首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various biological activities have been attributed to actin-capping proteins based on their in vitro effects on actin filaments. However, there is little direct evidence for their in vivo activities. In this paper, we show that Cap Z(36/32), a barbed end, actin-capping protein isolated from muscle (Casella, J. F., D. J. Maack, and S. Lin, 1986, J. Biol. Chem., 261:10915-10921) is localized to the barbed ends of actin filaments by electron microscopy and to the Z-line of chicken skeletal muscle by indirect immunofluorescence and electron microscopy. Since actin filaments associate with the Z-line at their barbed ends, these findings suggest that Cap Z(36/32) may play a role in regulating length, orienting, or attaching actin filaments to Z-discs.  相似文献   

2.
Immunofluorescence microscopy showed that a monoclonal antibody, 2F3, specific to the beta I subunit (Cap Z alpha) of beta-actinin (Cap Z) bound to the Z lines of chicken breast muscle. When myofibrils were briefly extracted with 0.6 M KI, the reactivity of the Z lines with 2F3 was very weak, but on subsequent treatment with purified beta-actinin, the antibody binding recovered. beta-Actinin inhibited elongation of the actin filaments of isolated I-Z-I brushes, myosin-extracted sarcomeres, on the addition of G-actin. However, when an increased concentration of G-actin was added, the inhibitory action of beta-actinin became negligible, suggesting that beta-actinin did not cap the pointed end of an actin filament in a myofibril.  相似文献   

3.
Beta-actinin isoforms in various types of muscle and non-muscle tissues   总被引:1,自引:0,他引:1  
We found that beta-actinin isoforms are present in various types of tissues in adult chicken by using immunoblotting after two dimensional gel electrophoresis; for this purpose, an antibody was raised against beta-actinin purified from adult chicken breast muscle (pectoralis major). One of the beta-actinin subunits, beta I, was present in all tissues we examined, i.e. skeletal (pectoralis major, semitendinosus, and anterior latissimus dorsi), cardiac, and smooth (gizzard) muscles, non-muscle (brain, liver, and kidney) tissues and blood, whereas another subunit, beta II, was present only in muscle tissues. A new subunit (designated beta III) that was found in the embryonic stages of skeletal muscle (Asami, Funatsu & Ishiwata (1988) J. Biochem. 103, 72-75) was present instead of beta II in non-muscle tissues and blood. In cardiac and smooth muscles, beta III coexisted with beta I and beta II. The antibody of beta-actinin did not cross-react to cytoplasmic beta-actinin (molecular weight, 80,000 daltons) found in kidney. It was suggested that the combination of beta I and beta III present in non-muscle tissues and blood is identical to the barbed end capping protein isolated from brain by Killiman and Isenberg (EMBO J. 1, 889-894 (1982)). It is likely that beta-actinin forms a genetic family whose constituents have an ability to cap either the pointed or barbed end of actin filaments.  相似文献   

4.
beta-Actinin is an actin-pointed end capping protein in skeletal muscle. Casella et al. have reported that a protein isolated from muscle acetone powder by procedures similar to those used for beta-actinin purification caps the barbed end of an actin filament (J. Biol. Chem. 261, 10915-10921 (1986)). We have confirmed the above results. However, it turned out that the two proteins were identical as to subunit sizes, peptide maps, and cross-reactivities with anti-beta-actinin IgG. The binding of the two proteins to opposite ends of an actin filament remains unexplained.  相似文献   

5.
We examined the function of beta-actinin as a pointed end capping protein of thin filaments in skeletal muscle. An improvement in preparing beta-actinin yielded purified beta-actinin which retained its activity for more than a week. Two-dimensional gel electrophoresis showed that the two subunits, beta I and beta II, of beta-actinin are, respectively, split into two to three components (isoforms) with different isoelectric points. Polyclonal antibody was raised by injecting such purified and undenatured chicken breast muscle beta-actinin composed of several components into a rabbit. Immuno-gold labeling examination with electron microscopy of an F-actin-beta-actinin complex decorated with HMM showed that 85% of bound gold particles was on the pointed end of actin filaments, while the remaining 15% was on the barbed end. This suggests that in beta-actinin preparation pointed end and barbed end capping proteins inevitably coexist. Immunofluorescence and immunoelectron microscopy directly showed that beta-actinin is located at the pointed end of thin filaments in myofibrils; it was also suggested that a capping protein having common antigenic determinants to beta-actinin is located at Z-line. Thus, the physiological function of beta-actinin as a pointed end capping protein was examined as follows: When beta-actinin was dissociated from the pointed end of thin filaments in an I-Z-I brush by using a high salt solution, thin filaments could be disassembled at the pointed ends at concentrations of exogenous actin lower than a critical value. At a physiological ionic strength, these salt-washed thin filaments gradually shortened at a constant rate of about 45 nm/h. Both the association and dissociation of monomeric actin at the pointed end were suppressed by the rebinding of exogenous beta-actinin. The main physiological role of beta-actinin is therefore to stabilize thin filaments in the sarcomere by preventing addition and removal of actin monomers at the pointed filament end.  相似文献   

6.
Previous studies have demonstrated that conventional actin preparations contain a potent factor which reduces the low shear viscosity of actin filaments. In this paper we demonstrate that Cap Z(36/32), a recently described protein from skeletal muscle that caps the barbed end of actin filaments and localizes to the Z-line of skeletal muscle, is the major factor affecting the low shear viscosity of actin prepared from muscle as described by Spudich and Watt.  相似文献   

7.
beta-Actinin, a minor regulatory protein of muscle, was purified from skeletal muscles of rabbit and chicken by DEAE-Sephadex chromatography. beta-Actinin consisted of two subunits, beta I and betaII, with chain weights of 37,000 and 34,000 daltons, respectively. The amino acid compositions were similar, though not identical. It appears that each of the two subunits is associated in solution. beta-Actinin had the following effects on actin: (1) inhibition of reassociation of F-actin fragments; (2) inhibition of network formation of F-actin; (3) inhibition of growth of F-actin fragments; (4) retardation of depolymerization of F-actin and (5) acceleration of polymerization of G-actin. All these actions of beta-actinin can be explained in terms of action as an "ending factor". Experimental evidence favored the view that beta-actinin is bound to one end of the F-actin filament, namely to the end opposite to the direction of polymerization. Fluorescence-labeled anti-beta-actinin stained the middle portion of the A band of myofibrils. Based on the finding that the stain was unchanged on removal of myosin, it is suggested that beta-actinin is located at the free ends of the I filaments of myofibrils. Thus is seems likely that beta-actinin functions as an ending factor for actin filaments.  相似文献   

8.
Capping one end of an actin filament affects elongation at the other end   总被引:1,自引:0,他引:1  
The rates of elongation at the free ends of actin filaments were compared to those of intact filaments, when the one end was masked with muscle beta-actinin or cytochalasin D, using fixed actoheavy meromyosin and Limulus acrosomal actin bundles as seeds. Experimental conditions were chosen so as to prevent spontaneous filament formation as far as possible. The rate of elongation at the barbed end of fixed actoheavy meromyosin was reduced to about one-fourth when the other pointed end was capped by beta-actinin, and that at the pointed end was reduced to one-third when the barbed end was blocked by cytochalasin D. Similar effects were also observed with the packed actin bundles of horseshoe crab sperm, although the decreases in elongation were less marked: 50-60% of the control both in the presence of beta-actinin and cytochalasin D. To explain the peculiar "end effect" described above, it is proposed that possible conformational changes at one end of an actin filament caused by the binding of a capping substance are transmitted successively to the other end so as to affect the elongation there.  相似文献   

9.
By using isolated actin bundles of brush border microvilli of chicken intestinal epithelial cells, it was clearly visualized that muscle beta-actinin caps the pointed end of an actin filament, whereas cytochalasin D masks the barbed end. The growth rate at the barbed end in the presence of beta-actinin was markedly slower than in its absence.  相似文献   

10.
《The Journal of cell biology》1992,117(5):1067-1076
Capping protein binds the barbed ends of actin filaments and nucleates actin filament assembly in vitro. We purified capping protein from Saccharomyces cervisiae. One of the two subunits is the product of the CAP2 gene, which we previously identified as the gene encoding the beta subunit of capping protein based on its sequence similarity to capping protein beta subunits in chicken and Dictyostelium (Amatruda, J. F., J. F. Cannon, K. Tatchell, C. Hug, and J. A. Cooper. 1990. Nature (Lond.) 344:352-354). Yeast capping protein has activity in critical concentration and low-shear viscometry assays consistent with barbed- end capping activity. Like chicken capping protein, yeast capping protein is inhibited by PIP2. By immunofluorescence microscopy yeast capping protein colocalizes with cortical actin spots at the site of bud emergence and at the tips of growing buds and shmoos. In contrast, capping protein does not colocalize with actin cables or with actin rings at the site of cytokinesis.  相似文献   

11.
Effect of capping protein on the kinetics of actin polymerization   总被引:11,自引:0,他引:11  
Acanthamoeba capping protein increased the rate of actin polymerization from monomers with and without calcium. In the absence of calcium, capping protein also increased the critical concentration for polymerization. Various models were evaluated for their ability to predict the effect of capping protein on kinetic curves for actin polymerization under conditions where the critical concentration was not changed. Several models, which might explain the increased rate of polymerization from monomers, were tested. Two models which predicted the experimental data poorly were (1) capping protein was similar to an actin filament, bypassing nucleation, and (2) capping protein fragmented filaments. Three models in which capping protein accelerated, but did not bypass, nucleation predicted the data well. In the best one, capping protein resembled a nondissociable actin dimer. Several lines of evidence have supported the idea that capping protein blocks the barbed end of actin filaments, preventing the addition and loss of monomers [Cooper, J. A., Blum, J. D., & Pollard, T. D. (1984) J. Cell Biol. 99, 217-225; Isenberg, G. A., Aebi, U., & Pollard, T. D. (1980) Nature (London) 288, 455-459]. This mechanism was also supported here by the effect of capping protein on the kinetics of actin polymerization which was nucleated by preformed actin filaments. Low capping protein concentrations slowed nucleated polymerization, presumably because capping protein blocked elongation at barbed ends of filaments. High capping protein concentrations accelerated nucleated polymerization because of capping protein's ability to interact with monomers and accelerate nucleation.  相似文献   

12.
M Pring  A Weber  M R Bubb 《Biochemistry》1992,31(6):1827-1836
We demonstrate that the profilin-G-actin complex can elongate actin filaments directly at the barbed end but cannot bind to the pointed end. During elongation, the profilin-actin complex binds to the barbed filament end, whereupon profilin is released, leaving the actin molecule behind. This was first proposed by Tilney [Tilney, L. G., et al. (1983) J. Cell Biol. 97, 112-124] and demonstrated by Pollard and Cooper [(1984) Biochemistry 23, 6631-6641] by electron microscopy. We show that a model without any outside energy supply, in contrast to the mechanism proposed by Pollard and Cooper, can be fitted to our and their [Kaiser et al. (1986) J. Cell Biol. 102, 221-226] findings. Input of outside energy is necessary only if profilin-mediated elongation continues after free G-actin has been lowered to or below the critical concentration observed at the barbed end in the absence of profilin.  相似文献   

13.
We have previously described a protein called "insertin" that binds strongly to barbed ends of actin filaments and permits polymerization of actin filaments by insertion of actin monomers between the barbed ends and barbed end-bound insertin. We determined the amino acid sequence of insertin and found that the primary structure of insertin is almost identical to amino acid residues 862 to 1212 of the actin-binding protein tensin.  相似文献   

14.
Physarum contains at least two distinct DNase I-binding proteins, i.e. actin and Cap 42 (a + b). The latter, a tight (1:1) complex of Cap 42 (a) and Cap 42 (b) (Maruta, H., Isenberg. G., Schreckenbach, T., Hallmann, R., Risse, G., Schibayama, T., and Hesse, J. (1983) J. Biol. Chem. 258, 10144-10150), is a Ca2+-dependent F-actin capping protein. DNase I binds to Cap 42 (b) but not to Cap 42 (a). Consequently, DNase I-agarose was used for an affinity-purification of Cap 42 (a + b), after its separation from actin by DEAE-cellulose chromatography. Cap 42 (a + b) was dissociated into its subunits when released from DNase I-agarose by 8.8 M formamide. The two subunits were subsequently separated from each other on hydroxylapatite. Both Cap 42 (a) and Cap 42 (b) were Ca2+-dependent F-actin capping proteins that cap the fast growing end of actin filaments and block actin polymerization at this end. Like Cap 42 (a + b), Cap 42 (b) required Ca2+ for its capping activity only when phosphorylated. The phosphorylation of Cap 42 (b) was completely blocked by DNase I or a tertiary complex of Cap 42 (a), actin, and Ca2+. Cap 42 (b) is not identical with native (= polymerizable) actin because (i) Cap 42 (b) was unable to form filaments, (ii) the Cap 42 (b) kinase did not phosphorylate native actin, and (iii) fragmin formed a tight (1:1) complex with native actin but not with Cap 42 (b). Although it is unlikely that Cap 42 (b) is simply a denatured form of actin that has lost its polymerizability during the preparation, it still remains to be clarified whether Cap 42 (b) is a nonpolmerizable actin variant derived from a distinct actin gene or a post-translationally modified form of polymerizable actin.  相似文献   

15.
The thermodynamic basis for actin-based motility of Listeria monocytogenes has been investigated using cytoplasmic extracts of Xenopus eggs, initially developed by Theriot et al. (Theriot, J. A., J. Rosenblatt, D. A. Portnoy, P. J. Goldschmidt-Clermont, and T. J. Mitchison. 1994. Cell. 76:505-517) as an in vitro cell-free system. A large proportion (75%) of actin was found unpolymerized in the extracts. The amount of unassembled actin (12 microM) is accounted for by the sequestering functions of T beta 4Xen (20 microM) and profilin (5 microM), the barbed ends being capped. Movement of Listeria was not abolished by depletion of over 99% of the endogenous profilin. The proline-rich sequences of ActA are unlikely to be the target of profilin. All data support the view that actin assembly at the rear of Listeria results from a local shift in steady state due to a factor, keeping filaments uncapped, bound to the surface of the bacterium, while barbed ends are capped in the bulk cytoplasm. Movement is controlled by the energetic difference (i.e., the difference in critical concentration) between the two ends of the filaments, hence a constant ATP supply and the presence of barbed end capped F-actin in the medium are required to buffer free G-actin at a high concentration. The role of membrane components is demonstrated by the facts that: (a) Listeria movement can be reconstituted in the resuspended pellets of high speed-centrifuged extracts that are enriched in membranes; (b) Actin-based motility of endogenous vesicles, exhibiting the same rocketing movement as Listeria, can be observed in the extracts.  相似文献   

16.
cDNA sequence of the human integrin beta 5 subunit   总被引:19,自引:0,他引:19  
A novel integrin receptor involved in cell adhesion to the matrix protein vitronectin has recently been described from a human lung epithelial-derived cell line (Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989) Cell 57, 59-69). This receptor has an alpha subunit that appears identical to the alpha v of the vitronectin receptor alpha v beta 3 expressed in melanoma and endothelial cells, but is complexed with a distinct beta subunit, beta 5. cDNA clones coding for beta 5 have been isolated and used to determine the mRNA and amino acid sequence of this new subunit. A 3.3-kilobase mRNA was found to code for a mature protein of 775 amino acid residues with a hydrophobic leader sequence of 24 amino acids. A 56% identity was found between the beta 5 and beta 3 protein sequences, making them the most closely related of the integrin beta subunits. Polymerase chain reaction abundance analysis revealed that alpha v and beta 5 mRNAs were found in seven very different cell lines, compared with beta 3 mRNA which was found in only three of the them, indicating that this new integrin receptor may be widely distributed.  相似文献   

17.
Capping protein nucleates the assembly of actin filaments and stabilizes actin filaments by binding to their barbed ends. We describe here a novel isoform of the beta subunit of chicken capping protein, the beta 2 isoform, which arises by alternative splicing. The chicken beta 1 isoform and the beta 2 isoform are identical in their amino acid sequence except for a short region at the COOH terminus; this region of the beta subunit has been implicated in binding actin. Human and mouse cDNAs of the beta 1 and beta 2 isoforms also were isolated and among these vertebrates, the COOH-terminal region of each isoform is highly conserved. In contrast, comparison of the sequences of the vertebrate beta subunit COOH-termini to those of lower eukaryotes shows no similarities. The beta 2 isoform is the predominant isoform of nonmuscle tissues and the beta 1 isoform, which was first characterized in studies of capping protein from chicken muscle, is the predominant isoform of muscle tissues, as shown by immunoblots probed with isoform- specific antibodies and by RNAse protection analysis of mRNAs. The beta 2 isoform also is a component of dynactin complex from brain, which contains the actin-related protein Arp1. Both beta-subunit isoforms are expressed in cardiac muscle but they have non-overlapping subcellular distributions. The beta 1 isoform is at Z-discs of myofibrils, and the beta 2 isoform is enriched at intercalated discs; in cardiac myocytes grown in culture, the beta 2 isoform also is a component of cell-cell junctions and at sites where myofibrils contact the sarcolemma. The biochemical basis for the differential distribution of capping protein isoforms is likely due to interaction with specific proteins at Z-discs and cell-cell junctions, or to preferential association with different actin isoforms. Thus, vertebrates have developed isoforms of capping protein that associate with distinct actin-filament arrays.  相似文献   

18.
We describe herein the purification of a protein from skeletal muscle that binds to ("caps") the morphologically defined barbed end of actin filaments. This actin-capping protein appeared to be a heterodimer with chemically and immunologically distinct subunits of Mr = 36,000 (alpha) and 32,000 (beta), Rs = 37 A, s20,w = 4.0 S, and a calculated native molecular weight of approximately 61,000. The protein was obtained in milligram quantities at greater than 95% purity from acetone powder of chicken skeletal muscle by extraction in 0.6 M KI, precipitation with ammonium sulfate, sequential chromatographic steps on DEAE-cellulose, hydroxylapatite, and Sephacryl S-200, followed by preparative rate zonal sucrose density gradient centrifugation. In immunoblots of myofibrillar proteins, affinity-purified antibodies selectively recognized protein bands of the same molecular weight as the subunits of the capping protein to which they were made, indicating that the isolated capping protein is a native myofibrillar protein, and not a proteolytic digestion product of a larger muscle protein. A specific interaction of the capping protein with the barbed end of actin filaments was indicated by its ability to inhibit actin filament assembly nucleated by spectrin-band 4.1-actin complex in 0.4 mM Mg2+, accelerate actin filament formation and increase the critical concentration of actin in 2-5 mM Mg2+, 75-100 mM KCl, and inhibit the addition of actin monomers to the barbed end of heavy meromyosin-decorated actin filaments as determined by electron microscopy. All of these effects occurred at nanomolar concentrations of capping protein and micromolar concentrations of actin, suggesting a high affinity interaction.  相似文献   

19.
We have isolated a tropomyosin binding protein (TMBP) from human platelets using isoelectric fractionation, hydroxylapatite chromatography, and affinity chromatography on skeletal muscle tropomyosin-Affi-Gel 15. TMBP is a 67,000-Da monomeric protein that binds to muscle and nonmuscle tropomyosin affinity resins. Its affinity for platelet tropomyosin is greater than for rabbit skeletal or chicken gizzard tropomyosin, and greater than that of troponin for all tropomyosin affinity resins tested. TMBP forms a complex with platelet tropomyosin that can be isolated on G-150. The approximate molar stoichiometry is 1:1. Troponin and TMBP have distinct binding sites on skeletal tropomyosin since binding of TMBP to tropomyosin-Affi-Gel 15 is not affected by previous saturation of the column with troponin (or vice versa). The amino acid composition of TMBP is virtually identical with that of human serum albumin, and is similar to those of beta-actinin (Heizmann, C. W., Müller, G., Jenny, E., Wilson, K. J., Landon, F., and Olomucki, A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 74-77) and acumentin (Southwick, F. S., and Stossel, T. P. (1981) J. Biol. Chem. 256, 3030-3036). The protein we have isolated is the first nonmuscle protein other than actin that has been shown to bind to tropomyosin. Results in an accompanying paper show that this tropomyosin binding protein is identical with human serum albumin (Hitchcock-DeGregori, S. E., Gerhard, M. D., and Brown, W. E. (1985) J. Biol. Chem. 260, 3228-3231).  相似文献   

20.
We have studied the interaction of CapZ, a barbed-end actin capping protein from the Z line of skeletal muscle, with actin. CapZ blocks actin polymerization and depolymerization (i.e., it "caps") at the barbed end with a Kd of approximately 0.5-1 nM or less, measured by three different assays. CapZ inhibits the polymerization of ATP-actin onto filament ends with ATP subunits slightly less than onto ends with ADP subunits, and onto ends with ADP-BeF3- subunits about as much as ends with ADP subunits. No effect of CapZ is seen at the pointed end by measurements either of polymerization from acrosomal processes or of the critical concentration for polymerization at steady state. CapZ has no measureable ability to sever actin filaments in a filament dilution assay. CapZ nucleates actin polymerization at a rate proportional to the first power of the CapZ concentration and the 2.5 power of the actin concentration. No significant binding is observed between CapZ and rhodamine-labeled actin monomers by fluorescence photobleaching recovery. These new experiments are consistent with but do not distinguish between three models for nucleation proposed previously (Cooper & Pollard, 1985). As a prelude to the functional studies, the purification protocol for CapZ was refined to yield 2 mg/kg of chicken breast muscle in 1 week. The activity is stable in solution and can be lyophilized. The native molecular weight is 59,600 +/- 2000 by equilibrium ultracentrifugation, and the extinction coefficient is 1.25 mL mg-1 cm-1 by interference optics. Polymorphism of the alpha and beta subunits has been detected by isoelectric focusing and reverse-phase chromatography. CapZ contains no phosphate (less than 0.1 mol/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号