首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
J Heberle  D Oesterhelt    N A Dencher 《The EMBO journal》1993,12(10):3721-3727
Surface bound pH indicators were applied to study the proton transfer reactions in the mutant Asp85-->Glu of bacteriorhodopsin in the native membrane. The amino acid replacement induces a drastic acceleration of the overall rise of the M intermediate. Instead of following this acceleration, proton ejection to the extracellular membrane surface is not only two orders of magnitude slower than M formation, it is also delayed as compared with the wild-type. This demonstrates that Asp85 not only accepts the proton released by the Schiff's base but also regulates very efficiently proton transfer within the proton release chain. Furthermore, Asp85 might be the primary but is not the only proton acceptor/donor group in the release pathway. The Asp85-->Glu substitution also affects the proton reuptake reaction at the cytoplasmic side, although Asp85 is located in the proton release pathway. Proton uptake is slower in the mutant than in the wild-type and occurs during the lifetime of the O intermediate. This demonstrates a feed-back mechanism between Asp85 and the proton uptake pathway in bacteriorhodopsin.  相似文献   

2.
In order to understand how isomerization of the retinal drives unidirectional transmembrane ion transport in bacteriorhodopsin, we determined the atomic structures of the BR state and M photointermediate of the E204Q mutant, to 1.7 and 1.8 A resolution, respectively. Comparison of this M, in which proton release to the extracellular surface is blocked, with the previously determined M in the D96N mutant indicates that the changes in the extracellular region are initiated by changes in the electrostatic interactions of the retinal Schiff base with Asp85 and Asp212, but those on the cytoplasmic side originate from steric conflict of the 13-methyl retinal group with Trp182 and distortion of the pi-bulge of helix G. The structural changes suggest that protonation of Asp85 initiates a cascade of atomic displacements in the extracellular region that cause release of a proton to the surface. The progressive relaxation of the strained 13-cis retinal chain with deprotonated Schiff base, in turn, initiates atomic displacements in the cytoplasmic region that cause the intercalation of a hydrogen-bonded water molecule between Thr46 and Asp96. This accounts for the lowering of the pK(a) of Asp96, which then reprotonates the Schiff base via a newly formed chain of water molecules that is extending toward the Schiff base.  相似文献   

3.
G Metz  F Siebert  M Engelhard 《FEBS letters》1992,303(2-3):237-241
High-resolution solid-state 13C NMR spectra of the ground state and M intermediate of the bacteriorhodopsin mutant D96N with the isotope label at [4-13C]Asp and [11-13C]Trp were recorded. The NMR spectra show that Asp85 is protonated in the M intermediate. The environment of Asp85 is quite hydrophobic. On the other hand, Asp212 remains deprotonated and a slight shift to lower field indicates a more hydrophilic environment. Asp85 also protonates in the purple-to-blue transition of bacteriorhodopsin in the deionized membrane, where it experiences a similar environment to M. The shift of Trp resonances in M reflect a conformational change of the protein in forming the M intermediate.  相似文献   

4.
High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M state in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH(-)) ions from the extracellular to the cytoplasmic side.  相似文献   

5.
The L intermediate in the proton-motive photocycle of bacteriorhodopsin is the starting state for the first proton transfer, from the Schiff base to Asp85, in the formation of the M intermediate. Previous FTIR studies of L have identified unique vibration bands caused by the perturbation of several polar amino acid side chains and several internal water molecules located on the cytoplasmic side of the retinylidene chromophore. In the present FTIR study we describe spectral features of the L intermediate in D(2)O in the frequency region which includes the N-D stretching vibrations of the backbone amides. We show that a broad band in the 2220-2080 cm(-1) region appears in L. By use of appropriate (15)N labeling and mutants, the lower frequency side of this band in L is assigned to the amides of Lys216 and Gly220. These amides are coupled to each other, and interact with Thr46 and Val49 in helix B and Asp96 in helix C via weakly H-bonding water molecules that exhibit O-D stretching vibrations at 2621 and 2605 cm(-1). These water molecules are part of a hydrogen-bonded network characteristic of L which includes other water molecules located closer to the chromophore that exhibit an O-D stretching vibration at 2589 cm(-1). This structure, extending from the Schiff base to the internal proton donor Asp96, stabilizes L and affects the L-to-M transition.  相似文献   

6.
The structural changes of bacteriorhodopsin during its photochemical cycle, as revealed by crystal structures of trapped intermediates, have provided insights to the proton translocation mechanism. Because accumulation of the last photointermediate, O, appears to be hindered by lattice forces in the crystals, the only information about the structure of this state is from suggested analogies with the determined structures of the non-illuminated D85S mutant and wild-type bacteriorhodopsin at low pH. We used electron paramagnetic resonance spectroscopy of site-directed spin labels at the extracellular protein surface in membranes to test these models. Spin-spin dipolar interactions in the authentic O state compared to the non-illuminated state revealed that the distance between helices C and F increases by ca 4 Angstroms, there is no distance change between helices D and F, and the distance between helix D and helix B of the adjacent monomer increases. Further, the mobility changes of single labels indicate that helices E and F move outward from the proton channel at the center of the protein, and helix D tilts inward. The overall pattern of movements suggests that the model at acid pH is a better representation of the O state than D85S. However, the mobility analysis of spin-labels on the B-C interhelical loop indicates that the antiparallel beta-sheet maintains its ordered secondary structure in O, instead of the predicted disorder in the two structural models. During decay of the O state, the last step of the photocycle, a proton is transferred from Asp85 to proton release complex in the extracellular proton channel. The structural changes in O suggest the need of large conformational changes to drive the Arg82 side-chain back to its initial orientation towards Asp85, and to rearrange the numerous water molecules in this region in order to conduct the proton away from Asp85.  相似文献   

7.
We report a comprehensive electron crystallographic analysis of conformational changes in the photocycle of wild-type bacteriorhodopsin and in a variety of mutant proteins with kinetic defects in the photocycle. Specific intermediates that accumulate in the late stages of the photocycle of wild-type bacteriorhodopsin, the single mutants D38R, D96N, D96G, T46V, L93A and F219L, and the triple mutant D96G/F171C/F219L were trapped by freezing two-dimensional crystals in liquid ethane at varying times after illumination with a light flash. Electron diffraction patterns recorded from these crystals were used to construct projection difference Fourier maps at 3.5 A resolution to define light-driven changes in protein conformation.Our experiments demonstrate that in wild-type bacteriorhodopsin, a large protein conformational change occurs within approximately 1 ms after illumination. Analysis of structural changes in wild-type and mutant bacteriorhodopsins under conditions when either the M or the N intermediate is preferentially accumulated reveals that there are only small differences in structure between M and N intermediates trapped in the same protein. However, a considerably larger variation is observed when the same optical intermediate is trapped in different mutants. In some of the mutants, a partial conformational change is present even prior to illumination, with additional changes occurring upon illumination. Selected mutations, such as those in the D96G/F171C/F219L triple mutant, can sufficiently destabilize the wild-type structure to generate almost the full extent of the conformational change in the dark, with minimal additional light-induced changes. We conclude that the differences in structural changes observed in mutants that display long-lived M, N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. Our observations thus support a simplified view of the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M1) are well approximated by one protein conformation, while the structures of the later intermediates (M2, N and O) are well approximated by the other protein conformation. We propose that in wild-type bacteriorhodopsin and in most mutants, this conformational change between the M1 and M2 states is likely to make an important contribution towards efficiently switching proton accessibility of the Schiff base from the extracellular side to the cytoplasmic side of the membrane.  相似文献   

8.
Kawanabe A  Furutani Y  Yoon SR  Jung KH  Kandori H 《Biochemistry》2008,47(38):10033-10040
Anabaena sensory rhodopsin (ASR) is an archaeal-type rhodopsin found in eubacteria. The gene encoding ASR forms a single operon with ASRT (ASR transducer) that is a 14 kDa soluble protein, suggesting that ASR functions as a photochromic sensor by activating the soluble transducer. One of the characteristics of ASR is that the formation of the M intermediate accompanies a proton transfer from the Schiff base to Asp217 in the cytoplasmic side [Shi, L., Yoon, S. R., Bezerra, A. G., Jr., Jung, K. H., and Brown, L. S. (2006) J. Mol. Biol. 358, 686-700], in remarkable contrast to other archaeal-type rhodopsins such as a light-driven proton-pump, bacteriorhodopsin (BR). In this study, we applied low-temperature Fourier transform infrared (FTIR) spectroscopy to the all- trans form of ASR at 170 K, and compared the structural changes in the L intermediate with those of BR. The ASR L minus ASR difference spectra were essentially similar to those for BR, suggesting common structures for the L state in ASR and BR. On the other hand, unique CO stretching bands of a protonated carboxylic acid were observed at 1722 (+) and 1703 (-) cm (-1) at pH 5 and 7, and assigned to Glu36 by use of mutants. Glu36 is located at the cytoplasmic side, and the distance from the Schiff base is about 20 A. This result shows the structural changes at the cytoplasmic surface in ASR L. pH-dependent frequency change was also observed for a water stretching vibration, suggesting that the water molecule is involved in a hydrogen-bonding network with Glu36 and Asp217. Unique hydrogen-bonding network in the cytoplasmic domain of ASR will be discussed.  相似文献   

9.
In the photocycle of bacteriorhodopsin (bR), light-induced transfer of a proton from the Schiff base to an acceptor group located in the extracellular half of the protein, followed by reprotonation from the cytoplasmic side, are key steps in vectorial proton pumping. Between the deprotonation and reprotonation events, bR is in the M state. Diverse experiments undertaken to characterize the M state support a model in which the M state is not a static entity, but rather a progression of two or more functional substates. Structural changes occurring in the M state and in the entire photocycle of wild-type bR can be understood in the context of a model which reconciles the chloride ion-pumping phenotype of mutants D85S and D85T with the fact that bR creates a transmembrane proton-motive force.  相似文献   

10.
Tyrosine-83, a residue which is conserved in all halobacterial retinal proteins, is located at the extracellular side in helix C of bacteriorhodopsin. Structural studies indicate that its hydroxyl group is hydrogen bonded to Trp189 and possibly to Glu194, a residue which is part of the proton release complex (PRC) in bacteriorhodopsin. To elucidate the role of Tyr83 in proton transport, we studied the Y83F and Y83N mutants. The Y83F mutation causes an 11 nm blue shift of the absorption spectrum and decreases the size of the absorption changes seen upon dark adaptation. The light-induced fast proton release, which accompanies formation of the M intermediate, is observed only at pH above 7 in Y83F. The pK(a) of the PRC in M is elevated in Y83F to about 7.3 (compared to 5.8 in WT). The rate of the recovery of the initial state (the rate of the O --> BR transition) and light-induced proton release at pH below 7 is very slow in Y83F (ca. 30 ms at pH 6). The amount of the O intermediate is decreased in Y83F despite the longer lifetime of O. The Y83N mutant shows a similar phenotype in respect to proton release. As in Y83F, the recovery of the initial state is slowed several fold in Y83N. The O intermediate is not seen in this mutant. The data indicate that the PRC is functional in Y83F and Y83N but its pK(a) in M is increased by about 1.5 pK units compared to the WT. This suggests that Tyr83 is not the main source for the proton released upon M formation in the WT; however, Tyr83 is involved in the proton release affecting the pK(a) of the PRC in M and the rate of proton transport from Asp85 to PRC during the O --> bR transition. Both the Y83F and the Y83N mutations lead to a greatly decreased functionality of the pigment at high pH because most of the pigment is converted into the inactive P480 species, with a pK(a) 8-9.  相似文献   

11.
During the initial stages of the bacteriorhodopsin photocycle, a proton is transferred from the Schiff base to the deprotonated carboxylate of Asp85. Earlier studies have shown that replacement of Asp85 by Asn completely abolishes proton transport activity, whereas extension of the side chain by an additional carbon-carbon bond (Asp85-->Glu) results in a functional proton pump. Here we show that extension of the Asp85 side chain by two additional bond lengths also results in a functional proton pump as long as the terminal group is a carboxylate moiety. These side chains were created by modification of the cysteine residue in the Asp85-->Cys mutant with either iodoacetic acid or iodoacetamide. In vitro chromophore formation studies show that the rate of Schiff base protonation in mutants that contain a carboxylate at residue 85 is invariably faster than in mutants that contain neutral substitutions at this position. We conclude that in bacteriorhodopsin, there is considerable tolerance in the volume of the side chain that can be accommodated at position 85 and that the presence of a carboxylate at residue 85 is important both for proton pumping and for stabilizing the protonated Schiff base.  相似文献   

12.
In a light-driven proton-pump protein, bacteriorhodopsin (BR), protonated Schiff base of the retinal chromophore and Asp85 form ion-pair state, which is stabilized by a bridged water molecule. After light absorption, all-trans to 13-cis photoisomerization takes place, followed by the primary proton transfer from the Schiff base to Asp85 that triggers sequential proton transfer reactions for the pump. Fourier transform infrared (FTIR) spectroscopy first observed O-H stretching vibrations of water during the photocycle of BR, and accurate spectral acquisition has extended the water stretching frequencies into the entire stretching frequency region in D(2)O. This enabled to capture the water molecules hydrating with negative charges, and we have identified the water O-D stretch at 2171 cm(-1) as the bridged water interacting with Asp85. We found that retinal isomerization weakens the hydrogen bond in the K intermediate, but not in the later intermediates such as L, M, and N. On the basis of the observation particularly on the M intermediate, we proposed a model for the mechanism of proton transfer from the Schiff base to Asp85. In the "hydration switch model", hydration of a water molecule is switched in the M intermediate from Asp85 to Asp212. This will have raised the pK(a) of the proton acceptor, and the proton transfer is from the Schiff base to Asp85.  相似文献   

13.
Protein structural changes during the photocycle of bacteriorhodopsin were examined by time-resolved ultraviolet resonance Raman (UVRR) spectroscopy. Most of the 244-nm UVRR difference signals of Trp were assigned to either Trp182 or Trp189 using the Trp182 --> Phe and Trp189 --> Phe mutants. The W17 mode of Trp182 shows a wavenumber downshift in the M(1) --> M(2) transition, indicating an increase in hydrogen bonding strength at the indole nitrogen. On the other hand, Trp189 shows Raman intensity increases of the W16 and W18 modes ascribable to an increased hydrophobic interaction. These observations suggest that the tilt of helix F, which ensures that reprotonation of the Schiff base is from the cytoplasmic side, occurs in the M(1) --> M(2) transition. In the M(2) --> N transition, the environment of Trp189 returns to the initial state, whereas the hydrophobic interaction of Trp182 decreases drastically. The decrease in hydrophobic interaction of Trp182 in the N state suggests an invasion of water molecules that promote the proton transfer from Asp96 to the Schiff base. Structural reorganization of the protein after the tilt of helix F may be important for efficient reprotonation of the Schiff base.  相似文献   

14.
Iwamoto M  Furutani Y  Kamo N  Kandori H 《Biochemistry》2003,42(10):2790-2796
pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII), a negative phototaxis receptor of Natronobacterium pharaonis, can use light to pump a proton in the absence of its transducer protein. However, the pump activity is much lower than that of the light-driven proton-pump bacteriorhodopsin (BR). ppR's pump activity is known to be increased in a mutant protein, in which Phe86 is replaced with Asp (F86D). Phe86 is the amino acid residue corresponding to Asp96 in BR, and we expect that Asp86 plays an important role in the proton transfer at the highly hydrophobic cytoplasmic domain of the F86D mutant ppR. In this article, we studied protein structural changes and proton transfer reactions during the photocycles of the F86D and F86E mutants in ppR by means of Fourier transform infrared (FTIR) spectroscopy and photoelectrochemical measurements using a tin oxide (SnO2) electrode. FTIR spectra of the unphotolyzed state and the K and M intermediates are very similar among F86D, F86E, and the wild type. Asp86 or Glu86 is protonated in F86D or F86E, respectively, and the pK(a) > 9. During the photocycle, the pK(a) is lowered and deprotonation of Asp86 or Glu86 is observed. Detection of both deprotonation of Asp86 or Glu86 and concomitant reprotonation of the 13-cis chromophore implies the presence of a proton channel between position 86 and the Schiff base. However, the photoelectrochemical measurements revealed proton release presumably from Asp86 or Glu86 to the cytoplasmic aqueous phase in the M state. This indicates that the ppR mutants do not have the BR-like mechanism that conducts a proton uniquely from Asp86 or Glu86 (Asp96 in BR) to the Schiff base, which is possible in BR by stepwise protein structural changes at the cytoplasmic side. In ppR, there is a single open structure at the cytoplasmic side (the M-like structure), which is shown by the lack of the N-like protein structure even in F86D and F86E at alkaline pH. Therefore, it is likely that a proton can be conducted in either direction, the Schiff base or the bulk, in the open M-like structure of F86D and F86E.  相似文献   

15.
FTIR spectroscopy is advantageous for detecting changes in polar chemical bonds that participate in bacteriorhodopsin function. Changes in H-bonding of Asp85, Asp96, the Schiff base, and internal water molecules around these residues upon the formation of the L, M, and N photo-intermediates of bacteriorhodopsin were investigated by difference FTIR spectroscopy. The locations and the interactions of these water molecules with the amino acid residues were further revealed by use of mutant pigments. The internal water molecules in the cytoplasmic domain probably work as mobile polar groups in an otherwise apolar environment and act to stabilize the L intermediate, and carrying a proton between the Schiff base and the proton acceptor or donor. Similar internal water molecules were shown to be present in bovine rhodopsin.  相似文献   

16.
We produced the L intermediate of the photocycle in a bacteriorhodopsin crystal in photo-stationary state at 170 K with red laser illumination at 60% occupancy, and determined its structure to 1.62 A resolution. With this model, high-resolution structural information is available for the initial bacteriorhodopsin, as well as the first five states in the transport cycle. These states involve photo-isomerization of the retinal and its initial configurational changes, deprotonation of the retinal Schiff base and the coupled release of a proton to the extracellular membrane surface, and the switch event that allows reprotonation of the Schiff base from the cytoplasmic side. The six structural models describe the transformations of the retinal and its interaction with water 402, Asp85, and Asp212 in atomic detail, as well as the displacements of functional residues farther from the Schiff base. The changes provide rationales for how relaxation of the distorted retinal causes movements of water and protein atoms that result in vectorial proton transfers to and from the Schiff base.  相似文献   

17.
In the recently proposed local-access model for proton transfers in the bacteriorhodopsin transport cycle (Brown et al. 1998. Biochemistry. 37:3982-3993), connection between the retinal Schiff base and Asp85 (in the extracellular direction) and Asp96 (in the cytoplasmic direction)is maintained as long as the retinal is in its photoisomerized state. The directionality of the proton translocation is determined by influences in the protein that make Asp85 a proton acceptor and, subsequently, Asp96 a proton donor. The idea of concurrent local access of the Schiff base in the two directions is now put to a test in the photocycle of the D115N/D96N mutant. The kinetics had suggested that there is a single sequence of intermediates, L<-->M1<-->M2<-->N, and the M2-->M1 reaction depends on whether a proton is released to the extracellular surface. This is now confirmed. We find that at pH 5, where proton release does not occur, but not at higher pH, the photostationary state created by illumination with yellow light contains not only the M1 and M2 states, but also the L and the N intermediates. Because the L and M1 states decay rapidly, they can be present only if they are in equilibrium with later intermediates of the photocycle. Perturbation of this mixture with a blue flash caused depletion of the M intermediate, followed by its partial recovery at the expense of the L state. The change in the amplitude of the C=O stretch band at 1759 cm-1 demonstrated protonation of Asp85 in this process. Thus, during the reequilibration the Schiff base lost its proton to Asp85. Because the N state, also present in the mixture, arises by protonation of the Schiff base from the cytoplasmic surface, these results fulfill the expectation that under the conditions tested the extracellular access of the Schiff base would not be lost at the time when there is access in the cytoplasmic direction. Instead, the connectivity of the Schiff base flickers rapidly (with the time constant of the M1<-->M2 equilibration) between the two directions during the entire L-to-N segment of the photocycle.  相似文献   

18.
Structural changes are central to the mechanism of light-driven proton transport by bacteriorhodopsin, a seven-helix membrane protein. The main intermediate formed upon light absorption is M, which occurs between the proton release and uptake steps of the photocycle. To investigate the structure of the M intermediate, we have carried out electron diffraction studies with two-dimensional crystals of wild-type bacteriorhodopsin and the Asp96-->Gly mutant. The M intermediate was trapped by rapidly freezing the crystals in liquid ethane following illumination with a xenon flash lamp at 5 and 25 degrees C. Here, we present 3.5 A resolution Fourier projection maps of the differences between the M intermediate and the ground state of bacteriorhodopsin. The most prominent structural changes are observed in the vicinity of helices F and G and are localized to the cytoplasmic half of the membrane.  相似文献   

19.
We have recorded (13)C NMR spectra of [3-(13)C]Ala-labeled wild-type bacteriorhodopsin (bR) and its mutants at Arg(82), Asp(85), Glu(194), and Glu(204) along the extracellular proton transfer chain. The upfield and downfield displacements of the single carbon signals of Ala(196) (in the F-G loop) and Ala(126) (at the extracellular end of helix D), respectively, revealed conformational differences in E194D, E194Q, and E204Q from the wild type. The same kind of conformational change at Ala(126) was noted also in the Y83F mutant, which lacks the van der Waals contact between Tyr(83) and Ala(126) present in the wild type. The absence of a negative charge at Asp(85) in the site-directed mutant D85N induced global conformational changes, as manifested in displacements or suppression of peaks from the transmembrane helices, cytoplasmic loops, etc., as well as the local changes at Ala(126) and Ala(196) seen in the other mutants. Unexpectedly, no conformational change at Ala(126) was observed in R82Q (even though Asp(85) is protonated at pH 6) or in D85N/R82Q. The changes induced in the Ala(126) signal when Asp(85) is uncharged could be interpreted therefore in terms of displacement of the positive charge of Arg(82) toward Tyr(83), where Ala(126) is located. It is possible that disruption of the proton transfer chain after protonation of Asp(85) in the photocycle could cause the same kind of conformational change we detect at Ala(196) and Ala(126). If so, the latter change would be also the result of rearrangement of the side chain of Arg(82).  相似文献   

20.
The role of the extracellular Glu side chains of bacteriorhodopsin in the proton transport mechanism has been studied using the single mutants E9Q, E74Q, E194Q, and E204Q; the triple mutant E9Q/E194Q/E204Q; and the quadruple mutant E9Q/E74Q/E194Q/E204Q. Steady-state difference and deconvoluted Fourier transform infrared spectroscopy has been applied to analyze the M- and N-like intermediates in membrane films maintained at a controlled humidity, at 243 and 277 K at alkaline pH. The mutants E9Q and E74Q gave spectra similar to that of wild type, whereas E194Q, E9Q/E194Q/E204Q, and E9Q/E74Q/E194Q/E204Q showed at 277 K a N-like intermediate with a single negative peak at 1742 cm(-1), indicating that Asp(85) and Asp(96) are deprotonated. Under the same conditions E204Q showed a positive peak at 1762 cm(-1) and a negative peak at 1742 cm(-1), revealing the presence of protonated Asp(85) (in an M intermediate environment) and deprotonated Asp(96). These results indicate that in E194Q-containing mutants, the second increase in the Asp(85) pK(a) is inhibited because of lack of deprotonation of the proton release group. Our data suggest that Glu(194) is the group that controls the pK(a) of Asp(85).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号