首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三峡库区消落带池杉-土壤碳氮磷生态化学计量特征   总被引:9,自引:2,他引:7  
为探究三峡库区消落带消落期池杉(Taxodium ascendens Brongn., 1833)及其实生土壤C、N、P生态化学计量特征,于2018年7月对忠县消落带植被修复示范基地3个水淹处理(DS、MS、SS)池杉幼林不同组分(枝条、叶片、根系和土壤)的C、N、P三种元素含量及其化学计量比进行测定分析。结果表明:(1)随着水淹时间和强度的增加,池杉株高、冠幅、基径和胸径均受到一定的抑制,但总体生长良好,与其稳定的化学计量比关系紧密。(2)不同水淹处理组的池杉枝条、叶片中C、N、P含量及其比值分别均无显著性差异(P>0.05)。同一水淹处理组的N、P含量表现为叶片>根系>枝条>土壤;除枝条P含量外,其他器官组分C、N、P含量均显著高于土壤组分(P<0.05)。(3)池杉各器官N/P比值均远低于临界比率(<14),表明池杉的生长可能受N元素限制较为严重。(4)池杉与实生土壤的C、N、P元素内稳性整体表现为P>C>N,比值内稳性表现为C/N>N/P>C/P,地上部分(枝条、叶片)C、N、P元素及其比值的稳定性较地下部分(根系)强...  相似文献   

2.
Contemporary carbon stocks of mineral forest soils in the Swiss Alps   总被引:2,自引:1,他引:1  
Soil organic carbon (SOC) has been identified as the main globalterrestrial carbon reservoir, but considerable uncertainty remains as toregional SOC variability and the distribution of C between vegetationand soil. We used gridded forest soil data (8–km × 8–km)representative of Swiss forests in terms of climate and forest typedistribution to analyse spatial patterns of mineral SOC stocks alonggradients in the European Alps for the year 1993. At stand level, meanSOC stocks of 98 t C ha–1 (N = 168,coefficient of variation: 70%) were obtained for the entiremineral soil profile, 76 t C ha–1 (N =137, CV: 50%) in 0–30 cm topsoil, and 62 t Cha–1 (N = 156, CV: 46%) in0–20 cm topsoil. Extrapolating to national scale, we calculatedcontemporary SOC stocks of 110 Tg C (entire mineral soil, standarderror: 6 Tg C), 87 Tg C (0–30 cm topsoil, standarderror: 3.5 Tg C) and 70 Tg C (0–20 cm topsoil, standarderror: 2.5 Tg C) for mineral soils of accessible Swiss forests(1.1399 Mha). According to our estimate, the 0–20 cm layers ofmineral forest soils in Switzerland store about half of the Csequestered by forest trees (136 Tg C) and more than five times morethan organic horizons (13.2 Tg C).At stand level, regression analyses on the entire data set yielded nostrong climatic or topographic signature for forest SOC stocks in top(0–20 cm) and entire mineral soils across the Alps, despite thewide range of values of site parameters. Similarly, geostatisticalanalyses revealed no clear spatial trends for SOC in Switzerland at thescale of sampling. Using subsets, biotic, abiotic controls andcategorial variables (forest type, region) explained nearly 60%of the SOC variability in topsoil mineral layers (0–20 cm) forbroadleaf stands (N = 56), but only little of thevariability in needleleaf stands (N = 91,R 2 = 0.23 for topsoil layers).Considerable uncertainties remain in assessments of SOC stocks, due tounquantified errors in soil density and rock fraction, lack of data onwithin-site SOC variability and missing or poorly quantifiedenvironmental control parameters. Considering further spatial SOCvariability, replicate pointwise soil sampling at 8–km × 8–kmresolution without organic horizons will thus hardly allow to detectchanges in SOC stocks in strongly heterogeneous mountain landscapes.  相似文献   

3.
Three pot experiments were conducted to test the hypothesis that the growth ofAcacia spp. in stockpiled soil from two mineral sand mines, could be increased by the addition of phosphorus (P) or inoculation with VA mycorrhizal fungi. In soils from North Stradbroke Island, the dry weight of shoots ofAcacia concurrens was increased by P and by VA mycorrhizal fungi in tailings sand, while in less adsorptive topsoil dry weight was only increased at low levels of applied P. WhenA. concurrens was grown in a layer of topsoil placed over tailings sand, shoot dry weight increased, in response to inoculation with VA mycorrhizal fungi banded between the soil layers.In topsoil from Eneabba, the dry weight of shoots at low rates of applied P was increased by up to 4 times by inoculation with VA mycorrhizal fungi. The response to inoculation in both experiments was due to increases in the uptake of P by the plants.Species of VA mycorrhizal fungi differed in their ability to increase plant growth. However, in soils from both sites, the same fungal species were effective.  相似文献   

4.
Acer saccharum, Fraxinus americana, Juglans nigra, Acer rubrum, Cornus amomum, and Ulmus americana seedlings were subjected to a soil drying cycle and then rewatered. At frequent intervals during the drying cycle and following rewatering, determinations were made of equilibrium photosynthesis rates, leaf conductances and leaf water potentials. As the drying cycle progressed, leaf water potentials decreased, stomata closed, and rates of transpiration and photosynthesis were reduced. Stomata of the two Acer species initially were more sensitive to water stress than were those of the other species. At low leaf water potentials, stomata of Juglans and Cornus were more open than those of the other species. Photosynthesis of Acer saccharum, Fraxinus and Juglans was significantly reduced by plant water stress, while photosynthetic water use efficiency of Cornus and Juglans was most unfavourable. Photosynthesis/leaf conductance ratios in water stressed leaves were higher in Fraxinus than in the other species. Immediately after rewatering, only limited stomatal opening occurred in Acer saccharum and Cornus with recovery of stomatal opening most protracted in Fraxinus and Ulmus. There was extended reduction of photosynthesis of all species as a result of the soil drying treatment. This effect was most significant in Acer saccharum and Juglans. Survival of plants on moist and dry sites is discussed in relation to stomatal control of transpiration and metabolic responses to water stress. Research supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison and the International Shade Tree Conference. The cooperation of the Wisconsin Department of Natural Resources is acknowledged. Research supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison and the International Shade Tree Conference. The cooperation of the Wisconsin Department of Natural Resources is acknowledged.  相似文献   

5.
陈贝贝  匡文浓  姜俊  赵秀海  何怀江 《生态学报》2021,41(11):4469-4475
为了解长白山次生杨桦林中优势更新幼苗的空间分布及其与环境因子之间的关系,以5.2 hm2(200 m×260 m)固定样地更新幼苗的全面定位调查和环境因子调查本底数据为基础,对样地内个体数量排序前5的优势更新幼苗进行分析。结果表明:在中小距离尺度上,水曲柳(Fraxinus mandshurica)(0-90 m)、色木槭(Acer mono)(0-60 m)、紫椴(Tilia amurensis)(0-60 m、90-150 m)和假色槭(Acer pseudo-sieboldianums)(0-90 m)更新幼苗的空间分布关系为显著正自相关,呈聚集性分布;群落水平上,环境变量和空间变量对5种优势更新幼苗的空间分布变异解释能力为61%,其中,纯粹空间变量的解释度为56%,而纯粹环境变量的解释度不足1%;种群水平上,环境因子对更新幼苗的空间分布有一定影响,其中,水曲柳幼苗的空间分布与土壤有机质、土壤全钾和土壤水分显著相关,色木槭幼苗的空间分布与土壤有机质和土壤全磷显著相关,紫椴幼苗的空间分布与土壤全磷显著相关,假色槭幼苗的空间分布与土壤水分显著相关;簇毛槭(Acer barbinerve)幼苗的空间分布与环境因子未表现出显著的相关性。长白山次生杨桦林中优势更新幼苗多为聚集性分布,环境因子对其分布有一定影响。  相似文献   

6.
The extreme species richness of native shrubland vegetation (kwongan) near Eneabba, Western Australia, presents a major problem in the restoration of sites following mineral sand mining. Seed sources available for post-mining restoration and those present in the native kwongan vegetation were quantified and compared. Canopy-borne seeds held in persistent woody fruits were the largest seed source of perennial species in the undisturbed native vegetation and also provided the most seeds for restoration. In undisturbed vegetation, the germinable soil seed store (140–174 seeds · m?2) was only slightly less than the canopy-borne seed store (234–494 seeds · m?2), but stockpiled topsoil provided only 9% of the germinable seeds applied to the post-mining habitat. The age of stockpiled soil was also important. In the three-year-old stockpiled topsoil, the seed bank was only 10.5 seeds · m?2 in the surface 2.5 cm, compared to 56.1 to 127.6 seeds · m?2 in fresh topsoil from undisturbed vegetation sites. In the stockpiled topsoil, most seeds were of annual species and 15–40% of the seeds were of non-native species. In the topsoil from undisturbed vegetation, over 80% of the seeds were of perennial species, and non-native species comprised only 2.7% of the seed bank. Additional seeds of native species were broadcast on restoration areas, and although this represented only 1% of the seed resources applied, the broadcast seed mix was an important resource for increasing post-mining species richness. Knowledge of the life-history characteristics of plant species may relate to seed germination patterns and assist in more accurate restoration where information on germination percentages of all species is not available.  相似文献   

7.
Nutrient availability and temporal variation of physical stress are usually higher in organic soil layers than in mineral soils. Individual roots within the fine-root system adjust anatomical, morphological, and turnover characteristics to soil conditions, for example nutrient availability and physical stresses. We investigated anatomical traits, including cork formation and passage and protoxylem cell numbers, in cross-sections of individual fine roots of the conifer Chamaecyparis obtusa (Siebold & Zucc.) growing under different soil conditions. The fine-root systems in different soil layers were compared by sampling ingrowth cores buried for 1 year and filled with organic and mineral soil substrates. The number of exodermal passage cells was lower in roots from organic soils than in those from mineral soils, suggesting that apical roots tend to be more stress-tolerant in the organic layer than in mineral soils. In contrast, both root tip and specific root tip density were higher in roots from organic soils than in those from mineral soil layers. The proportion of roots with two strands of protoxylem (diarch) was greater in organic (90%) than in mineral (25%) soils. Thus, although the absorptivity of individual apical roots decreases in organic layers, the absorptivity of the entire fine-root system of C. obtusa may be increased as a result of the increase in apical root density and the proportion of ephemeral roots. We found that the fine-root system had simultaneous plasticity in density, anatomy, and architecture in response to complex soil conditions.  相似文献   

8.
To examine the causes of landscape variation in forest community composition, we have quantified sapling mortality as a function of growth and soil moisture for seven dominant species in transition oak-northern hardwood forests of the northeastern USA. We located saplings in sites that encompassed a wide range of variation in soil moisture and light availability. In mesic conditions, the probability of mortality decays rapidly with increasing growth among shade tolerant species and more gradually among shade intolerant species: the rank order of survivorship at low growth rates is Tsuga canadensis > Fagus grandifolia > Acer saccharum > Fraxinus americana > Acer rubrum > Quercus rubra > Pinus strobus . The relationship between probability of mortality and growth does not vary with soil moisture among species insensitive to drought: Tsuga canadensis , Quercus rubra, and Pinus strobus . However, probability of mortality increases substantially with decreasing soil water availability for the other four species. Acer saccharum and Fagus grandifolia have high mortality rates under xeric conditions even when their growth is not suppressed. Acer rubrum and Fraxinus americana exhibited a steady but more gradual increase in the probability of mortality with decreasing soil moisture. Among the five deciduous hardwood species we examined there is a weak inverse relationship between the ability to survive growth suppression, a measure of shade tolerance, and the ability to survive in xeric conditions, a measure of drought tolerance. Tsuga canadensis , however, is tolerant of growth suppression and exhibits high survivorship in xeric conditions, while Pinus strobus is intolerant of growth suppression but insensitive to soil moisture. Species differences in water-dependent mortality are consistent with the species distributions across landscape gradients of soil water availability.  相似文献   

9.
Summary The effects of disturbing (cultivating) and stockpiling prairie grassland topsoil on microbial activity, microbial biomass C, plant production and decomposition potentials were studied by measuring CO2 efflux from unamended and glucose amended soil in the laboratory and by conducting a pot and litter bag study in the greenhouse. Stockpiling appeared to have very little effect on soil respiratory activity, but did reduce the microbial biomass C levels. Throughout the 3 year study the microbial biomass C in the surface soil of the stockpile was less than that in the undisturbed soil, while the biomass C in soil at the bottom of the stockpile was at no time significantly different from that in the undisturbed soil. The reduction in microbial biomass C in the surface soil immediately after stockpiling was attributed to a decrease in the soil organic C levels caused by a slight dilution of the topsoil with subsurface mineral soil, and the exposure of the stockpile surface to extreme environmental conditions. Soils from all depths of the stockpile responded more slowly to the addition of glucose than soil from the undisturbed and cultivated treatments even when no differences in biomass were detected between the undisturbed and stockpiled soils. It is postulated that the rapidity with which the soil microbial biomass responds to glucose additions may be a sensitive indicator of stress on the soil biological components. The reduction in biomass after storage for 1 year had no adverse effects on the decomposition or primary production potential of the stored soil. Rather, shoot production by fall rye was stimulated in the stored topsoil, presumably a result of better N nutrition.  相似文献   

10.
Topsoil is a valuable resource for revegetation of mine sites as it contains seeds of plant species indigenous to the local environment. As mine site restoration is undertaken after the completion of mining, it is a common practice to stockpile topsoil in preparation for restoration activities. While many studies have found a decrease in seedling emergence with increasing stockpile age in temperate regions around the world, a few examine the effect of stockpile age on topsoil seed bank and seedling recruitment in arid environments. Seed longevity is promoted under dry conditions whereas viability loss is increased under warm and moist conditions. Here in a study in Australia's Great Sandy Desert, the effect of topsoil storage age and method of storing topsoil (under‐cover and exposed) on seedling recruitment was examined for a major gold mining site. There was a trend for lower seedling emergence (68% lower) and species richness (30% lower) from topsoil stored for 2 years than from topsoil direct returned and topsoil stored for 1 year. Seedling emergence from topsoil stockpiled for 2 years was more than 3.5‐fold higher from covered topsoil stockpiles than uncovered topsoil stockpiles. For two ecologically dominant species, after 2 years of storage, seedling emergence of the grass Triodia basedowii was 13% of direct returned topsoil and seedling emergence of the shrub Acacia stellaticeps was 68% of direct returned topsoil. The implication of the decline in seedling emergence from topsoil stockpiling on mine site revegetation in a biodiverse arid region is discussed.  相似文献   

11.
华南地区裸子植物与被子植物季节性水分利用的比较研究   总被引:1,自引:0,他引:1  
为了解气候温暖区的裸子植物与被子植物的水分利用异同,利用Granier热消散探针法(TDP)连续监测华南地区裸子植物池杉(Taxodium ascendens)、落羽杉(T. distichum)和被子植物枫香树(Liquidambar formosana)、乐昌含笑(Michelia chapensis)的树干液流,对干湿季裸子植物与被子植物水分利用的差异及其与环境因子的关系进行了研究。结果表明,光合有效辐射和水汽压亏缺与树木的整树蒸腾速率和整树日均耗水量呈显著正相关;干季池杉和落羽杉的整树蒸腾速率与整树水力导度均显著低于枫香树和乐昌含笑;而在湿季则正好相反。这为华南地区园林造景和养护管理提供了科学依据。  相似文献   

12.
  • Temperate tree species differ in their physiological sensitivity to declining soil moisture and drought. Although species‐specific responses to drought have often been suggested to be the result of different water uptake depths, empirical evidence for such a mechanism is scarce.
  • Here we test if differences in water uptake depths can explain previously observed species‐specific physiological responses of temperate trees to drought and if the water uptake depth of different species varies in response to declining soil moisture. For this purpose, we employed stable oxygen and hydrogen isotopes of soil and xylem water that we collected over the course of three growing seasons in a mature temperate forest in Switzerland.
  • Our data show that all investigated species utilise water from shallow soil layers during times of sufficient soil water supply. However, Fraxinus excelsior, Fagus sylvatica and Acer pseudoplatanus were able to shift their water uptake to deeper soil layers when soil water availability decreased in the topsoil. In contrast, Picea abies, was not able to shift its water uptake to deeper soil layers.
  • We conclude from our data that more drought‐resistant tree species are able to shift their water uptake to deeper soil layers when water availability in the topsoil is becoming scarce. In addition, we were able to show that water uptake depth of temperate tree species is a trait with high plasticity that needs to be characterised across a range of environmental conditions.
  相似文献   

13.
Summary Soil profiles were made at three locations corresponding to the three principal coniferous groups:Pinus montezumae, Abies religiosa andPinus hartwegii. The soil samples were submitted to microbiological, physical and chemical analysis. Mycorrhizic fungi were collected throughout this zone and 25 species of ectotrophic and 1 facultative mycorrhizic fungiLaccaria laccata were found.Lycoperdon perlatum andHygrophorus chrysodon were in the three communities, as wellAmanita muscaria, Boletus granulatus andCantharellus cibarius were only in the Pinus communities. The experimental condition used in order to prove symbiosis showed us several symbionts in the root for each one of the three different conifers. As regards general microflora, the greatest number of bacteria and fungi was present in the surface horizon of Abies soil; these soils are deep and moist throughout the year and with a good drainage, so that seasonal variations have little or no effect on soil environmental conditions and that favors the microbiological development. In the soils of the Pinus communities the number of actinomycetes and of bacteria is higher immediately below the surface horizon.  相似文献   

14.
Summary A greenhouse study was conducted to determine the effects of stockpiling prairie grassland topsoil for 3 years on mycorrhizal development and root and shoot production of slender wheatgrass. The vesicular-arbuscular mycorrhizal (VAM) fungi involved in the symbiosis were also assessed as was the decomposition potential of the soil. During the first week of growth, VAM development in grasses grown in the stockpiled soil lagged behind that observed for grasses in the undisturbed soil. However, by 3 weeks, the mycorrhizal infection in plants in the stockpiled soil had reached levels similar to that in plants in the undisturbed soil. The dominant species of VAM fungi involved in the symbiosis at 8 weeks after planting shifted fromGlomus fasciculatum in the undisturbed soil toG. mosseae in the stockpiled soil. The delay in initial VAM infection and shift in VAM fungal species did not significantly affect plant productivity which was greatest in the stockpiled soil. The greater shoot production exhibited by grasses in the stockpiled soil was attributed to higher levels of NO3-N in the stockpiled than undisturbed soil. The potential of the soil to decay dead slender wheatgrass roots was not altered by stockpiling.  相似文献   

15.
Temperate forest soil organic carbon (C) represents a significant pool of terrestrial C that may be released to the atmosphere as CO2 with predicted changes in climate. To address potential feedbacks between climate change and terrestrial C turnover, we quantified forest soil C response to litter type and temperature change as a function of soil parent material. We collected soils from three conifer forests dominated by ponderosa pine (PP; Pinus ponderosa Laws.); white fir [WF; Abies concolor (Gord. and Glend.) Lindl.]; and red fir (RF; Abies magnifica A. Murr.) from each of three parent materials, granite (GR), basalt (BS), and andesite (AN) in the Sierra Nevada of California. Field soils were incubated at their mean annual soil temperature (MAST), with addition of native 13C‐labeled litter to characterize soil C mineralization under native climate conditions. Further, we incubated WF soils at PP MAST with 13C‐labeled PP litter, and RF soils at WF MAST with 13C‐labeled WF litter to simulate a migration of MAST and litter type, and associated change in litter quality, up‐elevation in response to predicted climate warming. Results indicated that total CO2 and percent of CO2 derived from soil C varied significantly by parent material, following the pattern of GR>BS>AN. Regression analyses indicated interactive control of C mineralization by litter type and soil minerals. Soils with high short‐range‐order (SRO) mineral content exhibited little response to varying litter type, whereas PP litter enriched in acid‐soluble components promoted a substantial increase of extant soil C mineralization in soils of low SRO mineral content. Climate change conditions increased soil C mineralization greater than 200% in WF forest soils. In contrast, little to no change in soil C mineralization was noted for the RF forest soils, suggesting an ecosystem‐specific climate change response. The climate change response varied by parent material, where AN soils exhibited minimal change and GR and BS soils mineralized substantially greater soil C. This study corroborates the varied response in soil C mineralization by parent material and highlights how the soil mineral assemblage and litter type may interact to control conifer forest soil C response to climate change.  相似文献   

16.
Carbon dioxide consumption during soil development   总被引:5,自引:1,他引:4  
Carbon is sequestered in soils by accumulation of recalcitrant organic matter and by bicarbonate weathering of silicate minerals. Carbon fixation by ecosystems helps drive weathering processes in soils and that in turn diverts carbon from annual photosynthesis-soil respiration cycling into the long-term geological carbon cycle. To quantify rates of carbon transfer during soil development in moist temperate grassland and desert scrubland ecosystems, we measured organic and inorganic residues derived from the interaction of soil biota and silicate mineral weathering for twenty-two soil profiles in arkosic sediments of differing ages. In moist temperate grasslands, net annual removal of carbon from the atmosphere by organic carbon accumulation and silicate weathering ranges from about 8.5 g m–2 yr–1 for young soils to 0.7 g M–2 yr–1 for old soils. In desert scrublands, net annual carbon removal is about 0.2 g m–2 yr–1 for young soils and 0.01 g m–2 yr–1 for old soils. In soils of both ecosystems, organic carbon accumulation exceeds CO2 removal by weathering, however, as soils age, rates of CO2 consumption by weathering accounts for greater amounts of carbon sequestration, increasing from 2% to 8% in the grassland soils and from 2% to 40% in the scrubland soils. In soils of desert scrublands, carbonate accumulation far outstrips organic carbon accumulation, but about 90% of this mass is derived from aerosolic sources that do not contribute to long-term sequestration of atmospheric carbon dioxide.  相似文献   

17.
易分解有机碳对不同恢复年限森林土壤激发效应的影响   总被引:1,自引:0,他引:1  
土壤有机碳库作为陆地生态系统最大的碳库,其微小的改变都将引起大气CO_2浓度的急剧改变。易分解有机碳的输入可以通过正/负激发效应加快/减缓土壤有机碳(SOC)的矿化,并最终影响土壤碳平衡。以长汀县不同恢复年限森林(裸地、5年、15年、30年马尾松林以及天然林)土壤为研究对象,通过室内培养向土壤中添加~(13)C标记葡萄糖研究易分解有机碳输入对不同恢复阶段森林土壤激发效应的影响。研究结果表明,易分解有机碳输入引起的土壤激发效应的方向和强度因不同恢复阶段而异。易分解有机碳输入的初期对各恢复阶段森林土壤均产生正的激发效应,然而随着时间的推移,15年、30年马尾松林以及天然林相继出现负的激发效应。从整个培养期(59 d)来看,易分解有机碳的输入促进了裸地与5年生马尾松林土壤有机碳的矿化,有机碳的矿化量分别提高了131%±27%与25%±5%;但是减缓了15年生马尾松林土壤有机碳的矿化,使其矿化量减少了10%±1%;然而,易分解有机碳输入对30年生马尾松林及天然林土壤有机碳的矿化则无明显影响。土壤累积激发碳量与葡萄糖添加前后土壤氮素的改变百分比呈显著正相关关系(R~2=0.44,P0.05),表明易分解有机碳输入诱导的土壤激发效应受土壤氮素可利用性的调控,土壤微生物需要通过分解原有土壤有机碳释放的氮素来满足自身的需求。  相似文献   

18.
Soil organic matter not only affects soil properties and productivity but also has an essential role in global carbon (C) cycle. We studied changes in the topsoil C content of Finnish croplands using a dataset produced in nationwide soil monitoring. The monitoring network consisting of fields on both mineral and organic soils was established in 1974 and resampled in 1987, 1998, and 2009. Over the monitoring period from 1974 to 2009, cultivated soils showed a continuous decline in C concentration (g kg?1). In organic soils, C concentration decreased at a mean rate of 0.2–0.3% yr?1 relative to the existing C concentration. In mineral soils, the relative decrease was 0.4% yr?1 corresponding to a C stock (kg m?2) loss of 220 kg ha?1 yr?1. The change in management practices in last decades toward increasing cultivation of annual crops has contributed to soil C losses noted in this study. The results, however, suggest that the C losses result partly from other processes affecting cultivated soils such as climatic change or the continuing long‐term effect of forest clearance. We estimated that Finnish cropland soils store 161 Tg carbon nationwide in the topmost 15 cm of which 117 Tg is in mineral soils. C losses from mineral soils can therefore total up to 0.5 Tg yearly.  相似文献   

19.
Topsoil stockpiled for 4 years resulted in an accumulation of NH4-N at depths of 1m or more in mound, as measured by an ammonia gas-sensing electrode. When leached with water these soils were also found to contain high concentrations of dissolved organic C below 1m. Both NH4-N and DOC were products of microbial mineralisation of soil organic matter that accumulated under anaerobic conditions. When these soils were restored a flush of decomposition took place, fuelled by labile organic matter and soluble nitrogen.Stockpiled soil which underwent an ammonium-rich perfusion regime in the laboratory indicated that in-mound soils rapidly attained greater nitrification potential than surface mound soils and also had greater potential for further mineralisation of organic matter to NH4-N. This further production was seen as a contribution from the bacterial flush, stimulated by the large labile-C pool already present.As the bulk of stored soil was anaerobic, restored soils were seen as potentially wasteful of their N-reserves; the fate of nitrogen and soluble carbon compounds in restored soils is discussed.  相似文献   

20.
I describe a 1.5-ha riverine headwater forest (Hall Branch) that was created 11 years earlier on phosphate-mined and reclaimed land near Tampa, Florida, U.S.A. Favorable hydrologic and edaphic conditions were realized, owing to the proper positioning of the project site in an effectively reclaimed landscape. The soil had developed a distinct A horizon and an incipient B horizon. Planted trees, mainly species of Acer, Fraxinus, Ilex, Liquidambar, Magnolia, Persea, Quercus, Taxodium, and Ulmus, shared dominance with short-lived volunteer willows (Salix caroliniana) that had already begun to senesce. The tree canopy exhibited 85% cover, and some trees had grown to 12.5 m tall. Basal area reached 8.31 m2/ha for trees 10 cm or more in diameter at breast height. Ten planted tree species produced seeds and yielded seedlings. The floristic composition over the decade consisted of 22 species of trees and 208 shrubs, vines, epiphytes, ferns, graminoids, and forbs. Thirty-eight non-arboreal species were directly transplanted, others arose from a seed bank in muck that was amended on wetter sites, and the rest volunteered via natural dissemination. The frequency of non-arboreal plants was collectively 98%. Seventy-three species at the restoration site were characteristic of the mature, undisturbed reference ecosystem. A corresponding area within the reference ecosystem contained essentially the same number of species and the same array of life forms. Copious plant reproduction has transformed the planted forest into an intact ecosystem that no longer needs restoration assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号