ extract. Nine secondary sites exhibiting more than 60% complementarity with ODN1 were present in the beta-globin message. The ODN1 inhibition of beta-globin synthesis was shown to be mediated by RNase H cleavage of the beta-globin mRNA at three partially complementary sites. Sandwich-type oligos consisting of a stretch of unmodified nt with a few methylphosphonate residues at both 5' and 3' ends were derived from ODN1. We have demonstrated that one such analogue (ODN2), with five phosphodiester linkages in the central region, exhibited improved specificity for alpha-globin mRNA compared with the unmodified parent 15-mer, due to a reduced ability of RNase H to cleave beta-mRNA/ODN2 mismatched duplexes.  相似文献   

10.
Abstract

The cellular uptake and the inhibitory effect of c-myb unmodified antisense oligonucleotides reversibly bound to new polymeric nanoparticles in HL-60 cellular system have been found to increase by 50 folds if compared with the free ODN. An initial single dose (320 nM) of the nanoparticle bound unmodified antimyb ODN has been able to specifically inhibit HL-60 leukemia cell proliferation for at least 8 days.  相似文献   

11.
The subcellular localisation of oligodeoxynucleotides (ODN) is a major limitation for their use against nuclear targets. In this study we demonstrate that an antisense ODN directed against cytosolic phospholipase A(2) (cPLA2) mRNA is efficiently taken up and accumulates in the nuclei of endothelial cells (HUVEC), human monocytes and HeLa cells. Gel shift experiments and incubation of cells with oligonucleotide derivatives show that the anti-cPLA2 oligo binds a 37 kDa protein in nuclear extracts. The TAAAT sequence was identified as the major binding motif for the nuclear protein in competition experiments with mutated ODNs. Modification of the AAA triplet resulted in an ODN which failed to localise in the nucleus. Moreover, inserting a TAAAT motif into an ODN localising in the cytosol did not modify its localisation. The 37 kDa protein was purified and identified after peptide sequencing as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It was shown by confocal microscopy that GAPDH co-localises with anti-cPLA2 ODN in the nucleus and commercial GAPDH effectively binds the oligo. Competition experiments with increasing concentration of NAD(+) co-factor indicate that the GAPDH Rossmann fold is a docking site for antisense oligonucleotides containing a TAAAT motif.  相似文献   

12.
Microsystin-LR is one of the most widespread and dangerous toxins produced by the freshwater Cyanobacteria. The contamination of water supplies with microcystin-LR has been reported in several areas around the world and the development of an easy-to-use, rapid, robust and inexpensive sensor for this toxin is urgently required. In this work an artificial receptor for microcystin-LR was synthesised using the technique of molecular imprinting. The composition of the molecularly imprinted polymer (MIP) was optimised using computer modelling. The synthesised polymer was used both as a material for solid-phase extraction (SPE) and as a sensing element in a piezoelectric sensor. Using the combination of SPE followed by detection with a piezoelectric sensor the minimum detectable amount of toxin was 0.35 nM. The use of MIP-SPE provided up to 1000 fold pre-concentration, which was more than sufficient for achieving the required detection limit for microcystin-LR in drinking water (1 nM). This work is the first example where the same MIP receptor has been used successfully for both SPE and the corresponding sensor.  相似文献   

13.
Immunostimulatory oligodeoxynucleotides (ODN) containing cytosine-guanine (CpG) motifs are powerful stimulators of innate as well as adaptive immune responses, exerting their activity through triggering of the Toll-like receptor 9. We have previously shown that encapsulation in liposomal nanoparticles (LN) enhances the immunostimulatory activity of CpG ODN (LN-CpG ODN) (Mui et al. in J Pharmacol Exp Ther 298:1185, 2001). In this work we investigate the effect of encapsulation on the immunopotency of subcutaneously (s.c.) administered CpG ODN with regard to activation of innate immune cells as well as its ability to act as a vaccine adjuvant with tumor-associated antigens (TAAs) to induce antigen (Ag)-specific, adaptive responses and anti-tumor activity in murine models. It is shown that encapsulation specifically targets CpG ODN for uptake by immune cells. This may provide the basis, at least in part, for the significantly enhanced immunostimulatory activity of LN-CpG ODN, inducing potent innate (as judged by immune cell activation and plasma cytokine/chemokine levels) and adaptive, Ag-specific (as judged by MHC tetramer positive T lymphocytes, IFN-γ secretion and cytotoxicity) immune responses. Finally, in efficacy studies, it is shown that liposomal encapsulation enhances the ability of CpG ODN to adjuvanate adaptive immune responses against co-administered TAAs after s.c. immunization, inducing effective anti-tumor activity against both model and syngeneic tumor Ags in murine tumor models of thymoma and melanoma.  相似文献   

14.
Complexes formed by cationic liposomes and single-strand oligodeoxynucleotides (CL-ODN) are promising delivery systems for antisense therapy. ODN release from the complexes is an essential step for inhibiting activity of antisense drugs. We applied fluorescence correlation spectroscopy and confocal laser scanning microscopy to monitor CL-ODN complex interaction with membrane lipids leading to ODN release. To model cellular membranes we used giant unilamellar vesicles and investigated the transport of Cy-5-labeled ODNs across DiO-labeled membranes. For the first time, we directly observed that ODN molecules are transferred across the lipid bilayers and are kept inside the giant unilamellar vesicles after release from the carriers. ODN dissociation from the carrier was assessed by comparing diffusion constants of CL-ODN complexes and ODNs before complexation and after release. Freely diffusing Cy-5-labeled ODN (16-nt) has diffusion constant D(ODN) = 1.3 +/- 0.1 x 10(-6) cm2/s. Fluorescence correlation spectroscopy curves for CL-ODN complexes were fitted with two components, which both have significantly slower diffusion in the range of D(CL-ODN) = approximately 1.5 x 10(-8) cm2/s. Released ODN has the mean diffusion constant D = 1.1 +/- 0.2 x 10(-6) cm2/s, which signifies that ODN is dissociated from cationic lipids. In contrast to earlier studies, we report that phosphatidylethanolamine can trigger ODN release from the carrier in the full absence of anionic phosphatidylserine in the target membrane and that phosphatidylethanolamine-mediated release is as extensive as in the case of phosphatidylserine. The presented methodology provides an effective tool for probing a delivery potential of newly created lipid formulations of CL-ODN complexes for optimal design of carriers.  相似文献   

15.
Xia Q  Chen X  Liu JH 《Biophysical chemistry》2008,136(2-3):101-107
A novel DNA hybridization sensor based on nanoparticle CdS modified glass carbon electrode (GCE) was constructed and characterized coupled with Cyclic Voltammogram (CV) and Differential Pulse Voltammogram (DPV) techniques. The mercapto group-linked probe DNA was covalently immobilized onto the CdS layer and exposed to oligonucleotide (ODN) target for hybridization. The structure of DNA sensor was characterized by X-ray diffraction (XRD), field-emission microscopy (FESEM) and X-ray photoelectron spectra (XPS). Sensitive electrical readout achieved by CV and DPV techniques shown that when the target DNA hybridized with probe CdS-ODN conjugates and the double helix formed on the modified electrode, a significant increased response was observed comparing with the bare electrodes. The selectivity of the sensor was tested using a series of matched and certain-point mismatched sequences with concentration grads ranging from 10(-6) microM to 10(1) microM. The signal was in good linear with the minus logarithm of target oligonucleotide concentration with detection limit <1 pM and the optimized target DNA concentration was 10(-6) microM for the signal amplification. Due to great surface properties, the additional negative charges and space resistance of as-prepared CdS nanoparticles, the sensor was able to robustly discriminate the DNA hybridization responses with good sensitivity and stability.  相似文献   

16.
Stimulation of the innate immune system is potentially very important in neonates who have an immature adaptive immune system and vaccination cannot be used to reduce the risk of infection. CpG oligodeoxynucleotide (ODN) can stimulate innate immune responses in newborn chickens and mice, but similar studies are lacking in other mammalian species. We have shown previously that CpG ODN can both stimulate an acute-phase immune response and induce the antiviral effector molecule, 2'5'-A synthetase, in adult sheep. Therefore, the immunostimulatory activity of A class and B class CpG ODN was evaluated in newborn lambs, and the capacity of CpG ODN-induced responses to reduce viral shedding was evaluated following aerosol challenge with the respiratory pathogen, bovine herpesvirus-1 (BHV-1). In vitro CpG ODN stimulation of peripheral blood mononuclear cells (PBMC) isolated from newborn lambs (3-5 days old) and adult sheep induced equivalent CpG-specific proliferative responses and interferon-alpha (IFN-alpha) secretion. CpG ODN-induced IFN-alpha secretion by neonatal PBMCs was, however, significantly (p < 0.01) enhanced 6 days after subcutaneous (s.c.) injection of 100 microg/kg CpG ODN 2007. Newborn lambs injected s.c. with B class CpG ODN 2007 or the inverted GpC control ODN formulated in 30% Emulsigen (MVP Laboratories, Ralston, NE) displayed CpG ODN-specific increases in body temperature (p < 0.0001), serum 2'5'-A synthetase activity (p = 0.0015), and serum haptoglobin (p = 0.07). CpG ODN-treated lambs also displayed a transient reduction in viral shedding on day 2 postinfection (p < 0.05), which correlated (p < 0.03) with serum 2'5'-A synthetase levels on the day of viral challenge. These observations confirmed that CpG ODNs effectively activate innate immune responses in newborn lambs and CpG ODN-induced antiviral responses correlated with a reduction in viral shedding.  相似文献   

17.
A renewable three-dimensional chemically modified carbon ceramic electrode (CCE) containing nickel powder and K4[Mo(CN)8] was constructed by sol-gel technique. The electrochemical properties and stability of modified electrode was evaluated by cyclic voltammetry in pH range 4-10. The redox couple of [Mo(CN)8] (4-/3-) was shown both as a solute in electrolyte solution and as a component of a carbon based conducting composite electrode. The apparent electron transfer rate constant (ks) and transfer coefficient (alpha) were determined by cyclic voltammetry and they were about 17.1 and 0.57 s(-1), respectively. The catalytic activity of the modified CCE toward insulin oxidation was investigated at pH range of 3-8 by cyclic votammetry. The modified electrode showed excellent electrocatalytic activity toward insulin electroxidation at physiological pH value. The modified electrode was used for insulin detection chronoamperometrically at pH 7. Under optimized condition in amperometry method, the concentration calibration range, detection limit and sensitivity were 0.5-500 nM, 0.45 nM and 6140 nA/microM, respectively. Flow injection amperometric determination of insulin at pH 7.4, at this modified electrode yielded a calibration curve with the following characteristics, linear dynamic range 100-500 pM; sensitivity 8.1 nA/nM and detection limit 40 pM (based on S/N = 3). The inherent stability at wide pH range, high sensitivity, low detection limit, low cost and ease of preparation are of advantageous of this insulin sensor. This sensor indicates great promise for monitory insulin in chromatographic effluents.  相似文献   

18.
Striatin, an intraneuronal, calmodulin‐binding protein addressed to dendrites and spines, is expressed in the motor system, particularly the striatum and motoneurons. Striatin contains a high number of domains mediating protein–protein interactions, suggesting a role within a dendritic Ca2+‐signaling pathway. Here, we explored the hypothesis of a direct role of striatin in the motor control of behaving rats, by using an antisense strategy based on oligodeoxynucleotides (ODN). Rats were treated by intracerebroventricular infusion of a striatin antisense ODN (A‐ODN) or mismatch ODN (M‐ODN) delivered by osmotic pumps over 6 days. A significant decrease in the nocturnal locomotor activity of A‐ODN–treated rats was observed after 5 days of treatment. Hypomotricity was correlated with a 60% decrease in striatin content of the striata of A‐ODN–treated rats sacrificed on day 6. Striatin thus plays a role in the control of motor function. To approach the cellular mechanisms in which striatin is involved, striatin down‐regulation was studied in a comparatively simpler model: purified rat spinal motoneurons which retain their polarity in culture. Treatment of cells by the striatin A‐ODN resulted in the impairement of the growth of dendrites but not axon. The decrease in dendritic growth paralleled the loss of striatin. This model allows analysis of the molecular basis of striatin function in the dynamic changes occurring in growing dendrites, and offers clues to unravel its function within spines. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 234–243, 1999  相似文献   

19.
In this study, we report the development of a novel, rationally designed immunostimulatory adjuvant based on chemical conjugation of CpG oligodeoxynucleotide (ODN) to the nontoxic B subunit of cholera toxin (CTB). We demonstrate that the immunostimulatory effects of CpG can be dramatically enhanced by conjugation to CTB. Thus, CpG ODN linked to CTB (CTB-CpG) was shown to be a more potent stimulator of proinflammatory cytokine and chemokine responses in murine splenocytes and human PBMCs than those of CpG ODN alone in vitro. The presence of CpG motif, but not modified phosphorothioate ODN backbone, was found to be critical for the enhanced immunostimulatory effects of CTB-CpG. Our mode-of-action studies, including studies on cells from specifically gene knockout mice suggest that similar to CpG, CTB-CpG exerts its immunostimulatory effects through a TLR9/MyD88- and NF-kappaB-dependent pathway. Surprisingly, and as opposed to CpG ODN, CTB-CpG-induced immunity was shown to be independent of endosomal acidification and resistant to inhibitory ODN. Furthermore, preincubation of CTB-CpG with GM1 ganglioside reduced the immunostimulatory effects of CTB-CpG to those of CpG ODN alone. Interestingly, conjugation of CpG ODN to CTB confers an enhanced cross-species activity to CpG ODN. Furthermore, using tetanus toxoid as a vaccine Ag for s.c. immunization, CTB-CpG markedly enhanced the Ag-specific IgG Ab response and altered the specific pattern of Ab isotypes toward a Th1 type response. To our knowledge, CTB is the first nontoxic derivative of microbial toxins discovered that when chemically linked to CpG remarkably augments the CpG-mediated immune responses.  相似文献   

20.
We demonstrated that a P-loop, a looped complex formed inside duplex DNA by adding peptide nucleic acids (PNA), acts catalytically as a template for enzymatic cleavage of single-stranded probe oligodeoxynucleotides (ODN). A PD-loop complex formed from P-loop and probe ODN was digested efficiently by a restriction enzyme, and the truncated probe ODN was released. The P-loop nicked by the enzyme can form PD-loop again with another probe ODN, and then assisted the enzymatic cleavage of an excess of probe ODN. In addition, by using dumbbell-formed ODN as a probe ODN, the efficiency of the P-loop-assisted ODN cleavage was enhanced considerably as compared with that of linear ODN. Thus, the method utilizing P-loop will make it possible to amplify the sequence information of duplex DNA via a catalytic cleavage of probe ODNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号