首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity of 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNP) of human erythrocyte membranes was determined in the presence of various brain CNP inhibitory compounds. Also, the hydrolysis of 2':3'-cAMP and 2':3'-cCMP by CNP of human platelets and lymphocytes was confirmed by thin layer chromatography and CNP activity was measured in lymphocytes, platelets, erythrocytes and CNS myelin. Human erythrocyte CNP activity was reduced 75 percent by the organomercurial p-chloromercuriphenyl sulfonate (1 X 10(-4) M), 46 percent by thimerosal (1 X 10(-4) M) and 35 percent by cupric chloride (1 X 10(-3) M). The 2'-AMP or 2'-CMP isomer was produced, exclusively, by the hydrolysis of 2':3'-cAMP or 2':3'-cCMP, respectively, by CNP of human lymphocytes and platelets and indicates a CNP-like activity is not only present in erythrocytes and the central and peripheral nervous systems, but also platelets and lymphocytes. CNP activities of human erythrocytes, human human and rat lymphocytes and human platelets were less than 4 percent of the activity of human and bovine CNS myelin.  相似文献   

2.
Abstract— The concentration of protein as assayed by the Lowry method and the specific activity of 2′.3’-cyclic nucleosidemonophosphate phosphodiesterase (CNP), an enzyme characteristic of the myelin sheath, were determined in human CNS tissues obtained at autopsy from subjects ranging in age from 26 weeks gestation to 83 y. CNP activity in cerebral white matter samples was very low until approx 2 months of age when it increased rapidly, reaching near-adult levels by 2 y of age. CNP activity in adult (15–60 y) cerebral white matter was 8.1 ± 1.0 μmol/min/mg protein (mean ±s.d. ). The protein concentration of cerebral white matter increased from 64 mg/g wet tissue at 26 weeks gestation to adult levels (118.5 ± 10.0 mg/g wet tissue) by 16–18 months. CNP activity in cerebral gray matter was initially very low and showed only a small increase during development to adult values of approx 1.4 μmol/min/mg protein. In spinal cord, adult values (3.7 ± 0.56 μmol/min/mg protein) were found shortly after birth. The increase in CNP activity to near-adult values occurred earlier in cross-sections of cervical spinal cord than in cerebral white matter. The increase in spinal cord protein concentration showed a similar trend (adult values = 103.1 ± 9.5 mg/g wet tissue). The white matter protein concentration decreased significantly with age over the 15–83 y interval examined but the CNP specific activity in white matter did not. The protein concentration of the 61–83 y group was 8% lower than that of the 15–60 y group. The spinal cord protein concentration decreased significantly and the spinal cord CNP specific acitivity increased significantly with increasing time between death and sample freezing. The sex of the individual had no significant effect on any of the variables examined. The developmental curves obtained for these tissues are consistent with the hypothesis that CNP is an intrinsic myelin component in human CNS myelin. The marked increase in CNP activity in white matter coincides with the period of rapid myelin deposition as determined by other parameters. CNP activity may be useful as an index of myelination in human CNS tissues.  相似文献   

3.
Abstract: In PNS, the specific activity of 2′,3′-cyclic nucleotide 3′-phospho–diesterase (CNP) in myelin was not enriched over the starting homogenate. Nevertheless, most of the total activity was recovered in myelin. In myelin-deficient mutants, low CNP activities were measured in sciatic nerves. CNP specific activities were similar in myelinated and non-myelinated nerves but in non-nervous tissues, they were significantly lower than in nervous tissue. There was no indication for the presence of an isoenzyme of CNP in peripheral nerves. These results indicate that CNP is present in PNS myelin and preferentially localized in Schwann cell plasma membranes.  相似文献   

4.
5.
In an effort to determine the factors that stimulate myelin synthesis, we investigated the mechanism by which dibutyryl cyclic AMP induces the activity of the myelin enzyme, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP; EC 3.1.4.37), in C6 glioma cells. Immunotitration experiments and measurements of the accumulation of [35S]methionine-labeled CNP showed that dibutyryl cyclic AMP increased the amount of CNP in the cells but not the catalytic activity per molecule of the enzyme. Moreover, inhibition of protein synthesis with cycloheximide abolished induction of enzyme activity. Dibutyryl cyclic AMP doubled the rate of CNP synthesis but had no effect on the half-life of the enzyme (approximately 33 h). The induction was partially blocked by the inhibitors of mRNA synthesis, cordycepin or alpha-amanitin. Thus, cyclic AMP induces the synthesis of CNP.  相似文献   

6.
The relationship between cell density and the activity of 2':3'-cyclic nucleotide 3'-phosphohydrolase (CNP), an enzyme believed to be specific to oligodendroglial cells and myelin in the brain, has been studied in cultured C-6 glioma cells. Over a 12-day period, the specific activity of CNP underwent a 4-fold increase in conjunction with an increase in the cell density (total protein/flask) and a decline in the growth rate of the cultures. In contrast, the specific activity of Na+,K+-ATPase was not influenced by cell density. Experiments with cultures seeded at different initial densities indicated that the increase in CNP activity coincided with the attainment of a specific cell density rather than with the length of time that the cells were maintained in culture. Arrest of cell proliferation in non-confluent C-6 cells by means of thymidine blockade was not sufficient to cause an increase in the activity of CNP; however, removal of serum from the culture medium resulted in a 3-fold induction of the enzyme in the absence of a high degree of cell contact. The induction of CNP in cells maintained in serum-free medium paralleled the development of a series of distinct morphological changes reminiscent of glial differentiation, which occurred within 48 hours after removal of the serum. Inhibition of protein synthesis by cycloheximide prevented the induction of CNP in serum-free cultures. The demonstration that an enhancement of an oligodendroglial characteristic in C-6 glioma cells can be obtained by growing the cells to high density or by removing serum from the medium, provides further support for the suggestion that these cells may be analogous to the glial stem cells present in the developing brain.  相似文献   

7.
—The brains of Jimpy and Quaking mice were compared with those of the corresponding normal controls during the course of development. The activity of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP) was found to be markedly reduced in the affected animals. The reduction in the Jimpy mice was greater than in the Quaking mice. The activity of CNP seems to be proportional to that of myelin in the mutant mice. A similar reduction was found in spinal cords of the mutant mice, but there was no difference in CNP activity between the sciatic nerves of the mutant mice and those of the corresponding normal controls.  相似文献   

8.
2',3'-Cyclic nucleotide-3'-phosphodiesterase (CNP1 and CNP2 with Mr of 46,000 and 48,000, respectively) is the major enzyme of central nervous system myelin. It is associated with oligodendroglial plasma membrane and uncompacted myelin (myelin-like fraction), which are in contact with glial cytoplasm. Proteins of the myelin-like fraction were labeled with [3H]palmitic acid in brain slices from 17-day-old rats and immunoprecipitated with anti-CNP antiserum. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material revealed intense acylation of CNP1 and CNP2, and radioactivity was released by hydroxylamine. Palmitic acid was covalently bound to CNP because radioactivity was not removed by extraction of immunoprecipitated CNP with organic solvent or by boiling in sodium dodecyl sulfate and dithiothreitol. However, treatment of immunoprecipitated CNP with (a) hydroxylamine-released palmitohydroxamate and palmitic acid, (b) sodium borohydride-released hexadecanol, and (c) methanolic-KOH-released methyl palmitate. Synthesis, acylation, or transport of CNP was not affected by monensin or colchicine. However, acylation of CNP was inhibited 24-32% by cycloheximide. These results provide conclusive evidence that CNP1 and CNP2 are fatty acid acylated with palmitate through a thioester linkage and is posttranslationally modified sometime after synthesis.  相似文献   

9.
Abstract— The enzyme 2′,3′-cyclic nucleotide-3′-phosphohydrolase (CNP) has been assayed in fractions from a continuous sucrose density gradient zonal centrifugation of rabbit brain homogenates. Basic protein (BP) was also assayed by a radioimmunomethod. Fractions were examined by SDS-polyacrylamide gel electrophoresis and by electron microscopy. These studies show that the major membrane fractions in the gradient differ greatly in the content of CNP and BP, and of high molecular weight proteins (HMW). The lightest membrane fractions contained numerous multilamellae, the highest content of BP and the lowest content of CNP and HMW, while the heaviest membrane fractions contained single membrane fragments and vesicles of unknown origin, the lowest content of BP and the highest content of CNP and HMW. The fraction containing the largest amount of membrane measured by turbidity, protein content, and water-washed dry weight contained only half the CNP specific activity of a denser fraction in the gradient. CNP specific activity in the lightest fractions was insignificant compared to that of denser fractions. Thus, we conclude that this enzyme may be absent from the typical multilamellar myelin structures but present in the single-membrane structures associated with myelin, such as the glial membrane and the paranodal segments of myelin adjacent to the axon. BP appears to occupy the opposite positions, highest in the multilamellae and lowest in the single-membrane structures of myelin. These studies do not exclude the possibility that CNP may not be bound to myelin membranes, but rather to a membrane of different origin. Evidence that this enzyme is a myelin-marker enzyme is circumstantial. Our evidence indicates the enzyme could be present either in a unique portion of myelin membranes or in another membrane structure.  相似文献   

10.
The activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase in rat tissues   总被引:8,自引:8,他引:0  
The activity of the myelin-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) was measured in 14 rat tissues and in subcellular fractions of rat liver by a sensitive fluorometric method, using cyclic NADP as substrate. CNP activity in brain (339 mumol/h/mg protein) was fourfold that of the sciatic nerve. The activities in tissues outside the nervous system ranged from a low of 0.42 mumol/h/mg protein in the unwashed red blood cell to a high of 9.96 in the spleen. The activity was highest in tissues containing cells with membranes capable of undergoing transformation and elaboration (spleen and thymus) and low in those in which the cell membranes are morphologically stable (muscle and red cell). The enzyme was found in all major liver subfractions, with the highest activities in the microsomal and nuclear fractions. Despite the large difference in the maximal velocities of CNP in brain and liver, the affinity of the liver enzyme for the substrate (km) was similar to that of brain enzyme. Brain CNP was stable over a 48-h postmortem period.  相似文献   

11.
Evidence is presented that the major protein components of the high molecular weight CNS myelin proteins designated as the Wolfgram protein doublet (W1 and W2) contain the enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37, CNP). CNP is a basic hydrophobic protein containing about 830 to 840 amino acid residues. When electrophoresed on SDS polyacrylamide gels, CNP appears as a protein doublet, separated by a molecular weight difference of about 2500-3000 in bovine, human, rat, guinea pig, and rabbit. A similar protein doublet has been identified as the Wolfgram proteins W2 and W1 in myelin and in the chloroform-methanol-insoluble pellet obtained from myelin. Moreover, the relative Coomassie blue staining intensity of the CNP2 plus CNP1 protein doublet among the species examined was remarkably similar to that observed for electrophoresed myelin and chloroform-methanol-insoluble pellet derived from myelin. Antisera raised against purified bovine CNP recognized the W1 and W2 proteins isolated from bovine and human brain. The amino acid composition of pure bovine CNP is presented and compared with the compositions of several rat and bovine Wolfgram proteins obtained by other investigators. Our electrophoretic, compositional, and immunological data support the contention that the enzyme CNP is a major component of the Wolfgram protein doublet.  相似文献   

12.
Cyclic AMP (cAMP) is known to induce the activity of the myelin enzyme 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP; EC 3.1.4.37) in C6 rat glioma cells. This report shows that CNP is also inducible in oligodendrocytes explanted from 1-day-old rat cerebrum and grown in tissue culture. Induction was observed after a 1-day treatment with 1 mM N6, O2-dibutyryl cyclic AMP (dbcAMP) and was maximal after 5 days, reaching 200-240% of control. Induction was observed both in mixed cerebral cell cultures containing oligodendrocytes and astrocytes, and in purified cultures of oligodendrocytes prepared by a differential shakeoff procedure. Addition of dbcAMP to the cultures 3-9 days after the cells were explanted from rat brain induced CNP activity, but no induction was observed when dbcAMP treatment was begun 13 or more days after explanation. These results demonstrate that one component of myelin, CNP, is inducible in oligodendrocytes by a cAMP-mediated mechanism, and suggest a role for cAMP in the regulation of the myelin-associated functions of oligodendrocytes.  相似文献   

13.
Abstract: The activity of the myelin-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) was measured in 14 rat tissues and in subcellular fractions of rat liver by a sensitive fluorometric method, using cyclic NADP as substrate. CNP activity in brain (339 μmol/h/mg protein) was fourfold that of the sciatic nerve. The activities in tissues outside the nervous system ranged from a low of 0.42 μmol/h/mg protein in the unwashed red blood cell to a high of 9.96 in the spleen. The activity was highest in tissues containing cells with membranes capable of undergoing transformation and elaboration (spleen and thymus) and low in those in which the cell membranes are morphologically stable (muscle and red cell). The enzyme was found in all major liver subtractions, with the highest activities in the microsomal and nuclear fractions. Despite the large difference in the maximal velocities of CNP in brain and liver, the affinity of the liver enzyme for the substrate ( k m) was similar to that of brain enzyme. Brain CNP was stable over a 48-h postmortem period.  相似文献   

14.
Wen JF  Quan HX  Zhou GH  Cho KW 《Regulatory peptides》2007,142(3):123-130
The role of C-type natriuretic peptide (CNP) in the pathophysiology of atrial function in hyperthyroidism has not been defined. This study was to define the role of CNP-activated particulate (p) guanylyl cyclase (GC)-cGMP-phosphodiesterase (PDE)3 signaling in the regulation of cAMP levels and contractile and secretory functions in the atria from hyperthyroid rabbits. Experiments were performed in perfused beating rabbit atria. CNP was used to activate pGC. In euthyroid atria from sham-treated rabbits, CNP (100 nM) increased cGMP and cAMP efflux by 176.7+/-17.7 and 55.3+/-10.0%, respectively. CNP decreased stroke volume and pulse pressure and ANP release by 51+/-7 and 41+/-2 and 60.4+/-3.2%, respectively. Pretreatment with milrinone blocked the CNP-induced increase of cAMP but without significant changes in decrease of atrial dynamics and ANP release. In hyperthyroid atria, CNP-induced increase of cGMP levels was accentuated, while CNP-induced increase of cAMP was attenuated. The gain of cAMP, i.e., change in cAMP efflux concentration in terms of cGMP was attenuated in the hyperthyroid compared to euthyroid atria. CNP rather increased atrial dynamics in hyperthyroid atria instead of decrease. CNP-induced decrease in atrial ANP release was attenuated. Pretreatment with milrinone blocked the CNP-induced increase of cAMP levels concomitantly with a decrease of atrial dynamics. The present study demonstrates that altered role of CNP-activated pGC-cGMP-PDE3-cAMP signaling is involved in the pathophysiology of hyperthyroid heart.  相似文献   

15.
Previous results (Fressinaud, C., Sarliève, L.L., and Labourdette, G. J. J. Cell. Physiol., 141:667-674, 1989b) have shown that cerebroside sulfotransferase (CST; EC 2.8.2.11) is enriched in pure rat oligodendrocyte (OL) cultures and that its activity is increased by factors mitogenic for OL precursors and galactocerebroside (GC) expressing OL, such as basic fibroblast growth factor (bFGF), platelet-derived growth factor, and high insulin concentrations. In contrast, transforming growth factor beta or low insulin concentrations were found to be ineffective in this culture system. As bFGF mainly enhanced the proliferation of OL precursors (GC negative cells) rather than that of differentiated (GC+) cells, a relationship between OL precursor proliferation and CST increase was suggested. This hypothesis was first tested in 20-day-old OL cultures grown in chemically defined medium. The dose-response curve of [125I] Iododeoxyuridine ([125I]dUrd) incorporation toward bFGF was parallel to that of CST specific activity, and maximal stimulation was reached at 5 ng/ml bFGF for both. In contrast, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP; EC 3.1.4.37) specific activity decreased after bFGF treatment. To determine if CST increase was linked to the proliferation of OL precursors induced by bFGF, cell proliferation was blocked by cytosine arabinoside (ARA-C). From 10(-8) to 10(-5) M ARA-C there was a dose-dependent inhibition of cell proliferation and a decrease in CST specific activity, whereas CNP specific activity was enhanced. When the cells were treated with bFGF and 10(-6) M ARA-C together, the proliferation was completely blocked and CST activity decreased by 72% below control values, whereas CNP activity was not significantly decreased. Immunocytochemical studies showed that the number of sulfatide-expressing cells and the number of cycling cells were increased after bFGF treatment, but that there was no overlapping between these two populations. Taken together these results suggest that CST activity and sulfatide expression appear shortly after the arrest of OL precursor division.  相似文献   

16.
The ability of mitogenic stimulation of human T lymphocytes to alter the expression of genes involved in sterol metabolism was examined. Messenger RNA levels for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, HMG-CoA synthase, and low density lipoprotein (LDL) receptor were quantified in resting and mitogen-stimulated T lymphocytes by nuclease protection assay. Mitogenic stimulation increased HMG-CoA synthase mRNA levels by 5-fold and LDL receptor by 4-fold when cells were cultured in lipoprotein-depleted medium whereas HMG-CoA reductase gene expression was not significantly increased. When cultures were supplemented with concentrations of low density lipoprotein sufficient to saturate LDL receptors, expression of all three genes was inhibited in resting lymphocytes, as effectively as was noted with fibroblasts. Similarly, LDL down-regulated gene expression in mitogen-activated lymphocytes so that mitogenic stimulation did not increase either HMG-CoA reductase or synthase mRNA levels, although LDL receptor gene expression was enhanced. These results indicate that expression of three of the genes involved in sterol metabolism is differentially regulated by LDL and mitogenic stimulation. Moreover, the increase in rates of endogenous sterol synthesis and the activity of HMG-CoA reductase in mitogen-stimulated T lymphocytes cannot be accounted for by increases in HMG-CoA reductase mRNA levels.  相似文献   

17.
Abstract: 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is an isoprenylated protein enriched in myelin and oligodendrocytes but also present in several other tissues at low levels. CNP binds avidly to membranes and in addition possesses several characteristics of cytoskeletal proteins. The role of isoprenylation in the association of CNP with the cytoskeleton was analyzed by ectopic expression in L cells of epitope-tagged CNP1 and a non-isoprenylated mutant CNP1. Using nonionic detergent extraction, drug-mediated cytoskeletal disruption, and coimmunoprecipitation with an anti-actin antibody, we show that CNP1 is associated with actin-based cytoskeletal elements independently of its isoprenylation status. A control protein, p21c-H-ras, which is also modified by isoprenylation at its carboxyl-terminus, does not bind to cytoskeletal structures as judged by the same criteria. We present a model that accounts for the association of CNP1 with membranes and the cytoskeleton.  相似文献   

18.
2',3'-Cyclic nucleotide 3'-phosphohydrolase (CNP) has been used as a general oligodendrocyte and Schwann cell marker enzyme within the nervous system and has been the intense target of a number of recent studies. In this report, we determined the chromosomal localization of the human CNP gene using PCR on two somatic cell DNA panels. PCR amplification, using four primer pairs across an intron, confirms that the CNP gene is localized to chromosome 17. We also present the complete intron sequence of the human gene usd to make the assignment. This intron contains a c----t polymorphism located at nucleotide 1215, which may be of use in mapping the CNPase gene more precisely within chromosome 17.  相似文献   

19.
The 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs) are closely related oligodendrocyte proteins whose in vivo function is unknown. To identify subcellular sites of CNP function, the distribution of CNP and CNP mRNA was determined in tissue sections from rats of various developmental ages. Our results indicate that CNP gene products were expressed exclusively by oligodendrocytes in the CNS. CNP mRNA was concentrated around oligodendrocyte perinuclear regions during all stages of myelination. Developmentally, initial detection of CNP mRNA closely paralleled initial detection of its translation products. In electron micrographs of immunostained ultrathin cryosections, CNP was associated with oligodendrocyte membranes during the earliest phase of axonal ensheathment. In more mature fibers, immunocytochemistry established that the CNPs are not major components of compact myelin but are concentrated within specific regions of the oligodendrocyte and myelin internode. These include (a) the plasma membrane of oligodendrocytes and their processes, (b) the periaxonal membrane and inner mesaxon, (c) the outer tongue process, (d) the paranodal myelin loops, and (e) the "incisure-like" membranes found in many larger CNS myelin sheaths. A cytoplasmic pool of CNP was also detected in oligodendrocyte perikarya and larger oligodendrocyte processes. CNP was also enriched in similar locations in myelinated fibers of the PNS.  相似文献   

20.
A rapid and precise method for the determination of brain 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP) activity has been developed. Total brain homogenates were treated with deoxycholate, and CNP activity was measured as inorganic phosphate (phosphomolybdic acid, 410 nm) released from the product, 2′-AMP, by alkaline phosphatase. Measurements were carried out under optimal conditions of temperature (30°C) and pH (6.2) using the whole brain of the rat, chicken, and quaking mouse. The entire assay was applicable to multiple samples and could be completed in less than 1 hr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号