首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Postnatal growth and renewal of mouse urothelium start on the day of birth. In the present study, temporal and spatial dimensions of urothelial growth were studied during the first two postnatal weeks. Quantitative analysis showed that the rate of urothelial cell proliferation is significantly higher during all 14 postnatal days than in adult mice. Three peaks of proliferative and mitotic activity were revealed: on the day of birth and postnatal day 1, on days 6 and 7, and on day 14. The high proliferation rate around the day of birth and at postnatal days 6 and 7 coincides with cell death in the urothelium. Semiquantitative analysis showed that during all 14 postnatal days, the urothelial proliferative response is mostly confined to the basal cell layer. Urothelial cells divide predominantly in parallel to the plain of the urothelium on all chosen postnatal days. Increased portions of urothelial cells, dividing perpendicularly to the urothelium were observed only on the day of birth and on postnatal day 7. Our results suggest that postnatal growth of mouse urothelium is particularly the result of an increasing number of cells in individual cell layers and not the result of an increasing number of cell layers.  相似文献   

2.
The cell cycle kinetics of bladder urothelial cells regenerating after partial cystectomy were investigated in 96 female Wistar rats using the percentage labelled mitoses method. In the area of resection a mean cell cycle time (TC) of 15 h was determined. The DNA synthesis phase (TS) lasted 6 h and the premitotic-postsynthetic phase together with the mitosis phase (TG2 + M) 1.5 h, thus giving a presynthetic-postmiotic phase (TG1) of 7.5 h. Similar values were found for the urothelial cells in the stump: the mean cycle time measured 14 h, the TS-phase 6 h, the TG6 + M-phase 2 h and the TG1-phase 6 h. These data are discussed with respect to known cell cycle parameters of bladder urothelium regenerating in response to cytotoxic agents and of neoplastic urothelial cells. The reported findings provide a basis for further investigations using weak carcinogens and threshold doses of potent carcinogens to test the working hypothesis that stimulation of proliferation following partial cystectomy is capable of initiating, accelerating and/or potentiating carcinogenic cell transformation in the urinary bladder.  相似文献   

3.
Fibroblast growth factor-10 is a mitogen for urothelial cells   总被引:5,自引:0,他引:5  
Fibroblast growth factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.  相似文献   

4.
5.
The present study tests the hypothesis that heterotypic stromal-epithelial interactions cause phenotypic changes in urothelium. The rational for the experimental design is to simulate heterotypic stromal-epithelial interactions that are created at the anastomotic site of intestinal-bladder augmentations and internal urinary diversions where the urothelium is in direct contact with the gastro-intestinal tract tissues. Tissue recombination experiments were performed by combining 14-day embryonic rat and mouse rectal mesenchyme with urothelium from embryonic, newborn, and adult mice or rats. All tissue recombinants were grown beneath the renal capsule of athymic mouse hosts for 6-16 weeks. Analyses were performed to detect expression of uroplakins, cytokeratin 7, 14, 19 and mucin secreting epithelial cells via Periodic Acid-Schiff (PAS). The phenotype of both mouse and rat urothelium was changed to a glandular morphology under the influence of rectal mesenchyme. Immunohistochemical staining revealed a loss of the urothelial specific uroplakins and cytokeratins 7, 14, and 19 (characteristic of urothelium). Histologic analysis revealed the presence of mucin secreting glandular structures which stained positive for PAS. The urothelial transdifferentiation into glandular epithelium was not a function of epithelial age and occurred in the embryonic, newborn and adult urothelium. Likewise, rectal mesenchyme from embryonic, neonatal, and adult animals was able to induce glandular differentiation in bladder epithelium. Urothelium exhibits the plasticity to change into an intestinal like epithelium as a result of mesenchymal/stromal stimulation from the gastro-intestinal tract. This experimental result is germane to heterotypic stromal-epithelial interactions that are created in patients with urinary tract reconstructions (intestinal augmentations, de-mucosalized urothelial lined bladder patches, and internal urinary diversion such as ureterosigmoidostomies). We propose that heterotypic stromal-epithelial interactions may play a role in determining histodifferentiation of urothelial cells at the anastomotic site between bowel and bladder tissue in patients with gastro-intestinal urothelial reconstructions.  相似文献   

6.
Acetylcholine (ACh) and its receptors play a crucial role in bladder physiology. Here, we investigated the presence of muscarinic receptor subtypes (MR) and nicotinic acetylcholine receptor (nAChR) alpha-subunits in the mouse urothelium by RT-PCR and immunohistochemistry. With RT-PCR, we detected mRNAs coding for all of the five different MR subtypes and for the nicotinic receptor subunits alpha2, alpha4, alpha5, alpha6, alpha7, alpha9 and alpha10, whereas the alpha3-subunit was not expressed. Using immunohistochemistry, we localised a panel of acetylcholine receptors in the different layers of the murine bladder urothelium, with predominant appearance in the basal plasma membrane of the basal cell layer and in the apical membrane of the umbrella cells. M2R and subunit alpha9 were observed exclusively in the umbrella cells, whereas the MR subtypes 3-5 and the nAChR subunits alpha4, alpha7 and alpha10 were also detected in the intermediate and basal cell layers. The subunit alpha5 was localised only in the basal cell layer. In conclusion, the murine urothelium expresses multiple cholinergic receptors, including several subtypes of both MR and nAChR, which are differentially distributed among the urothelial cell types. Since these receptors have different electrophysiological and pharmacological properties, and therefore are considered to be responsible for different cellular responses to ACh, this differential distribution is expected to confer cell type-specificity of cholinergic regulation in the bladder urothelium.  相似文献   

7.
Processes leading to the recovery of a normal three-layered urothelium from a hyperplastic urothelium induced by cyclophosphamide (CP) treatment in rats have been investigated. A single intraperitoneal (ip) dose of CP caused extensive loss of cells from urothelium, but the remaining cells started to express epidermal growth factor receptor (EGFR) in their plasma membranes. On day 2 after CP injection, proliferating cell nuclear antigen (PCNA) immunohistochemistry showed a rapid increase in positively stained nuclei, from which a hyperplastic urothelium developed, composed of undifferentiated cells expressing EGFR over the entire plasma membrane. Subsequently, EGFR gradually disappeared from the apical plasma membrane but remained in the basolateral membranes. After day 6, PCNA-positive nuclei in all cell layers decreased, except in basal cells. Apoptotic cells were detectable by the TUNEL assay at day 2, and increased in number in all layers of the hyperplastic urothelium until day 10, returning to the control levels by day 14. Electron microscopic evidence showed that apoptotic cells were either pinched off into the bladder lumen or phagocytosed by the neighbouring urothelial cells. Thus, the urothelium responds to the damage by intense proliferation for a week, resulting in an undifferentiated hyperplastic state. Differentiation of superficial cells then begins and damaged cells are gradually removed by apoptosis until the three-layered urothelium is fully restored by two weeks following CP treatment.  相似文献   

8.
Mesenchymal reprogramming of adult human epithelial differentiation   总被引:3,自引:0,他引:3  
The objective of this study was to determine whether neonatal rat seminal vesicle mesenchyme (rSVM) can reprogram epithelial differentiation in a fully differentiated adult human bladder epithelium. For this purpose neonatal rSVM was isolated from newborn (0-day) Sprague-Dawley rats, and normal adult human bladder epithelium (hBLE) was isolated from radical cystoprostatectomy specimens to prepare rSVM+hBLE tissue recombinants in vitro. After overnight culture the tissue recombinants were grafted beneath the renal capsule of male athymic rodent hosts and allowed to grow in vivo for 6 months. As controls, rSVM and hBLE were grafted separately and allowed to grow for the same period. Tissue recombinants and control tissue grafts were harvested, and secretions were collected for biochemical studies. Tissues were fixed both for histologic as well as immunohistochemical staining. Neonatal rSVM induced normal adult human bladder urothelium to form glandular structures resembling prostate. The induced prostatic acini were filled with secretions that expressed human prostate-specific secretory proteins. These findings demonstrate that adult human urothelial cells retain a responsiveness to neonatal prostatic mesenchymal inductors. Change in urothelial histodifferentiation was associated with change in functional activity. The ability of the neonatal rat mesenchymal tissues to induce morphologic as well as biochemical changes in normal adult human urothelium provides a basis for human tissue engineering and organ reconstruction.  相似文献   

9.
Urinary tract infection with gram-positive bacteria is common. Avenues for ingress of bacteria into the bladder include luminal and suburothelial infection. Terminally differentiated superficial urothelial cells lining the lumen of the bladder are often shed in response to infection. In contrast, infection-induced altered function of progenitors of urothelial cells residing in the basal layer of the urothelium is likely to have long lasting effects on the structure and function of the urothelium. The main objective of the present studies was to investigate in vitro the possibility that exposure to lipoteichoic acid, a cell wall component of the gram-positive Streptococcus faecalis (LT-2), stimulates basal urothelial cells to proliferate. To simulate conditions that restrict proliferation and inhibit terminal differentiation of urothelial cells in the basal layer, secondary cultures of urothelial cells (UT) were grown on collagen or fibronectin-coated substrate in medium containing low levels of Ca2+ (0.2 mM) and growth factors (0.005% bovine pituitary extract [BPE]). Under these conditions, UT cultures displayed a highly reproducible colony size distribution, possibly due to the fact that colonies were progeny of basal cells with various proliferative potentials, retained in vitro. In cultures grown under growth-restricting conditions, the majority of progenitors appeared to be quiescent, just like stem cells in the basal layer of the urothelium. Thus, the population of large colonies (more than six cells/colony), was small when a steady state of growth was achieved, 3–7 days after seeding. Growth factors (0.005–0.5% BPE) caused a dose-dependent increase in this population of large colonies. Moreover, treatment of UT grown under growth-restricting conditions (0.005% BPE) with LT-2 increased steady-state levels of the population of large colonies to levels obtained in cultures growing under optimal conditions with respect to growth factors. These results indicated that the subpopulation of progenitors, quiescent under normal conditions, could be stimulated to proliferate. Two lines of evidence were consistent with the possibility that treatment with LT-2 stimulated proliferation of the subpopulation of progenitors and that large colonies were the progeny of this subpopulation of single cells: (1) treatment with LT-2 increased the percentage of single cells that incorporated bromodeoxyuridine (i.e., proliferated) in a time-dependent manner; (2) An increase in the percentage of large colonies was found following LT-2-triggered proliferation of single cells. We propose that, under normal conditions, cells produced in response to LT-2-triggered proliferation of stem cells are removed from the system due to an increased rate of differentiation followed by apoptosis. Recurrent infection and inflammation may not allow these processes to proceed effectively, resulting in chronic injury to the bladder. Moreover, under conditions in which stem cells accumulate mutations that incapacitate their progeny to undergo apoptosis, LT-triggered proliferation could be a contributing factor to tumorigenesis. © 1996 Wiley-Liss, Inc.  相似文献   

10.

Background

Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line.

Methodology/Principal Findings

Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis.

Conclusions/Significance

UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.  相似文献   

11.
We investigated the enzymes involved in the NADPH-diaphorase (d) reaction in the rat and pig bladder urothelium. The urothelial cell layer displayed intense and uniform NADPH-d activity. Preincubation with the flavoprotein inhibitor diphenyleneiodionium chloride (DPI) and the alkaline phosphatase inhibitor levamisole concentration-dependently decreased the urothelial NADPH-d activity. Immunoreactivities to neuronal (n), endothelial (e), or inducible (i) nitric oxide synthase (NOS) were not detected in rat or pig urothelial cells. In rats, the urothelium was uniformly immunoreactive for NADPH cytochrome P450 reductase, whereas the pig urothelium displayed inconsistent labeling. In lipopolysaccharide (LPS)-treated rats, the bladder urothelium showed positive iNOS immunoreactivity. The iNOS labeling was found predominantly in cells located in the basal layer of the urothelium. In the pig bladder mucosa, a Ca2+-dependent NOS activity was evident in cytosolic and particulate fractions that was quantitatively comparable to the NOS activity found in the smooth muscle. In ultrastructural studies of urothelial cells, NADPH-d reaction products were found predominantly on membranes of the nuclear envelope, endoplasmatic reticulum and mitochondria. In conclusion, NADPH-d staining of the urothelium cannot be taken as an indicator for the presence of constitutively expressed NOS. Activity of alkaline phosphatase and cytochrome P450 reductase may account for part of the NADPH-d reaction in urothelial cells. However, LPS treatment of rats caused expression of iNOS in urothelial cells.  相似文献   

12.
Postnatal restoration of the mouse urinary bladder urothelium   总被引:2,自引:2,他引:0  
Mouse urothelium is disrupted just before birth, followed by a postnatal restoration process which includes cell proliferation, death and differentiation. We assessed urothelial proliferation by the expression of proliferating cell nuclear antigen (PCNA), desquamation by electron microscopy, and apoptosis by TUNEL staining and urothelial differentiation by the expression of uroplakins and cytokeratin 20 (CK20) as well as the apical plasma membrane maturation. Our results indicated that urothelial proliferation was high from birth until about the 14th postnatal day. A majority of basal cells and even occasional superficial cells were PCNA positive during the first 5 postnatal days. Cell death occurred during the first 9 postnatal days. Between birth and day 5, single cells underwent apoptosis, whereas between days 6 and 9 cells mainly desquamated. CK20 and uroplakins were expressed in all superficial cells in postnatal urothelium. Their subcellular distribution characteristically changed in accordance with the progressive differentiation of superficial cells. During the urothelial postnatal development, proliferation activity slowly decreases to the proliferatively quiescent urothelium of the adult animal. Apoptosis is present in the first 9 postnatal days and within a few days of this period it appears simultaneously with desquamation. Superficial urothelial cells gradually differentiate, which is reflected in the changeable morphology of the apical plasma membrane.  相似文献   

13.
ObjectivesTo elaborately decipher the mouse and human bladders at single‐cell levels.Materials and MethodsWe collected more than 50,000 cells from multiple datasets and created, up to date, the largest integrated bladder datasets. Pseudotime trajectory of urothelium and interstitial cells, as well as dynamic cell‐cell interactions, was investigated. Biological activity scores and different roles of signaling pathways between certain cell clusters were also identified.ResultsThe glucose score was significantly high in most urothelial cells, while the score of H3 acetylation was roughly equally distributed across all cell types. Several genes via a pseudotime pattern in mouse (Car3, Dkk2, Tnc, etc.) and human (FBLN1, S100A10, etc.) were discovered. S100A6, TMSB4X, and typical uroplakin genes seemed as shared pseudotime genes for urothelial cells in both human and mouse datasets. In combinational mouse (n = 16,688) and human (n = 22,080) bladders, we verified 1,330 and 1,449 interactive ligand‐receptor pairs, respectively. The distinct incoming and outgoing signaling was significantly associated with specific cell types. Collagen was the strongest signal from fibroblasts to urothelial basal cells in mouse, while laminin pathway for urothelial basal cells to smooth muscle cells (SMCs) in human. Fibronectin 1 pathway was intensely sent by myofibroblasts, received by urothelial cells, and almost exclusively mediated by SMCs in mouse bladder. Interestingly, the cell cluster of SMCs 2 was the dominant sender and mediator for Notch signaling in the human bladder, while SMCs 1 was not. The expression of integrin superfamily (the most common communicative pairs) was depicted, and their co‐expression patterns were located in certain cell types (eg, Itgb1 and Itgb4 in mouse and human basal cells).ConclusionsThis study provides a complete interpretation of the normal bladder at single‐cell levels, offering an in‐depth resource and foundation for future research.  相似文献   

14.
Mouse epidermal stem cells proceed through the cell cycle   总被引:14,自引:0,他引:14  
The epidermis is a continuously renewing tissue maintained by undifferentiated stem cells. For decades it has been assumed that epidermal stem cells (ESCs) were held in the G0 phase of the cell cycle and that they only entered the cell cycle when needed. Previously, we showed that ESCs retained nuclear label for long periods, indicating that these cells did not proceed through the cell cycle at the same rate as the other proliferative basal cells. However, their exact cell-cycle profile has not been determined because a pure population of ESCs has not been available. In this study, we sorted stem and transient amplifying (TA) cells from murine neonatal back skin, and adult ear, footpad, and back skin, using our recently developed method. We found that neonatal back skin had two times the number of ESCs as the adult tissues. Despite the age and anatomical difference, these ESC populations exhibited similar cell cycle profiles with approximately 96% in G0/G1 and 4% in S-G2/M. The cell cycle profiles of the TA cells from neonatal back skin and adult footpad also showed a profile similar to each other (85% in G1 and 15% in S-G2/M). Examination of genes on a cell cycle chip showed that proliferation associated genes and only p57 were upregulated in the TA cell and ESC population, respectively. We found BrdU positive and cyclin B1 positive cells in all groups, confirming that both ESCs and TA cells were cycling. These data demonstrate that there are more TA cells dividing than ESCs, that the cell cycle profile of adult TA cells is related to the proliferative state of the tissue in which they reside, and that ESC proceed through the cell cycle.  相似文献   

15.
16.
The objective of this study is to establish a reliable cell culture system for the long-term culture of rat urothelial cells (RUC), in which the cells multiply in vitro and form stratified polarized urothelium. Urothelial cells were harvested by the enzymatic digestion of the urothelium exposed by the eversion of resected rat bladders. Primary cultures were initiated in keratinocyte serum-free medium (KSFM) for selective proliferation of urothelial cells. Subsequently, the cells were propagated in a mixture of conditioned medium (CM) derived from Swiss 3T3 cell culture supernatant and KSFM (CM-KSFM). Mean population doubling time was 13.8 +/- 0.9 h. RUC were successfully maintained for 18 passages over a period of 4-5 mo. Detailed investigations of culture conditions showed that CM-KSFM yielded a differentiated multilayer structure. The stratified urothelial sheets measuring 4 x 6 cm2 could be formed and then detached using dispase. Cytokeratin pattern in both the cultured urothelial monolayer and engineered stratified layers was similar to those seen in vivo, as assessed with monoclonal antibody against cytokeratin 17. Ultrastructural morphology showed microvilli, basal cell layer, and desmosomes between adjacent cells in the stratified urothelium.  相似文献   

17.
Tissue recombinants of embryonic urogenital sinus mesenchyme (UGM) and epithelium of the urinary bladder (urothelium, BLE) of adult rats and mice were grown for 3-30 d in male syngeneic hosts. Short-term in vivo growth indicated that prostatic morphogenesis is initiated as focal outgrowths from the basal aspect of the adult urothelium. The solid epithelial buds elongate, branch, and subsequently canalize, forming prostatic acini. After 30 d of growth in the male hosts, prostatic acini exhibit secretory activity. The marked changes in urothelial morphology induced by the UGM are accompanied by the expression of fine- structural features indicative of secretory function (rough endoplasmic reticulum, Golgi apparatus, and secretory granules). During this process, urothelial cells express prostatic histochemical markers (alkaline phosphatase, nonspecific esterase, glycosaminoglycans) and prostate-specific antigens. The expression within BLE of prostatic characteristics is associated with the loss of urothelial characteristics. These data indicate that adult urothelial cells retain a responsiveness to embryonic mesenchymal inductors. Furthermore, mesenchyme-induced changes in urothelial cytodifferentiation appear to be coupled to changes in functional activity.  相似文献   

18.
Although the epithelial lining of much of the mammalian urinary tract is known simply as the urothelium, this epithelium can be divided into at least three lineages of renal pelvis/ureter, bladder/trigone, and proximal urethra based on their embryonic origin, uroplakin content, keratin expression pattern, in vitro growth potential, and propensity to keratinize during vitamin A deficiency. Moreover, these cells remain phenotypically distinct even after they have been serially passaged under identical culture conditions, thus ruling out local mesenchymal influence as the sole cause of their in vivo differences. During vitamin A deficiency, mouse urothelium form multiple keratinized foci in proximal urethra probably originating from scattered K14-positive basal cells, and the keratinized epithelium expands horizontally to replace the surrounding normal urothelium. These data suggest that the urothelium consists of multiple cell lineages, that trigone urothelium is closely related to the urothelium covering the rest of the bladder, and that lineage heterogeneity coupled with cell migration/replacement form the cellular basis for urothelial squamous metaplasia.  相似文献   

19.

Background

Children with complex urogenital anomalies often require bladder reconstruction. Gastrointestinal tissues used in bladder augmentations exhibit a greatly increased risk of malignancy, and the bladder microenvironment may play a role in this carcinogenesis. Investigating the influences of the bladder microenvironment on gastrointestinal and urothelial cell cycle checkpoint activation and DNA damage response has been limited by the lack of an appropriate well-differentiated urothelial cell line system.

Methodology/Principal Findings

To meet this need, we have developed a well-differentiated conditionally immortalized urothelial cell line by isolating it from the H-2Kb-tsA58 transgenic mouse. These cells express a thermosensitive SV40 large T antigen that can be deactivated by adjustment of cell culture conditions, allowing the cell line to regain normal control of the cell cycle. The isolated urothelial cell line demonstrates a polygonal, dome-shaped morphology, expresses cytokeratin 18, and exhibits well-developed tight junctions. Adaptation of the urothelial cell line to hyperosmolal culture conditions induces expression of both cytokeratin 20 and uroplakin II, markers of a superficial urothelial cell or “umbrella cell.” This cell line can be maintained indefinitely in culture under permissive conditions but when cultured under non-permissive conditions, large T antigen expression is reduced substantially, leading to increased p53 activity and reduced cellular proliferation.

Conclusions/Significance

This new model of urothelial cells, along with gastrointestinal cell lines previously derived from the H-2Kb-tsA58 transgenic mouse, will be useful for studying the potential mechanisms of carcinogenesis of the augmented bladder.  相似文献   

20.
To evaluate proliferating cell nuclear antigen (PCNA) staining for assessing proliferative activity in routine pathology specimens of urinary bladder, the bladder carcinoma cell line J82 and a total of 122 specimens of normal bladder and urothelial lesions were stained with the antibody clone PC10 against proliferating cell nuclear antigen. In in vitro plateau cultures the proportion of PCNA-positive cells exceeded that of Ki-67-positive cells, and only very few cells were negative. In formalin-fixed tissues, the PCNA staining pattern, which should be confined to replicon units in the nucleus, was optimized by 1 h postfixation in an organic solvent (methacarn). Sections showed positive nuclear staining confined to basal and some suprabasal cells in normal urothelium and grade 1 dysplasias, but more generalized nuclear staining in all other neoplastic lesions. In addition, stromal cells adjacent to invasive tumors showed nuclear positivity in some instances. Using quantitative true color image analysis of sections counterstained with hemalum, the degree of brown staining of the PCNA reaction product is contrasted with the blue staining of the nuclear area. With this method low contrast specific staining not appreciated optically can be reliably detected. Image analysis data confirmed observations made on noncounterstained sections and showed significant differences between grade 1 and 2 dysplasias as well as between grade 1 dysplasia and all grades of papillary tumor. Furthermore, a significant difference in PCNA staining indices was found between grade 1 and 3 bladder carcinomas. The results indicate that PCNA staining using the PC10 antibody is not confined to the proliferative fraction of neoplastic urothelium. In contrast with data from normal tissue and malignant hematological neoplasms, the amount of PCNA is regulated differently in urothelial neoplasms, emphasizing the biological differences between the following two sets: mild dysplasia and moderate dysplasia; mild dysplasia and papillary carcinomas. The use of image analysis to standardize the detection process after controlled staining conditions is advisable in order to provide reliable data. Supported by the DFG project: Knuechel/Urothelcarcinom 263  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号