首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species’ responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species’ distributions highlights the need to include river flow data in climate change impact models of species’ distributions.  相似文献   

2.
Tree island ecosystems are important and distinct features of Florida Everglades wetlands. We described the inter-relationships among abiotic factors describing seasonally flooded tree islands and characterized plant–soil relationships in tree islands occurring in a relatively unimpacted area of the Everglades. We used Principal Components Analysis (PCA) to reduce our multi-factor dataset, quantified forest structure and vegetation nutrient dynamics, and related these vegetation parameters to PCA summary variables using linear regression analyses. We found that, of the 21 abiotic parameters used to characterize the ecosystem structure of seasonally flooded tree islands, 13 parameters were significantly correlated with four principal components, and they described 78% of the variance among the study islands. Most variation was described by factors related to soil oxidation and hydrology, exemplifying the sensitivity of tree island structure to hydrologic conditions. PCA summary variables describing tree island structure were related to variability in Chrysobalanus icaco (L.) canopy cover, Ilex cassine (L.) and Salix caroliniana (Michx.) canopy cover, Myrica cerifera (L.) plot frequency, litter turnover, % phosphorus resorption of co-dominant species, and nitrogen nutrient-use efficiency. This study supported findings that vegetation characteristics can be sensitive indicators of variability in tree island ecosystem structure. This study produced valuable, information which was used to recommend ecological targets (i.e. restoration performance measures) for seasonally flooded tree islands in more impacted regions of the Everglades landscape.  相似文献   

3.
Soil acidity and calcium (Ca) availability in the surface soil differ substantially beneath sugar maple (Acer saccharum) and eastern hemlock (Tsuga canadensis) trees in a mixed forest in northwestern Connecticut. We determined the effect of pumping of Ca from deep soil (rooting zone below 20-cm mineral soil) to explain the higher available Ca content in the surface soil beneath sugar maple. We measured the atmospheric input of Ca with bulk deposition collectors and estimated Ca weathering and Ca mineralization in the surface soil (rooting zone above 20-cm mineral soil) from strontium isotope measurements and observed changes in exchangeable Ca in soils during field incubation. Calcium leaching at 20 cm was calculated by combining modeled hydrology with measured Ca soil solution concentrations at 20-cm depth. We measured root length distribution with depth beneath both tree species. Calcium leaching from the surface soil was much higher beneath sugar maple than hemlock and was positively related with the amount of Ca available in the surface soil. Calcium leaching from the surface soil beneath sugar maple was higher than the combined Ca input from atmospheric deposition and soil weathering. Without Ca uptake in the deep soil, surface soils are being depleted in Ca, especially beneath sugar maple. More organically bound Ca was mineralized beneath sugar maple than beneath hemlock. A relatively small part of this Ca release was leached below the surface soil, suggesting that, beneath both tree species, most of the Ca cycling is occurring in the surface soil. Sugar maple had more fine roots in the deep soil than hemlock and a greater potential to absorb Ca in the deep soil. With a simple model, we showed that a relatively small amount of Ca uptake in the deep soil beneath sugar maple is able to sustain high amounts of available Ca in the surface soil. Received 20 June 2001; accepted 6 December 2001.  相似文献   

4.
Diffusive gas transport at high water contents and physiological water stress at low water contents limited atmospheric methane consumption rates during experimental manipulations of soil water content and water potential. Maximum rates of atmospheric methane consumption occurred at a soil water content of 25% (grams per gram [dry weight]) and a water potential of about -0.2 MPa. In contrast, uptake rates were highest at a water content of 38% and a water potential of -0.03 MPa when methane was initially present at 200 ppm. Uptake rates of atmospheric and elevated methane decreased when water potentials were reduced by adding either ionic or nonionic solutes to soils with a fixed water content. Uptake rates during these manipulations were lower when sodium chloride or potassium chloride was used to adjust water potential rather than sucrose. The response of methane consumption by soils to water potential was somewhat less pronounced than the response of methanotrophic cultures (e.g., Methylosinus trichosporium OB3b, Methylomonas rubra [= M. methanica], an isolate from a freshwater peat, and an isolate from an intertidal marine mudflat). However, unlike soils, methanotrophic cultures exhibited a stronger adverse response to nonionic solutes than to sodium chloride.  相似文献   

5.
Six differently distributed Poaceae species were compared in order to identify morphological and/or physiological properties that ensure calcicole species but not calcifuge species a sufficient Fe supply on CaCO3 rich soils. When grown at a range of FeEDTA supply from deficient to adequate, the calcicole species had higher Fe productivities and relative yields at low Fe supply than the calcifuges. Specific root surface and Fe uptake requirements were lower in calcicoles than in calcifuges. Root exudation of Fe-mobilizing compounds was monitored in plants grown either with or without added FeEDTA in hydroponic culture. Under Fe deficiency, typically more than 80% of soluble root exudates of Poaceae are phytosiderophores (Marschner et al., 1989; Römheld, 1987). Maximum exudation rates of Fe mobilizing compounds were 6.6 to 11.5 μmol g?1 root dry wt 2 hr?1 in calcicoles and 0.48 to 1.64 in calcifuges. If Fe requirement is defined as mean Fe uptake rate required for 90 % of the maximal relative growth rate, the exudation rates of Fe mobilizing compounds were at least 11.7 to 31.9 times higher than Fe requirements in calcicoles and 0.38 to 5.36 times higher in calcifuges. Growth response to a precipitated versus a chelated Fe source was determined. The relative ability to grow with Fe(OH)3 precipitate was correlated with the Fe mobilization rate of the species. The present results give evidence for the importance of Fe efficiency in wild plants. Calcicoles are able to live on calcareous soils partly because they produce larger amounts of Fe mobilizing compounds and have lower tissue Fe requirements than calcifuges.  相似文献   

6.
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.  相似文献   

7.
Trichloroethene (TCE) plumes extend north-northeast toward the Ohio River from the Paducah Gaseous Diffusion Plant (PGDP), a Superfund site in the Gulf Coastal Plain of western Kentucky. Wetlands in the floodplain are in the paths of these plumes, and on-site contamination has migrated downward from the Regional Gravel Aquifer (RGA) into the upper McNairy Formation, which overlies a bedrock aquifer. Intrinsic biodegradation in these two environments at the margins of the RGA could limit further contaminant migration and ecosystem or water-quality degradation. To assess cometabolic biodegradation potential in these uncontaminated environments, we attempted to culture and enumerate methanogens, sulfate- and Fe(III)-reducers, and methanotrophs, which have been implicated elsewhere as TCE degraders. Soil samples were collected at three wetland sites in the floodplain. McNairy sediments were collected beneath one of the suspected source areas at PGDP. Methanogens, sulfate reducers, and methanotrophs were abundant in wetland soils, with populations generally decreasing with depth. Methanogens were the only group cultured from McNairy sediments, and they showed little activity compared with wetland methanogen cultures. TCE loss in methanogenic batch cultures by chemoautotrophic and acetoclastic methanogens was monitored, but no significant degradation was observed.  相似文献   

8.
We studied the effects of elevated CO2 (180–200 ppmv above ambient) on growth and chemistry of three moss species (Sphagnum palustre, S. recurvum and Polytrichum commune) in a lowland peatland in the Netherlands. Thereto, we conducted both a greenhouse experiment with both Sphagnum species and a field experiment with all three species using MiniFACE (Free Air CO2 Enrichment) technology during 3 years. The greenhouse experiment showed that Sphagnum growth was stimulated by elevated CO2 in the short term, but that in the longer term (≥1 year) growth was probably inhibited by low water tables and/or down-regulation of photosynthesis. In the field experiment, we did not find significant changes in moss abundance in response to elevated CO2, although CO2 enrichment appeared to reduce S. recurvum abundance. Both Sphagnum species showed stronger responses to spatial variation in hydrology than to increased atmospheric CO2 concentrations. Polytrichum was insensitive to changes in hydrology. Apart from the confounding effects of hydrology, the relative lack of growth response of the moss species may also have been due to the relatively small increase in assimilated CO2 as achieved by the experimentally added CO2. We calculated that the added CO2 contributed at most 32% to the carbon assimilation of the mosses, while our estimates based on stable C isotope data even suggest lower contributions for Sphagnum (24–27%). Chemical analyses of the mosses showed only small elevated CO2 effects on living tissue N concentration and C/N ratio of the mosses, but the C/N ratio of Polytrichum was substantially lower than those of the Sphagnum species. Continuing expansion of Polytrichum at the expense of Sphagnum could reduce the C sink function of this lowland Sphagnum peatland, and similar ones elsewhere, as litter decomposition rates would probably be enhanced. Such a reduction in sink function would be driven mostly by increased atmospheric N deposition, water table regulation for agricultural purposes and land management to preserve the early successional stage (mowing, tree and shrub removal), since these anthropogenic factors will probably exert a greater control on competition between Polytrichum and Sphagnum than increased atmospheric CO2 concentrations.  相似文献   

9.
Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses to osmotic stress are conserved among diverse organisms or confined to particular groups of species. Here we investigate the global metabolic responses of twelve bacteria, two yeasts and two human cell lines exposed to sustained hyperosmotic salt stress by measuring semiquantitative levels of hundreds of cellular metabolites using nontargeted metabolomics. Beyond the accumulation of osmoprotectants, we observed significant changes of numerous metabolites in all species. Global metabolic responses were predominantly species-specific, yet individual metabolites were characteristically affected depending on species’ taxonomy, natural habitat, envelope structure or salt tolerance. Exploiting the breadth of our dataset, the correlation of individual metabolite response magnitudes across all species implicated lower glycolysis, tricarboxylic acid cycle, branched-chain amino acid metabolism and heme biosynthesis to be generally important for salt tolerance. Thus, our findings place the global metabolic salt stress response into a phylogenetic context and provide insights into the cellular phenotype associated with salt tolerance.  相似文献   

10.

Background

Recently, much attention has been paid to the role of cooperative breeding in the evolution of behavior. In many measures, cooperative breeders are more prosocial than non-cooperatively breeding species, including being more likely to actively share food. This is hypothesized to be due to selective pressures specific to the interdependency characteristic of cooperatively breeding species. Given the high costs of finding a new mate, it has been proposed that cooperative breeders, unlike primates that cooperate in other contexts, should not respond negatively to unequal outcomes between themselves and their partner. However, in this context such pressures may extend beyond cooperative breeders to other species with pair-bonding and bi-parental care.

Methods

Here we test the response of two New World primate species with different parental strategies to unequal outcomes in both individual and social contrast conditions. One species tested was a cooperative breeder (Callithrix spp.) and the second practiced bi-parental care (Aotus spp.). Additionally, to verify our procedure, we tested a third confamilial species that shows no such interdependence but does respond to individual (but not social) contrast (Saimiri spp.). We tested all three genera using an established inequity paradigm in which individuals in a pair took turns to gain rewards that sometimes differed from those of their partners.

Conclusions

None of the three species tested responded negatively to inequitable outcomes in this experimental context. Importantly, the Saimiri spp responded to individual contrast, as in earlier studies, validating our procedure. When these data are considered in relation to previous studies investigating responses to inequity in primates, they indicate that one aspect of cooperative breeding, pair-bonding or bi-parental care, may influence the evolution of these behaviors. These results emphasize the need to study a variety of species to gain insight in to how decision-making may vary across social structures.  相似文献   

11.
12.
Miscanthus has been proposed as a promising crop for phytoremediation due to its high biomass yield and remarkable adaptability to different environments. However, little is known about the resistance of Miscanthus spp. to cadmium (Cd). To determine any differences in resistance of Miscanthus to Cd, we examined plant growth, net photosynthetic rate (Pn), activities of anti-oxidant and C4 photosynthetic enzymes, concentrations of Cd in leaves and roots, and observed the chloroplast structure in three Miscanthus species treated with 0, 10, 50, 100 or 200 μM Cd in solutions. Miscanthus sinensis showed more sensitivity to Cd, including sharp decreases in growth, Pn, PEPC activity and damage to chloroplast structure, and the highest H2O2 and Cd concentrations in leaves and roots after Cd treatments. Miscanthus sacchariflorus showed higher resistance to Cd and better growth, had the highest Pn and phosphoenolpyruvate carboxylase (PEPC) activities and integrative chloroplast structure and the lowest hydrogen peroxide (H2O2) and leaf and root Cd concentrations. The results could play an important role in understanding the mechanisms of Cd tolerance in plants and in application of phytoremediation.  相似文献   

13.
To ameliorate local and coastal eutrophication, management agencies are increasingly turning to wetland restoration. A large portion of restoration is occurring in areas that were drained for agriculture. To recover wetland function these areas must be reflooded and disturbances to soils, including high nutrient content due to past fertilizer use, loss of organic matter and soil compaction, must be reversed. Here, we quantified nitrogen (N) and phosphorus (P) retention and transformation in a unique large-scale (440 ha) restored wetland in the North Carolina coastal plain, the Timberlake Restoration Project (TLRP). For 2 years following restoration, we quantified water and nutrient budgets for this former agricultural field. We anticipated that TLRP would export high concentrations of inorganic P immediately following reflooding, while retaining or transforming inorganic N. In the first 2 years after a return to the precipitation and wind-driven hydrology, TLRP retained or transformed 97% of NO3–N, 32% of TDN, 25% of NH4–N, and 53% of soluble reactive phosphorus (SRP) delivered from inflows and precipitation, while exporting 20% more dissolved organic nitrogen (DON), and 13% more total P (inorganic, organic, and particulate P) than inputs. Areal mass retention rates of N and P at TLRP were low compared to other restored wetlands; however, the site efficiently retained pulses of fertilizer NO3–N derived from an upstream farm. This capacity for retaining N pulses indicates that the potential nutrient removal capacity of TLRP is much higher than measured annual rates. Our results illustrate the importance of considering both organic and inorganic forms of N and P when assessing the benefits of wetland restoration. We suggest that for wetland restoration to be an efficient tool in the amelioration of coastal eutrophication a better understanding of the coupled movement of the various forms of N and P is necessary.  相似文献   

14.
Plants and animals have responded to past climate changes by migrating with habitable environments, sometimes shifting the boundaries of their geographic ranges by tens of kilometers per year or more. Species migrating in response to present climate conditions, however, must contend with landscapes fragmented by anthropogenic disturbance. We consider this problem in the context of wind-dispersed tree species. Mechanisms of long-distance seed dispersal make these species capable of rapid migration rates. Models of species-front migration suggest that even tree species with the capacity for long-distance dispersal will be unable to keep pace with future spatial changes in temperature gradients, exclusive of habitat fragmentation effects. Here we present a numerical model that captures the salient dynamics of migration by long-distance dispersal for a generic tree species. We then use the model to explore the possible effects of assisted colonization within a fragmented landscape under a simulated tree-planting scheme. Our results suggest that an assisted-colonization program could accelerate species-front migration rates enough to match the speed of climate change, but such a program would involve an environmental-sustainability intervention at a massive scale.  相似文献   

15.
Population-specific differences in the freezing resistance of Metrosideros polymorpha leaves were studied along an elevational gradient from sea level to tree line (located at ca. 2500 m above sea level) on the east flank of the Mauna Loa volcano in Hawaii. In addition, we also studied 8-yr-old saplings grown in a common garden from seeds collected from the same field populations. Leaves of low-elevation field plants exhibited damage at -2 degrees C, before the onset of ice formation, which occurred at -5.7 degrees C. Leaves of high-elevation plants exhibited damage at ca. -8.5 degrees C, concurrent with ice formation in the leaf tissue, which is typical of plants that avoid freezing in their natural environment by supercooling. Nuclear magnetic resonance studies revealed that water molecules of both extra- and intracellular leaf water fractions from high-elevation plants had restricted mobility, which is consistent with their low water content and their high levels of osmotically active solutes. Decreased mobility of water molecules may delay ice nucleation and/or ice growth and may therefore enhance the ability of plant tissues to supercool. Leaf traits that correlated with specific differences in supercooling capacity were in part genetically determined and in part environmentally induced. Evidence indicated that lower apoplastic water content and smaller intercellular spaces were associated with the larger supercooling capacity of the plant's foliage at tree line. The irreversible tissue-damage temperature decreased by ca. 7 degrees C from sea level to tree line in leaves of field populations. However, this decrease appears to be only large enough to allow M. polymorpha trees to avoid leaf tissue damage from freezing up to a level of ca. 2500 m elevation, which is also the current tree line location on the east flank of Mauna Loa. The limited freezing resistance of M. polymorpha leaves may be partially responsible for the occurrence of tree line at a relatively low elevation in Hawaii compared with continental tree lines, which can be up to 1500 m higher. If the elevation of tree line is influenced by the inability of M. polymorpha leaves to supercool to lower subzero temperatures, then it will be the first example that freezing damage resulting from limited supercooling capacity can be a factor in tree line formation.  相似文献   

16.
Soils from 100 irrigated fields (95 under vegetables, 5 under citrus) in different geographical locations in the West Bank (Palestinian Autonomous Territory) were surveyed for hymexazol-insensitive (HIS) Pythium species using the surface soil dilution plate (SSDP) method with the VP3 medium amended with 50 mg/L hymexazol (HMI) (VP3H50), over a period of 12 months. HIS Pythium species were isolated from 37% of the soils surveyed, with mean population levels ranging from 4.3-1422 CFU g(-1) dry weight. Eight HIS Pythium taxa were recovered on the VP3H50 medium, the most abundant of which was P. vexans (found in 29% of field soils surveyed). Seasonal variations in population levels of HIS Pythium species were studied in four fields over a period of 12 months. Significant seasonal variations in HIS population levels were detected in the four fields, with the highest population levels of HIS Pythium spp. encountered in spring and the lowest population levels in winter in three of the fields surveyed. Effects of HMI on linear growth and colony morphology of 149 Pythium ssp. isolates were examined on CMA amended with HMI at five concentrations. Pythium vexans isolates responded differently from those of the other Pythium species. Isolates of this important pathogen were more insensitive to HMI at high concentrations than the other main species tested. A large proportion of the P. ultimum isolates was either insensitive or weakly sensitive to HMI. Furthermore, a few isolates of other Pythium species were insensitive to the fungicide at various concentrations. The colony morphology of P. vexans isolates was not affected by HMI, whereas colonies of the other species showed sparse growth on the HMI amended medium relative to the control. The pathogenicity of P. vexans and P. ultimum isolates to cucumber seedlings was examined in growth chambers. Insensitive isolates of both species were found to be more virulent damping-off pathogens than the sensitive isolates. The present study demonstrates that HMI can not be used effectively in controlling Pythium spp. in soil inhabited with high densities of HIS Pythium spp. pathogens.  相似文献   

17.
In the Florida Everglades, tree islands are conspicuous heterogeneous elements in the herbaceous wetland landscape. We characterized the biogeochemical role of a seasonally flooded tree island during wet season inundation, specifically examining hydrologically mediated flows of nitrogen (N) and N retention by the tree island. We estimated ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic fluxes of N to quantify the net ecosystem N mass flux. Results showed that hydrologic sources of N were dominated by surface water loads of nitrate (NO3) and ammonium (NH4). Nitrate immobilization by soils and surficial leaf litter was an important sink for surface water dissolved inorganic N (DIN). We estimated that the net annual DIN retention by a seasonally flooded tree island was 20.5 ± 5.0 g m−2 during wet season inundation. Based on the estimated tree island surface water DIN loading rate, a seasonally flooded tree island retained 76% of imported DIN. As such, seasonally flooded tree islands have the potential to retain 55% of DIN entering the marsh landscape via upstream canal overland flow in the wet season. By increasing reactive surface area and DOC availability, we suggest that tree islands promote convergence of elements that enhance DIN retention. Tree islands of this region are thus important components of landscape-scale restoration efforts that seek to reduce sources of anthropogenic DIN to downstream estuaries.  相似文献   

18.
According to their main life history traits, organisms can be arranged in a continuum from fast (species with small body size, short lifespan and high fecundity) to slow (species with opposite characteristics). Life history determines the responses of organisms to natural and anthropogenic factors, as slow species are expected to be more sensitive than fast species to perturbations. Owing to their contrasting traits, cephalopods and elasmobranchs are typical examples of fast and slow strategies, respectively. We investigated the responses of these two contrasting strategies to fishing exploitation and environmental conditions (temperature, productivity and depth) using generalized additive models. Our results confirmed the foreseen contrasting responses of cephalopods and elasmobranchs to natural (environment) and anthropogenic (harvesting) influences. Even though a priori foreseen, we did expect neither the clear-cut differential responses between groups nor the homogeneous sensitivity to the same factors within the two taxonomic groups. Apart from depth, which affected both groups equally, cephalopods and elasmobranchs were exclusively affected by environmental conditions and fishing exploitation, respectively. Owing to its short, annual cycle, cephalopods do not have overlapping generations and consequently lack the buffering effects conferred by different age classes observed in multi-aged species such as elasmobranchs. We suggest that cephalopods are sensitive to short-term perturbations, such as seasonal environmental changes, because they lack this buffering effect but they are in turn not influenced by continuous, long-term moderate disturbances such as fishing because of its high population growth and turnover. The contrary would apply to elasmobranchs, whose multi-aged population structure would buffer the seasonal environmental effects, but they would display strong responses to uninterrupted harvesting due to its low population resilience. Besides providing empirical evidence to the theoretically predicted contrasting responses of cephalopods and elasmobranchs to disturbances, our results are useful for the sustainable exploitation of these resources.  相似文献   

19.

Background

The functional convergence of tree transpiration has rarely been tested for tree species growing under urban conditions even though it is of significance to elucidate the relationship between functional convergence and species differences of urban trees for establishing sustainable urban forests in the context of forest water relations.

Methodology/Principal Findings

We measured sap flux of four urban tree species including Cedrus deodara, Zelkova schneideriana, Euonymus bungeanus and Metasequoia glyptostroboides in an urban park by using thermal dissipation probes (TDP). The concurrent microclimate conditions and soil moisture content were also measured. Our objectives were to examine 1) the influence of tree species and size on transpiration, and 2) the hydraulic control of urban trees under different environmental conditions over the transpiration in response to VPD as represented by canopy conductance. The results showed that the functional convergence between tree diameter at breast height (DBH) and tree canopy transpiration amount (E c) was not reliable to predict stand transpiration and there were species differences within same DBH class. Species differed in transpiration patterns to seasonal weather progression and soil water stress as a result of varied sensitivity to water availability. Species differences were also found in their potential maximum transpiration rate and reaction to light. However, a same theoretical hydraulic relationship between G c at VPD = 1 kPa (G cref) and the G c sensitivity to VPD (−dG c/dlnVPD) across studied species as well as under contrasting soil water and R s conditions in the urban area.

Conclusions/Significance

We concluded that urban trees show the same hydraulic regulation over response to VPD across varying tree size and environmental conditions and thus tree transpiration could be predicted with appropriate assessment of G cref.  相似文献   

20.
In order to determine the mechanical resistance of several forest tree species to rockfall, an inventory of the type of damage sustained in an active rockfall corridor was carried out in the French Alps. The diameter, spatial position and type of damage incurred were measured in 423 trees. Only 5% of trees had sustained damage above a height of 1.3 m and in damaged trees, 66% of broken or uprooted trees were conifers. Larger trees were more likely to be wounded or dead than smaller trees, although the size of the wounds was relatively smaller in larger trees. The species with the least proportion of damage through stem breakage, uprooting or wounding was European beech (Fagus sylvatica L.). Winching tests were carried out on two conifer species, Norway spruce (Picea abies L.) and Silver fir (Abies alba Mill.), as well as European beech, in order to verify the hypothesis that beech was highly resistant to rockfall and that conifers were more susceptible to uprooting or stem breakage. Nineteen trees were winched downhill and the force necessary to cause failure was measured. The energy (E fail) required to break or uproot a tree was then calculated. Most Silver fir trees failed in the stem and Norway spruce usually failed through uprooting. European beech was either uprooted or broke in the stem and was twice as resistant to failure as Silver fir, and three times more resistant than Norway spruce. E fail was strongly related to stem diameter in European beech only, and was significantly higher in this species compared to Norway spruce. Results suggest that European beech would be a better species to plant with regards to protection against rockfall. Nevertheless, all types of different abiotic stresses on any particular alpine site should be considered by the forest manager, as planting only broadleaf species may compromise the protecting capacity of the forest e.g. in the case of snow avalanches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号