首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the start of the 21st century, respiratory syncytial virus (RSV) remains a serious global health concern. Although RSV has traditionally been acknowledged as a leading cause of morbidity and mortality in the paediatric population, the elderly and people with suppressed immune systems are now also recognised as being at risk from serious RSV infection. This problem is currently exacerbated by the lack of an effective vaccine to prevent RSV infection. Although the virus proteins play a variety of roles during the virus replication cycle, in many cases these tasks are performed via specific interactions with host-cell factors, including proteins, carbohydrates and lipids. The way in which RSV interacts with the host cell is currently being examined using a battery of different techniques, which encompass several scientific disciplines. This is providing new and interesting insights into how RSV interacts with the host cell at the molecular level, which in turn is offering the hope of new strategies to prevent RSV infection.  相似文献   

2.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. Premature infants, immunocompromised individuals and the elderly exhibit the highest risk for the development of severe RSV-induced disease. Murine studies demonstrate that CD8 T cells mediate RSV clearance from the lungs. Murine studies also indicate that the host immune response contributes to RSV-induced morbidity as T-cell depletion prevents the development of disease despite sustained viral replication. Dendritic cells (DCs) play a central role in the induction of the RSV-specific adaptive immune response. Following RSV infection, lung-resident DCs acquire viral antigens, migrate to the lung-draining lymph nodes and initiate the T-cell response. This article focuses on data generated from both in vitro DC infection studies and RSV mouse models that together have advanced our understanding of how RSV infection modulates DC function and the subsequent impact on the adaptive immune response.  相似文献   

3.
Respiratory syncytial virus (RSV) is one of the most important viral pathogens causing respiratory tract infection in infants, the elderly and people with poor immune function, which causes a huge disease burden worldwide every year. It has been more than 60 years since RSV was discovered, and the palivizumab monoclonal antibody, the only approved specific treatment, is limited to use for passive immunoprophylaxis in high-risk infants; no other intervention has been approved to date. However, in the past decade, substantial progress has been made in characterizing the structure and function of RSV components, their interactions with host surface molecules, and the host innate and adaptive immune response to infection. In addition, basic and important findings have also piqued widespread interest among researchers and pharmaceutical companies searching for effective interventions for RSV infection. A large number of promising monoclonal antibodies and inhibitors have been screened, and new vaccine candidates have been designed for clinical evaluation. In this review, we first briefly introduce the structural composition, host cell surface receptors and life cycle of RSV virions. Then, we discuss the latest findings related to the pathogenesis of RSV. We also focus on the latest clinical progress in the prevention and treatment of RSV infection through the development of monoclonal antibodies, vaccines and small-molecule inhibitors. Finally, we look forward to the prospects and challenges of future RSV research and clinical intervention.  相似文献   

4.
Respiratory syncytial virus (RSV) is the most common cause of severe lower respiratory tract infection in infants and the elderly. There is currently no effective antiviral treatment for the infection, but advances in our understanding of RSV uptake, especially the role of surfactant proteins, the attachment protein G and the fusion protein F, as well as the post-binding events, have revealed potential targets for new therapies and vaccine development. RSV infection triggers an intense inflammatory response, mediated initially by the infected airway epithelial cells and antigen-presenting cells. Humoral and cell-mediated immune responses are important in controlling the extent of infection and promoting viral clearance. The initial innate immune response may play a critical role by influencing the subsequent adaptive response generated. This review summarizes our current understanding of RSV binding and uptake in mammalian cells and how these initial interactions influence the subsequent innate immune response generated.  相似文献   

5.
Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in infants and young children. Severe clinical manifestation of RSV infection is a bronchiolitis, which is common in infants under six months of age. Recently, RSV has been recognized as an important cause of respiratory infection in older populations with cardiovascular morbidity or immunocompromised patients. However, neither a vaccine nor an effective antiviral therapy is currently available. Moreover, the interaction between the host immune system and the RSV pathogen during an infection is not well understood. The innate immune system recognizes RSV through multiple mechanisms. The first innate immune RSV detectors are the pattern recognition receptors (PRRs), including toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-biding oligomerization domain (NOD)-like receptors (NLRs). The following is a review of studies associated with various PRRs that are responsible for RSV virion recognition and subsequent induction of the antiviral immune response during RSV infection. [BMB Reports 2014; 47(4): 184-191]  相似文献   

6.
Alvarez R  Tripp RA 《Journal of virology》2005,79(10):5971-5978
Human metapneumovirus (HMPV), recently identified in isolates from children hospitalized with acute respiratory tract illness, is associated with clinical diagnosis of pneumonia, asthma exacerbation, and acute bronchiolitis in young children. HMPV has been shown to cocirculate with respiratory syncytial virus (RSV) and mediate clinical disease features similarly to RSV. Little is known regarding the pathophysiology or immune response associated with HMPV infection; thus, animal models are needed to better understand the mechanisms of immunity and disease pathogenesis associated with infection. In this study, we examine features of the innate and adaptive immune response to HMPV infection in a BALB/c mouse model. Primary HMPV infection elicits weak innate and aberrant adaptive immune responses characterized by induction of a Th2-type cytokine response at later stages of infection that coincides with increased interleukin-10 expression and persistent virus replication in the lung. Examination of the cytotoxic T lymphocyte and antibody response to HMPV infection revealed a delayed response, but passive transfer of HMPV-specific antibodies provided considerable protection. These features are consistent with virus persistence and indicate that the immune response to HMPV is unique compared to the immune response to RSV.  相似文献   

7.
Toll-like receptors (TLR) are an important component in the innate immune response to a wide variety of pathogens. Recently, a series of studies has addressed the hypothesis that TLR4 also participates in the host innate response against respiratory syncytial virus (RSV), the leading cause of lower respiratory tract infections in infants and young children. In most of the studies available, RSV, which is not a natural pathogen of mice, has been systematically used in mouse models of human bronchiolitis, with conflicting results. Pneumonia virus of mice (PVM), a member of the pneumovirus genus, shares many similarities with RSV. The serological and structural relationships that exist between them suggest that the immune response to these viruses may be similar in their respective natural hosts. To determine the role of TLR4 in host defense against PVM, TLR4-competent and TLR4-deficient mice were intranasally infected with PVM. Variation of body weight, pulmonary function values, histopathology, and pulmonary viral loads were analyzed. None of the investigated clinical, functional, histological and virological parameters was different between strains, which demonstrates that the sensitivity of the mouse to its natural pneumovirus infection is independent of the presence or absence of TLR4 sensing.  相似文献   

8.
The host immune response is believed to contribute to the severity of pulmonary disease induced by acute respiratory syncytial virus (RSV) infection. Because RSV-induced pulmonary disease is associated with immunopathology, we evaluated the role of IL-10 in modulating the RSV-specific immune response. We found that IL-10 protein levels in the lung were increased following acute RSV infection, with maximum production corresponding to the peak of the virus-specific T cell response. The majority of IL-10-producing cells in the lung during acute RSV infection were CD4(+) T cells. The IL-10-producing CD4(+) T cells included Foxp3(+) regulatory T cells, Foxp3(-) CD4(+) T cells that coproduce IFN-γ, and Foxp3(-) CD4(+) T cells that do not coproduce IFN-γ. RSV infection of IL-10-deficient mice resulted in more severe disease, as measured by increased weight loss and airway resistance, as compared with control mice. We also observed an increase in the magnitude of the RSV-induced CD8(+) and CD4(+) T cell response that correlated with increased disease severity in the absence of IL-10 or following IL-10R blockade. Interestingly, IL-10R blockade during acute RSV infection altered CD4(+) T cell subset distribution, resulting in a significant increase in IL-17A-producing CD4(+) T cells and a concomitant decrease in Foxp3(+) regulatory T cells. These results demonstrate that IL-10 plays a critical role in modulating the adaptive immune response to RSV by limiting T-cell-mediated pulmonary inflammation and injury.  相似文献   

9.
Zeng R  Li C  Li N  Wei L  Cui Y 《Cytokine》2011,53(1):1-7
Respiratory syncytial virus (RSV) is the primary cause of serious lower respiratory tract illness in infants and young children worldwide. The mechanism is largely unknown. RSV stimulates airway epithelial cells and resident leukocytes to release cytokines. Cytokines and chemokines involved in host response to RSV infection are thought to play a central role in the pathogenesis. In addition, RSV infection early in life has been associated with the development of asthma in later childhood. It is likely that the persistence of cytokines and chemokines in fully recovered patients with RSV in the long term can provide a substratum for the development of subsequent asthma. This review describes the genetic factors in cytokines and chemokines associated with severity of RSV disease, cytokines and chemokines synthesis in RSV infection, and the role of these innate immune components in RSV-associated asthma.  相似文献   

10.
Severe infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury (ALI). Accumulating evidence suggests that mechanical ventilation (MV) is an important cofactor in the development of ALI by modulating the host immune responses to bacteria. This study investigates whether MV enhances the host response to pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for RSV infection in humans. BALB/c mice were inoculated intranasally with diluted clarified lung homogenates from mice infected with PVM strain J3666 or uninfected controls. Four days after inoculation, the mice were subjected to 4 h of MV (tidal volume, 10 ml/kg) or allowed to breathe spontaneously. When compared with that of mice inoculated with PVM only, the administration of MV to PVM-infected mice resulted in increased bronchoalveolar lavage fluid concentrations of the cytokines macrophage inflammatory protein (MIP)-2, MIP-1alpha (CCL3), and IL-6; increased alveolar-capillary permeability to high molecular weight proteins; and increased caspase-3 activity in lung homogenates. We conclude that MV enhances the activation of inflammatory and caspase cell death pathways in response to pneumovirus infection. We speculate that MV potentially contributes to the development of lung injury in patients with RSV infection.  相似文献   

11.
The purified respiratory syncytial virus (RSV), Randall strain contained 10 polypeptides (72,000 molecular weight [72K], 66K, 48K, 42K, 40K, 36K, 30K, 23K, 18K, and 15K), 8 of which proved to be virus specific, and polypeptides 48K and 23K were glycosylated. In addition, a high-molecular-weight (150K), virus-specific glycopolypeptide was immunoprecipitated from RSV-infected cell lysate. The antibody response in human sera serially collected from children with primary RSV infection was mainly directed against the polypeptides 30K, 48K, and 72K. The immune response against the other viral proteins was also already detectable in the acute-phase sera. These results indicate that the immune response in RSV infection differs significantly from those for other diseases caused by paramyxoviruses.  相似文献   

12.
13.
14.
Respiratory syncytial virus (RSV) is the most common cause of serious lower respiratory illness in infants and young children worldwide, making it a high priority for development of strategies for prevention and treatment. RSV can cause repeat infections throughout life, with serious complications in elderly and immunocompromised patients. Previous studies indicate that the RSV G protein binds through a CX3C chemokine motif to the host chemokine receptor, CX3CR1, and modulates the inflammatory immune response. In the current study, we examined the contribution of CX3CR1 to the immune response to RSV infection in mice. CX3CR1-deficient mice showed an impaired innate immune response to RSV infection, characterized by substantially decreased NK1.1(+) natural killer, CD11b(+), and RB6-8C5(+) polymorphonuclear cell trafficking to the lung and reduced IFNγ production compared with those in wildtype control mice. Leukocytes from CX3CR1-deficient mice were poorly chemotactic toward RSV G protein and CX3CL1. These results substantiate the importance of the RSV G CX3C-CX3CR1 interaction in the innate immune response to RSV infection.  相似文献   

15.
There is substantial epidemiological evidence supporting the concept that respiratory syncytial virus (RSV) lower respiratory tract infection in infancy may be linked to the development of reactive airway disease (RAD) in childhood. However, much less is known concerning the mechanisms by which this self-limiting infection leads to airway dysfunction that persists long after the virus is cleared from the lungs. A better understanding of the RSV-RAD link may have important clinical implications, particularly because prevention of RSV lower respiratory tract infection may reduce the occurrence of RAD later in life. Among the mechanisms proposed to explain the chronic sequelae of RSV infection is the interaction between the subepithelial neural network of the airway mucosa and the cellular effectors of inflammatory and immune responses to the virus. The body of clinical literature linking RSV and RAD is reviewed herein, as are the cellular and molecular mechanisms of neuroimmune interactions and neural remodeling that may underlie this link, and the possibility that preventing the infection may result in a decreased incidence of its chronic sequelae.  相似文献   

16.
Respiratory syncytial virus (RSV) infection results in millions of hospitalizations and thousands of deaths each year. Variations in the adaptive and innate immune response appear to be associated with RSV severity. To investigate the host response to RSV infection in infants, we performed a systems-level study of RSV pathophysiology, incorporating high-throughput measurements of the peripheral innate and adaptive immune systems and the airway epithelium and microbiota. We implemented a novel multi-omic data integration method based on multilayered principal component analysis, penalized regression, and feature weight back-propagation, which enabled us to identify cellular pathways associated with RSV severity. In both airway and immune cells, we found an association between RSV severity and activation of pathways controlling Th17 and acute phase response signaling, as well as inhibition of B cell receptor signaling. Dysregulation of both the humoral and mucosal response to RSV may play a critical role in determining illness severity.  相似文献   

17.
18.
In young infants who possess maternally derived respiratory syncytial virus (RSV) antibodies, the antibody response to RSV glycoproteins is relatively poor, despite extensive replication of RSV. In the present study, it was found that cotton rat RSV hyperimmune antiserum suppressed the antibody response to the RSV glycoproteins but not the response to vaccinia virus antigens when the antiserum was passively transferred to cotton rats prior to infection with vaccinia recombinant viruses expressing the RSV envelope glycoproteins. The cotton rats which had their immune responses suppressed by passively transferred antibodies were more susceptible to infection with RSV than were animals inoculated with control serum lacking RSV antibodies. Furthermore, many of the immunosuppressed animals infected with the vaccinia recombinant viruses developed RSV glycoprotein antibodies which had abnormally low neutralizing activities. Thus, preexisting serum RSV antibodies had dramatic quantitative and qualitative effects on the immune response to RSV glycoproteins, which may explain, in part, the poor RSV antibody response of young human infants to infection with RSV. Our observations also suggest that immunosuppression by preexisting, passively acquired RSV antibodies may constitute a major obstacle to RSV immunoprophylaxis during early infancy, when immunization is most needed.  相似文献   

19.
Respiratory syncytial virus (RSV) is an important viral pathogen that causes severe lower respiratory tract infection in infants, the elderly, and immunocompromised individuals. There are no licensed RSV vaccines to date. To prevent RSV infection, immune responses in both the upper and lower respiratory tracts are required. Previously, immunization with Venezuelan equine encephalitis virus replicon particles (VRPs) demonstrated effectiveness in inducing mucosal protection against various pathogens. In this study, we developed VRPs encoding RSV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and efficacy of these vaccine candidates in mice and cotton rats. VRPs, when administered intranasally, induced surface glycoprotein-specific virus neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. In addition, fusion protein-encoding VRPs induced gamma interferon (IFN-γ)-secreting T cells in the lungs and spleen, as measured by reaction with an H-2Kd-restricted CD8+ T-cell epitope. In animals vaccinated with F protein VRPs, challenge virus replication was reduced below the level of detection in both the upper and lower respiratory tracts following intranasal RSV challenge, while in those vaccinated with G protein VRPs, challenge virus was detected in the upper but not the lower respiratory tract. Close examination of histopathology of the lungs of vaccinated animals following RSV challenge revealed no enhanced inflammation. Immunization with VRPs induced balanced Th1/Th2 immune responses, as measured by the cytokine profile in the lungs and antibody isotype of the humoral immune response. These results represent an important first step toward the use of VRPs encoding RSV proteins as a prophylactic vaccine for RSV.  相似文献   

20.
Respiratory syncytial virus (RSV) is a common cause of infection that is associated with a range of respiratory illnesses, from common cold-like symptoms to serious lower respiratory tract illnesses such as pneumonia and bronchiolitis. RSV is the single most important cause of serious lower respiratory tract illness in children <1 year of age. Host innate and acquired immune responses activated following RSV infection have been suspected to contribute to RSV disease. Toll-like receptors (TLRs) activate innate and acquired immunity and are candidates for playing key roles in the host immune response to RSV. Leukocytes express TLRs, including TLR2, TLR6, TLR3, TLR4, and TLR7, that can interact with RSV and promote immune responses following infection. Using knockout mice, we have demonstrated that TLR2 and TLR6 signaling in leukocytes can activate innate immunity against RSV by promoting tumor necrosis factor alpha, interleukin-6, CCL2 (monocyte chemoattractant protein 1), and CCL5 (RANTES). As previously noted, TLR4 also contributes to cytokine activation (L. M. Haynes, D. D. Moore, E. A. Kurt-Jones, R. W. Finberg, L. J. Anderson, and R. A. Tripp, J. Virol. 75:10730-10737, 2001, and E. A. Kurt-Jones, L. Popova, L. Kwinn, L. M. Haynes, L. P. Jones, R. A. Tripp, E. E. Walsh, M. W. Freeman, D. T. Golenbock, L. J. Anderson, and R. W. Finberg, Nat. Immunol. 1:398-401, 2000). Furthermore, we demonstrated that signals generated following TLR2 and TLR6 activation were important for controlling viral replication in vivo. Additionally, TLR2 interactions with RSV promoted neutrophil migration and dendritic cell activation within the lung. Collectively, these studies indicate that TLR2 is involved in RSV recognition and subsequent innate immune activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号