首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ferrochelatase-lowering activity of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) analogues in chick embryo hepatocyte culture has been assumed to be due to the formation of an N-alkylprotoporphyrin IX. This assumption required confirmation. For this reason the 4-ethyl analogue of DDC was administered to phenobarbital-pretreated 19-day-old chick embryos. This resulted in hepatic accumulation of a green pigment with ferrochelatase-inhibitory activity. The green pigment was identified as an N-alkylprotoporphyrin IX by comparison of the electronic absorption spectra of its dimethyl ester and Zn complex with the corresponding spectra obtained from synthetic N-ethylprotoporphyrin IX.  相似文献   

2.
N-Methylprotoporphyrin has been shown to markedly inhibit ferrochelatase activity in chick embryo liver cell culture without inducing delta-aminolevulinic acid (ALA) synthetase activity. This result supports the idea that the effects of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) on ALA synthetase activity and ferrochelatase activity are dissociated and that inhibition of ferrochelatase alone is not sufficient to cause induction of ALA synthetase. We conclude that the porphyrinogenic activity of DDC can be explained only in part by the actions of N-methylprotoporphyrin.  相似文献   

3.
Cytochrome P450- and heme-destructive effects of the 4-nonyl and 4-dodecyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) were determined using hepatic microsomal preparations obtained from untreated, beta-naphthoflavone-treated, and phenobarbital-treated chick embryos. The 4-nonyl analogue of DDC was less efficacious than 4-ethyl DDC and 4-hexyl DDC, but more efficacious than 4-dodecyl DDC with respect to cytochrome P450-destructive activity. In all hepatic microsomal preparations, cytochrome P450 destruction by 4-nonyl DDC was accompanied by loss of microsomal heme. In contrast, 4-dodecyl DDC caused loss of heme only in hepatic microsomal preparations obtained from phenobarbital-treated chick embryos. The ability of 4-nonyl DDC and 4-dodecyl DDC to lower ferrochelatase activity was compared with that of 4-ethyl DDC and 4-hexyl DDC in cultured chick embryo hepatocytes. As the length of the 4-alkyl group was increased, the ferrochelatase-lowering efficacy and potency of the DDC analogue decreased. The 4-dodecyl DDC analogue was unable to lower ferrochelatase activity, which accorded with the finding that the administration of 4-dodecyl DDC to phenobarbital-treated rats did not lead to the accumulation of an N-alkylprotoporphyrin. The ability of 4-nonyl DDC to lower ferrochelatase activity was attributed to the formation of N-nonylprotoporphyrin IX following the administration of 4-nonyl DDC to phenobarbital-treated rats.  相似文献   

4.
A variety of 1,4-dihydropyridine calcium antagonists were tested for porphyrinogenic activity in chick embryo liver cell culture. 3,5-Dimethoxycarbonyl-1,4-dihydro-2, 6-dimethyl-4-(ortho-nitrophenyl)pyridine (nifedipine) was shown to be a potent porphyrinogenic agent. This activity was shared by a number of related analogues, viz., the 4-phenyl, 4-(meta-nitrophenyl), 4-(para-nitrophenyl), 4-(ortho-methoxyphenyl), 4-(meta-trifluoromethylphenyl), and 4-(para-trifluoromethylphenyl) analogues and nitrendipine; nicardipine exhibited very weak activity. The porphyrinogenic potency of the 1,4-dihydropyridines did not parallel their calcium antagonist activity. Nifedipine did not exhibit ferrochelatase-lowering activity in chick embryo liver cell culture and uroporphyrin and heptacarboxylic acid porphyrin were the major porphyrins to accumulate. Nifedipine did not cause suicidal destruction of cytochrome P-450 in chick embryo hepatic microsomes. Because nifedipine possesses comparable porphyrinogenic activity to sodium secobarbital in chick embryo liver cell culture, caution is required if nifedipine or related drugs are administered to patients with hereditary hepatic porphyria.  相似文献   

5.
The ferrochelatase inhibitory activity of a variety of analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) was studied in chick embryo liver cells. The ferrochelatase inhibitory activity of the 4-butyl, 4-pentyl, and 4-hexyl analogues was considered to be due to catalytic activation by cytochrome P-450 leading to heme alkylation and formation of the corresponding N-alkylporphyrins. The relative ferrochelatase inhibitory activity of the DDC analogues has implications for a postulated model of the binding of porphyrins in the ferrochelatase active site. 3-[2-(2,4,6-Trimethylphenyl)thioethyl]-4-methylsydnone (TTMS) was shown to be a potent porphyrinogenic agent and to inhibit ferrochelatase in chick embryo liver cells. A related sydnone, 3-benzyl-4-phenylsydnone did not inhibit ferrochelatase activity. These results supported the idea that the porphyrinogenicity of TTMS was due to catalytic activation by cytochrome P-450 leading to heme alkylation and formation of N-vinylprotoporphyrin which inhibits ferrochelatase. Polychlorinated biphenyls, phenobarbital, nifedipine, and a large number of structurally different chemicals which are porphyrinogenic in chick embryo liver cells inhibit uroporphyrinogen decarboxylase by an unknown mechanism. Thus drug-induced porphyrin biosynthesis in chick embryo liver cell culture appears to be caused by inhibition of either ferrochelatase or uroporphyrinogen decarboxylase. The biotransformation of nitroglycerin by human red blood cells is due to a combination of a sulfhydryl-dependent enzymatic process and an interaction with reduced hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Administration of 3,5-dicarbethoxy-1,4-dihydrocollidine (DDC) to rats causes the accumulation of N-methylprotoporphyrin IX, a potent inhibitor of ferrochelatase. To clarify the origin of the porphyrin N-methyl group, we have synthesized and administered to rats N-ethyl-3,5-dicarbethoxy-1,4-dihydrocollidine (N-ethyl DDC) and 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine (DDEP), the DDC analogue with a 4-ethyl rather than 4-methyl group. Only N-methylprotoporphyrin IX is isolated from rats treated with the former agent, and only N-ethylprotoporphyrin IX from those treated with the latter. All four isomers of N-ethylprotoporphyrin IX are formed biologically. The structure of the isolated porphyrins has been confirmed by complete spectroscopic comparison with the four synthetic isomers of N-ethylprotoporphyrin IX. DDEP has been shown to cause NADPH- and time-dependent in vitro loss of hepatic microsomal cytochrome P-450. These results unequivocally establish that the 4-alkyl groups in DDC and dDEP are the source of the N-alkyl group in N-methyl- and N-ethylprotoporphyrin IX, respectively, and strongly suggest that the alkyl group is transferred to the prosthetic heme of cytochrome P-450 during catalytic processing of the substrate by the enzyme. The mechanism of the group transfer is discussed.  相似文献   

7.
Various 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6- trimethylpyridine (DDC) cause mechanism-based inactivation of cytochrome P-450 (P-450) via destruction of the heme prosthetic group. This is an important component of these compounds' porphyrinogenic mechanism. In an attempt to map the P-450 isozyme selectivities of DDC analogues, we have examined the effects of these compounds on the regioselective and stereoselective hydroxylation of androstenedione (AD) and progesterone (PG) in rat liver microsomal systems. In microsomes from phenobarbital-treated male rats, DDC analogues did not cause time-dependent inactivation of AD 7 alpha-hydroxylase, AD 16 beta-hydroxylase, and PG 21-hydroxylase, selective markers for P450IIA 1/2, IIB1, and IIC6, respectively. In contrast, DDC analogues were effective inactivators of PG 2 alpha-hydroxylase and steroid 6 beta-hydroxylases, selective markers for P450IIC11 and IIIA forms, respectively. We conclude that differences in porphyrinogenicity observed with various DDC analogues are not likely to be due to the selective destruction of different P-450 isozymes by different analogues, but rather to properties of the DDC analogues themselves. 4-Ethyl DDC was found to be capable of discriminating between P450IIIA subfamily forms. In microsomes from untreated male rats, which express P450IIIA2 but not IIIA1, 4-ethyl DDC inactivated both AD and PG 6 beta-hydroxylases. However, in microsomes from dexamethasone-treated female rats, which express P450IIIA1 but not IIIA2, no inactivation of the steroid 6 beta-hydroxylases was observed. Thus, 4-ethyl DDC appears to be a potentially valuable tool for differentiating between P450IIIA forms.  相似文献   

8.
Several porphyrinogenic xenobiotics cause mechanism-based inactivation of cytochrome P450 (P450) isozymes with concomitant formation of a mixture of four N-alkylprotoporphyrin IX (N-alkylPP) regioisomers, which have ferrochelatase inhibitory properties. To isolate the four regioisomers of N-methylprotoporphyrin IX (N-methylPP), 3,5-diethoxycarbonyl, 1-4-dihydro-2,4,6-trimethylpyridine (DDC) was administered to untreated, beta-naphthoflavone-, phenobarbital-, and glutethimide-pretreated 18-day-old chick embryos. Separation of the N-methylPP regioisomers by high pressure liquid chromatography (HPLC) revealed no marked difference in the regioisomer pattern among the different treatments. After administration of griseofulvin, allylisopropylacetamide (AIA), or 1-[4-(3-acetyl-2,4,6-triemethylphenyl)-2,6-cyclohexanedionyl]-O-ethyl propionaldehyde oxime (ATMP) to untreated and glutethimide-pretreated 18-day-old chick embryos, an N-alkylPP was isolated after AIA administration only. This finding strengthened previous reports of the species specificity of N-alkylPP formation with griseofulvin and ATMP. A series of dihydropyridines, namely 4-ethylDDC, 4-hexylDDC, and 4-isobutylDDC were administered to untreated and glutethimide-pretreated 18-day-old chick embryos and hepatic N-alkylPPs were isolated and separated by HPLC into regioisomers. The regioisomer patterns obtained did not support a previous proposal of masked regions above both rings B and C in the heme moieties of the P450 isozymes responsible for N-alkylPP formation. However, the data support the hypothesis of a partially masked region above ring B alone. The regioisomer patterns were in agreement with results previously obtained in rats showing that the percentage of Nc and (or) ND regioisomers in the regioisomer mixture increases as the length and bulk of the 4-alkyl substituent of a DDC analogue increase. Differences in the regioselectivity of heme N-alkylation may be due to intrinsic chemical features of DDC analogues themselves or to differences in the P450 isozymes inactivated.  相似文献   

9.
A series of substituted 1-cyclopropyl-6-fluoro-1,4-dihydro-5-methyl-4-oxo-3-quinoline carboxylic acids was synthesized and tested for their in vitro and in vivo antibacterial activity. The introduction of a methyl group at the 5-position of quinoline nucleus enhanced characteristically the antibacterial activity against Gram-positive bacteria, including Streptococcus pneumonia, which is a major pathogen in the respiratory tract infection, while retaining Gram-negative activity. Among them, 1-cyclopropyl-6-fluoro-1,4-dihydro-5-methyl-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid hydrochloride (grepafloxacin) exhibited potent in vitro antibacterial activity against Gram-positive bacteria such as Streptococcus pneumoniae and high in vivo efficacy on the experimental systemic infections caused by the Gram-positive and -negative bacteria tested. It also showed a high distribution to the lung and bronchoalveolar lavage fluid in comparison to reference drugs and is now undergoing clinical evaluation.  相似文献   

10.
We synthesized a series of novel small molecules, 2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine derivatives, by tandem reduction-oxirane opening of 2-nitroaroxymethyloxiranes in moderate or excellent yields. We investigated the effects of all of the compounds on HUVEC apoptosis and A549 cell growth. The results showed that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine was the most effective small molecule in promoting HUVEC apoptosis and inhibiting A549 cell proliferation, but 6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine could remarkably inhibit HUVEC apoptosis and might induce the formation of microvessel.  相似文献   

11.
In continuance of our search for newer antihepatotoxic agents some novel pyrazoline derivatives containing 1,4-dioxane ring system were synthesized starting from 3-(2,3-dihydro-1,4-benzodioxane-6-yl)-1-substituted-phenylprop-2-en-1-one. Some of the synthesized compounds were evaluated for antihepatotoxic activity against CCl(4)-induced hepatotoxicity in rats. Among them some compounds have shown significant antihepatotoxic activity comparable to standard drug silymarin.  相似文献   

12.
In order to obtain clinically useful antitumor agent, we have designed and synthesized various 3-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines, and evaluated their cytotoxic activity. The series of novel 3-substituted derivatives synthesized in this study showed good antitumor activity against murine P388 leukemia. Particularly, the 3-formyl 1,8-naphthyridine displayed an antitumor activity equal to that of the 3-carboxy 1,8-naphthyridine against murine and human tumor cell lines as well as in vivo test for mouse leukemia. These results demonstrate that the carboxy group at the C-3 position of 1,8-naphthyridine ring is not essential for antitumor activity. In addition, the trend of cytotoxic activity for the 3-substituted 1,8-naphthyridines was different from that of antibacterial activity.  相似文献   

13.
Abstract

Ribosylation reactions of previously silylated 3-carbethoxy-8-methyl-1,4-dihydro-4-oxoquinoline (6a) and 3-carbethoxy-6-methyl-1,4-dihydro-4-oxoquinoline (6b) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (7), under Lewis acid catalysis, were studied. The method using hexamethyldisilazane (HMDS)/trimethylchlorosilane (TMCS) mixture for silylation and anhydrous stannic chloride as catalyst for ribosylation failed to give any nucleoside product. On the other hand, the protected nucleoside 3-carbethoxy-6-methyl-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1,4-dihydro-4-oxoquinoline (8b) was obtained in good yields using bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% of TMCS and the same catalyst. Compound 8b was more easily isolated in higher yields with an improvement of the later method by replacing stannic chloride with trimethylsilyl trifluoromethanesulfonate (TMSOTf).

De-O-benzoylation of 8b with methanolic sodium hydroxide solution afforded the free riboside 3-carbomethoxy-6-methyl-1-β-D-ribofuranosyl-1,4-dihydro-4-oxoquinoline (9b). The structures of the obtained products were confirmed by their LTV, MS, IR, 1H and 13C-NMR data.  相似文献   

14.
《朊病毒》2013,7(5):470-476
Prion diseases are fatal, neurodegenerative diseases characterized by the structural conversion of the normal, cellular prion protein, PrPC into an abnormally structured, aggregated and partially protease-resistant isoform, termed PrPSc. Although substantial research has been directed toward development of therapeutics targeting prions, there is still no curative treatment for the disease. Benzoxazines are bicyclic heterocyclic compounds possessing several pharmaceutically important properties, including neuroprotection and reactive oxygen species scavenging. In an effort to identify novel inhibitors of prion formation, several 5,7,8-trimethyl-1,4-benzoxazine derivatives were evaluated in vitro for their effectiveness on the expression levels of normal PrPC and its conversion to the abnormal isoforms of PrPSc in a scrapie-infected cell culture model. The most potent compound was 2-(4-methoxyphenyl)-5,7,8-trimethyl-3,4-dihydro-2H-1,4-benzoxazine, with a diminishing effect on the formation of PrPSc, thus establishing a class of compounds with a promising therapeutic use against prion diseases.  相似文献   

15.
1,4-Dihydropyridines are the emerging class of antitubercular agent. Recently, studies have revealed that 1,4-dihydropyridine-3,5-dicarbamoyl derivatives with lipophilic groups have demonstrated excellent antitubercular activity. We have synthesized new N-aryl-1,4-dihydropyridines bearing carbethoxy and acetyl group at C-3 and C-5 of the DHP ring. In addition, 1H-pyrazole ring is substituted at C-4 position. The lowest minimum inhibitory concentration value, 0.02 μg/mL, was found for diethyl 1-(2-chlorophenyl)-1,4-dihydro-2,6-dimethyl-4-(1,3-diphenyl-1H-pyrazol-4-yl)pyridine-3,5-dicarboxylate 4e making it more potent than first line antitubercular drug isoniazid. In addition, this compound exhibited relatively low cytotoxicity.  相似文献   

16.
Prion diseases are fatal, neurodegenerative diseases characterized by the structural conversion of the normal, cellular prion protein, PrPC into an abnormally structured, aggregated and partially protease-resistant isoform, termed PrPSc. Although substantial research has been directed toward development of therapeutics targeting prions, there is still no curative treatment for the disease. Benzoxazines are bicyclic heterocyclic compounds possessing several pharmaceutically important properties, including neuroprotection and reactive oxygen species scavenging. In an effort to identify novel inhibitors of prion formation, several 5,7,8-trimethyl-1,4-benzoxazine derivatives were evaluated in vitro for their effectiveness on the expression levels of normal PrPC and its conversion to the abnormal isoforms of PrPSc in a scrapie-infected cell culture model. The most potent compound was 2-(4-methoxyphenyl)-5,7,8-trimethyl-3,4-dihydro-2H-1,4-benzoxazine, with a diminishing effect on the formation of PrPSc, thus establishing a class of compounds with a promising therapeutic use against prion diseases.  相似文献   

17.
2H-1,4-Thiazine-5,6-dihydro-3-carboxylic acid (trivial name: aminoethylcysteine ketimine) is a cyclic sulfur-containing imino acid detected in bovine brain extracts by means of three different procedures. Gas liquid chromatography of protein-free extracts of five bovine brains revealed the presence of this compound at concentrations ranging from 2 to 3 nmol/g wet weight of tissue. The enzymatic method based on the inhibition of D-amino acid oxidase activity by aminoethylcysteine ketimine together with an high-performance liquid chromatography procedure confirm the identification and quantitations obtained with gas liquid chromatography. The discovery of this compound structurally similar to pipecolic acid opens the question of its physiological role in the central nervous system.  相似文献   

18.
We discovered a novel series of 3,4-dihydro-2H-benzo[1,4]oxazin-8-yloxyacetic acid derivatives as potent dual-acting agents to block the TXA2 receptor and to activate the PGI2 receptor. We report the synthesis, structure-activity relationship, and in vitro, ex vivo, and in vivo pharmacology of this series of compounds. 4-[2-(1,1-Diphenylethylsulfanyl)ethyl]-3,4-dihydro-2H-benzo[1,4]oxazin-8-yloxyacetic acid N-methyl-D-glucamine salt (7) is a promising candidate for a novel treatment in the anti-thrombotic and the cardiovascular fields avoiding hypotensive side effects.  相似文献   

19.
1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone nor beta-naphthoflavone treatment had any effect upon olfactory cytochrome P-450-dependent reactions, although it induced those of the liver.  相似文献   

20.
Fourteen compounds of 3,6-disubstituted-1,4-dihydro-1,2,4,5-tetrazine derivatives were prepared and their structures were confirmed by single-crystal X-ray diffraction and the semi-empirical calculation of PM3 method. This reaction yields the 1,4-dihydro derivatives rather than the 1,2-dihydro derivatives. The central six-membered ring of 1,4-dihydro-1,2,4,5-tetrazine has a chair conformation and therefore is not homoaromatic. Their antitumor activities were evaluated in vitro by SRB method for A-549 and BEL-7402 cells, and MTT method for P-388 and HL-60 cells. The results show that there is one compound which is highly effective against P-388 cells and one compound which is highly effective against HL-60 cells. So it is a kind of compound which possesses potential antitumor activities and is worth to research further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号