首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
High expression of CXCR5 is one of the defining hallmarks of T follicular helper cells (T(FH)), a CD4 Th cell subset that promotes germinal center reactions and the selection and affinity maturation of B cells. CXCR5 is also expressed on 20-25% of peripheral blood human central memory CD4 T cells (T(CM)), although the definitive function of these cells is not fully understood. The constitutive expression of CXCR5 on T(FH) cells and a fraction of circulating T(CM) suggests that CXCR5(+) T(CM) may represent a specialized subset of memory-type T(FH) cells programmed for homing to follicles and providing B cell help. To verify this assumption, we analyzed this cell population and show its specialized function in supporting humoral immune responses. Compared with their CXCR5(-) T(CM) counterparts, CXCR5(+) T(CM) expressed high levels of the chemokine CXCL13 and efficiently induced plasma cell differentiation and Ig secretion. We found that the distinct B cell helper qualities of CXCR5(+) T(CM) were mainly due to high ICOS expression and pronounced responsiveness to ICOS ligand costimulation together with large IL-10 secretion. Furthermore, B cell helper attributes of CXCR5(+) T(CM) were almost exclusively acquired on cognate interaction with B cells, but not with dendritic cells. This implies that a preferential recruitment of circulating CXCR5(+) T(CM) to CXCL13-rich B cell follicles is required for the promotion of a quick and efficient protective secondary humoral immune response. Taken together, we propose that CXCR5(+) T(CM) represent a distinct memory cell subset specialized in supporting Ab-mediated immune responses.  相似文献   

2.
Mycoplasma pulmonis depresses humoral and cell-mediated responses in mice   总被引:2,自引:0,他引:2  
Humoral and cell-mediated immune responses to sheep red blood cells (SRBC) were studied in mice infected experimentally with Mycoplasma pulmonis. The hemagglutinating (HA) antibody against SRBC was evaluated at 0, 3, 5, 7, 14, 21 and 28 days postinfection (PI). Antibody tiers during all days PI were depressed significantly (p less than 0.05) in infected mice as compared to noninfected controls. The HA antibody, which is of the IgM class, peaks at day 5 PI. There is no shift in the kinetics of the humoral response in M. pulmonis infected mice. Cellular immune responses were evaluated by a delayed-type hypersensitivity (DTH) reaction and the lymphocyte transformation technique. Mice were sensitized at 0,3,5,7,14, 21 and 28 days PI with SRBC and challenged by footpad injection of SRBC 7 days later. The DTH reaction measured at 24 hours after challenge was depressed significantly (p less than 0.05) in all infected animals. After a transient enhancement on day 3 PI, the DTH responses remained depressed through day 28 PI. The lymphocyte transformation test showed a significantly (p less than 0.05) depressed response except on days 5 and 7 PI. These results indicate that M. pulmonis infection in mice suppresses the humoral antibody and cell-mediated immune responses.  相似文献   

3.
The role of antigen-specific helper T cells in augmenting the in vivo development of delayed-type hypersensitivity (DTH) responses was investigated. C3H/HeN mice were inoculated i.p. with vaccinia virus to generate virus-reactive helper T cell activity. These vaccinia virus-primed or unprimed mice were subsequently immunized subcutaneously (s.c.) with either trinitrophenyl (TNP)-modified syngeneic spleen cells (TNP-self), vaccinia virus-infected spleen cells (virus-self), or cells modified with TNP subsequent to virus infection (virus-self-TNP). Seven days later, these mice were tested for anti-TNP DTH responses either by challenging them directly with TNP-self into footpads or by utilizing a local adoptive transfer system. The results demonstrated that vaccinia virus-primed mice failed to generate significant anti-TNP DTH responses when s.c. immunization was provided by either virus-self or TNP-self alone. In contrast, vaccinia virus-primed mice, but not unprimed mice, could generate augmented anti-TNP DTH responses when immunized with virus-self-TNP. Anti-vaccinia virus-reactive helper activity was successfully transferred into 600 R x-irradiated unprimed syngeneic mice by injecting i.v. spleen cells from virus-primed mice. These helper T cells were found to be antigen specific and were mediated by Thy-1+, Lyt-1+2- cells. DTH effector cells enhanced by helper T cells were also antigen specific and were of the Thy-1+, Lyt-1+2- phenotype. Furthermore, vaccinia virus-reactive helper T cell activity could be applied to augment the induction of tumor-specific DTH responses by immunization with vaccinia virus-infected syngeneic X5563 tumor cells. T-T cell interaction between Lyt-1+ helper T cells and Lyt-1+ DTH effector T cells is discussed in the light of the augmenting mechanism of in vivo anti-tumor-specific immune responses.  相似文献   

4.
Significance and mechanisms of cellular regulation of the immune response   总被引:2,自引:0,他引:2  
The conditions known to favor the induction of delayed-type hypersensitivity (DTH), IgM and IgG antibody production, can be accounted for on the postulate that their precursors require the formation of different numbers of inductive complexes between their receptors, antigen, and the antigen-specific factor derived from helper T cells. The postulate that DTH precursors require the least, IgM B cells an intermediate number, and IgG precursors the most, accounts for the following facts: i) antigens with few foreign sites, for which there are relatively few helper T cell clones, induce only DTH; ii) medium doses of antigens that bear many foreign sites induce a humoral response; whereas iii) low doses that do not result in efficient collaboration induce DTH; and iv) high doses that partially block collaboration also lead to the induction of DTH. Furthermore, the conditions under which unresponsiveness can be induced at the humoral level in immunological competent animals are just those that give rise to the induction of DTH; the induction of a humoral response is also known to result in unresponsiveness at the DTH level. Therefore it seems very likely that these unresponsive states reflect the cellular regulation responsible for the exclusiveness between the induction of DTH and humoral immunity observed in the whole animal. Theoretically, this exclusiveness is due to the action of regulatory T cells. The biological significance of the way in which the induction of different classes is regulated is discussed. Experimental evidence is described that tests the following predictions: i) the class of response induced is due to the action of suppressor and repressor T cells, and ii) it is the number of inductive complexes formed that determines the class of response induced; DTH precursors require the least number and IgG precursors the most.  相似文献   

5.
Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, and their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.  相似文献   

6.
Unprimed murine spleen cells, when administered intravenously to irradiated recipients together with antigen for 7 days, are induced to display either DTH reactivity or to mount a humoral (IgM and IgG) response. The class induced depends on the number of spleen cells given to the irradiated host. A low number of cells does not support the induction of any response, a medium number only gives rise to substantial DTH reactivity, whereas a high number only mounts a humoral (IgM and IgG) response. Observations show that the higher number of T cells in a large inoculum of spleen cells, compared to the number present in a medium one, is responsible for the absence of DTH reactivity and the mounting of a humoral response. This finding suggests that the induction of DTH precursor cells may occur when fewer antigen-specific helper-T-cell-dependent signals are generated than the number of signals required to induce B-cell precursors of the IgM and IgG classes. This possibility is favored by further observations. The administration of in situ irradiated, primed helper T cells to mice reconstituted with a medium number of normal spleen cells, results both in the specific suppression of the DTH response that occurs in the absence of these primed cells and in the mounting of a humoral response.  相似文献   

7.
Young adult SJL mice (8 weeks of age or younger) do not mount a delayed-type hypersensitivity (DTH) response due to the failure of a macrophage antigen-presenting cell (APC) to induce TDTH effector cells. SJL mice that are 10 weeks of age or older produce a normal DTH response. This genetic defect provides a model for the investigation of functional subpopulations of APC which interact with specific subpopulations of T cells. In this study, we used this model to examine whether macrophage APC impairment involves APC-dependent immune responses other than DTH. No age-dependent differences were found in the ability of spleen cells from SJL mice to proliferate and synthesize interleukin-2 in response to concanavalin A; nor was the proliferative response to a variety of antigenic stimuli affected. In addition, no differences were observed in the contact sensitivity response or in the in vitro generation of allogeneic cytotoxic T lymphocytes (CTL). In contrast, the in vivo generation of allogeneic CTL was significantly depressed in 6-week-old SJL and could not be restored to normal by the adoptive transfer of macrophages from DTH responsive 12-week-old SJL mice. Finally, examination of the humoral response of 6-week-old SJL indicated no impairment in IgM or IgG serum antibody levels or in the induction of splenic B cells. Thus, the macrophage APC regulating the induction of TDTH effector cells does not appear to participate in the induction of T helper cells for other cellular and humoral responses. These data support the hypothesis that distinct subpopulations of APC may regulate the induction of specific immune effector mechanisms.  相似文献   

8.
The roles of helper and suppressor T cells in the development and expression of antibody responses to GAT were studied in (responder X responder)F1 mice immunized with parental GAT-M phi. Spleen cells from (B10 X B10.D2)F1 mice primed in vivo with B10 or B10.D2 GAT-M phi developed secondary in vitro plaque-forming cell (PFC) responses only when stimulated by GAT-M phi syngeneic with the GAT-M phi used for in vivo priming. By contrast, virgin F1 spleen cells developed comparable primary PFC responses to both parental GAT-M phi Co-culture of T cells from (B10 X B10.D2)F1 mice primed in vivo by B10 GAT-M phi with virgin (B10 X B10.D2)F1 spleen cells demonstrated the presence of suppressor cells that inhibited the primary response of virgin spleen cells stimulated by B10.D2 GAT-M phi. Spleen cells from (B10 X B10.D2)F1 mice primed in vivo with B10.D2 GAT-M phi had suppressor T cells that suppressed primary responses stimulated by B10 GAT-M phi. The suppressor T cell mechanism was composed of at least two regulatory T cell subsets. Suppressor-inducer T cells were Lyt-2-, I-J+ and must be derived from immune spleen cells. Suppressor-effector T cells can be derived from virgin or immune spleens and were Lyt-2+ cells. When the suppressor mechanism was disabled by treatment with 1000 rad gamma irradiation or removal of Lyt-2+ cells, Lyt-2-helper T cells from (B10 X B10.D2)F1 mice primed with B10 GAT-M phi provided radioresistant help to virgin F1 B cells stimulated by B10 but not B10.D2 GAT-M phi. Suppressor inducer Lyt-2-,I-J+ cells from B10 GAT-M phi-primed (B10 X B10.D2)F1 mice were separated from the primed Lyt-2-,I-J-helper T cells. In the presence of Lyt-2+ suppressor effector cells, the Lyt-2-,I-J+ suppressor-inducer suppressed the primary response of virgin spleen or virgin T plus B cells stimulated by both B10 and B10.D2 GAT-M phi. Therefore, suppressor T cells were able to suppress primary but not secondary GAT-specific PFC responses stimulated by either parental GAT-M phi. These results showed that immunization of (responder X responder)F1 mice with parental GAT-M phi results in the development of antigen-specific helper and suppressor T cells. The primed helper T cells were radioresistant and were genetically restricted to interact with GAT in association with the major histocompatibility complex antigens of the M phi used for in vivo priming.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Feeding mice sheep erythrocytes (SRBC) caused a significant decrease in splenic IgM antibody responses to SRBC given ip. Reduced IgM responses were due to a suppressor factor in the serum of fed mice rather than due to a lack of IgM antibody-forming cell precursors or to the presence of suppressor T cells. Although feeding initially primed mice to produce greater IgA and IgG anti-SRBC responses after SRBC challenge, the initial primed state was transitory. Mice fed SRBC for longer than 8 weeks had significantly reduced splenic IgG and IgA responses after SRBC challenge.Suppression of IgM responses by serum from fed mice was antigen-specific and not H-2 restricted. Serum from fed mice inhibited the induction of IgM anti-SRBC responses but did not block the expression of already established responses. The size of the suppressor factor and the ability to remove suppressor activity from serum by anti-mouse immunoglobulin suggested that suppression was mediated by antibody. However, the determinants against which the antibody was directed appeared to differ among batches of suppressor sera. Suppressor activity did not appear to be mediated by immune complexes, or soluble antigen. Oral feeding of antigen can have a marked influence on host systemic immune responses when the antigen used for feeding is subsequently administered parenterally. Thus, oral antigen administration may provide a way for specifically manipulating systemic immune responses in vivo. In addition, antigen-feeding may provide a means for producing transferable factors that suppress humoral antibody responses.  相似文献   

10.
The immune reactivity of mice (C57BL/6, H-2b) which had been challenged with various numbers (102–108) of allogeneic tumor cells (P815, H-2d) was assessed at various times after challenge. Challenge with a high dose (108) of tumor cells resulted in the development of direct cytotoxicity (DCMC), lectin-dependent cytotoxicity (LDCC), delayed-type hypersensitivity (DTH), and antibody production, whereas challenge with lower doses (< 106) of tumor cells favored development of DTH and LDCC with marginal or no DCMC or antibody production. Spleen cells from low-dose alloimmune animals failed to produce DCMC when cultured with P815 cells in vitro and were capable of nonspecifically suppressing the DCMC response of normal spleen cells in MLC. Treatment with cyclophosphamide (100 mg/kg) prior to alloimmunization did not alter the pattern of DTH and cytotoxic reactivity, although treatment after alloimmunization was immunosuppressive for all forms of reactivity. When low-dose challenge was followed by cyclophosphamide treatment and a subsequent high-dose challenge, selective inhibition of DTH, LDCC, and suppressor activity, but not DCMC, was observed. The data suggest that (a) the initial challenge dose plays a significant role in determining which effector and regulatory populations will be activated and what direction the expression of immune reactivity will take; (b) the activated responding populations of DTH, DCMC, and LDCC effector cells are sensitive to cyclophosphamide treatment, whereas the precursors of each are resistant to the effects of the drug; (c) low-dose alloimmunization may be used in combination with cyclophosphamide treatment to modulate DTH, DCMC, and LDCC reactivity in a selective manner; (d) the cytotoxic effector cells responding to highdose challenge and mediating DCMC and those responding to low-dose challenge and mediating LDCC appear to arise from distinct precursor populations.  相似文献   

11.
We studied the effects of T cell extracts from adult responder BALB/c mice tolerized with poly(Glu60Ala30Tyr10) (GAT)-coupled syngeneic spleen cells (GAT-SP) on delayed-type hypersensitivity (DTH), T cell-proliferative (Tprlf), and plaque-forming cell (PFC) responses. Adult responder mice injected i.v. with GAT-SP develop Lyt-1-2+ suppressor T cells (Ts), which suppress the induction of GAT-specific DTH and PFC, but not Tprlf responses. Sonicates from these Ts contain an afferent-acting, soluble factor(s) (GAT-TsFdh) that specifically suppresses the same responses as the intact Ts (i.e., DTH and PFC, but not Tprlf). Immunosorbent chromatography studies were employed to determine the molecular nature of the suppressive material active on both cellular and humoral responses. In both assay systems, GAT-TsFdh was found to bear determinants encoded by the I subregion of the H-2 complex and a receptor(s) for GAT. BALB/c-derived GAT-TsFdh suppressed the induction of GAT DTH in syngeneic BALB/c and H-2-compatible B10.D2, but not in allogeneic C57BL/6 or CBA/Cum, suggesting a possible H-2 restriction in the suppression. It was also shown that one target of functional regulation by GAT-TsFdh is the T helper cell for DTH responses (DTH-Th). The results suggest that similar Ts and TsF regulate humoral and cell-mediated responses, perhaps by affecting a target common to both pathways (e.g., the T helper cell). The resistance of Tprlf responses to suppression by GAT-TsFdh indicates that the effector DTH-Th target is not a major component of the proliferative response. These data are discussed with respect to GAT-specific TsF-regulating PFC responses, which have been identified in nonresponders and in responders tolerized as neonates with GAT.  相似文献   

12.
Suppressor cells in delayed-type hypersensitivity (DTH) to soluble protein antigens were induced in vitro from BALB/c spleen cells. Transfer of these cells into syngeneic recipients resulted in suppression of the hosts' DTH responses in an antigen-specific manner. These suppressor cells were characterized as B cells by their adherence to nylon-wool columns, resistance to treatment of anti-Thy 1, -Ly 1, and -Ly 2 antibodies plus complement, adherence to anti-mouse immunoglobulin-coated dishes, and nonadherence to uncoated plastic dishes. In addition to being radiation sensitive, these suppressor B cells showed the capability of binding to the primed antigen. Thus, it was demonstrated that our in vitro-induced suppressor cells were antigen-specific B cells. When these suppressor B cells were transferred into the recipients, serum titers of specific antibodies were elevated and effector phase suppressor T cells were induced in the recipients. These results suggest that suppressor B cells exert their suppressor activity through the idiotype-anti-idiotype network.  相似文献   

13.
We examined multiple genetically regulated Immoral and cell-mediated immune (CMI) responses to poly(glu60ala30tyr10) (GAT) using a panel of mouse strains. We show that assignment of responder/nonresponder status depends upon the assay method. In addition, two distinct categories of nonresponder mice were found: (1) those which are unresponsive by all parameters tested (H-2 q and H-2 s haplotypes) and (2) those which are partially nonresponsive [H-2 bm12 mutant strain—a low/nonresponder by splenic plaque-forming cell (PFC) and delayed-type hypersensitivity (DTH) responses, but exhibits B6 parental levels of high GAT-specific T-cell proliferation (Tprlf) and interleukin-2 production]. The distinction between these two nonresponder types was confirmed by complementation tests in which significant GAT-specific PFC and DTH responses were seen in (H-2 q × H-2 bm12)F1 hybrids, but not in (H-2 q × H-2 s )F1 hybrids. Suppressor T cells (Ts) also play a selective role in nonresponsiveness to GAT. Cyclophosphamide treatment of nonresponders (to eliminate Ts activity) as well as immunization with GAT coupled to the immunogenic carrier MBSA result in the development of GAT-specific humoral, but not CMI responses. Our results indicate that the T cell is the cellular site of Ir gene expression and that Tprlf responses do not correlate with functional helper T-cell activity and suggest distinct, multi-step Th/Ts regulatory pathways in the development of humoral and CMI effector functions.  相似文献   

14.
15.
We studied the effect of a single intragastric administration of ovalbumin (OVA) on the subsequent development of OVA-specific cell-mediated immune (CMI) responses in BDF1 mice. In animals fed OVA 7 days before subcutaneous sensitization with OVA-CFA, we observed a concomitant dose-dependent decrease in both the humoral and CMI responses specific for OVA. The CMI tolerance was found to be antigen-specific when assayed in vivo by ear swelling or in vitro by an antigen-induced T cell proliferation assay because OVA-fed mice responded normally to sensitization with horse gamma-globulin. It was also shown that either spleen or lymph node cells, but not serum, from OVA-fed donors transferred suppression to normal recipients. The transfer was mediated by antigen-specific suppressor T cells (Ts) that appeared to inhibit the induction phase (afferent limb) of the CMI response, since the Ts were only effective when transferred before or shortly after the onset of sensitization.  相似文献   

16.
Previous work has shown that specific helper T cells are required for the primary induction of delayed-type hypersensitivity (DTH). Conditions are defined here under which the primary induction by antigen of precursor helper T cells only occurs in the presence of specific, irradiated effector T cells, demonstrating that the induction of helper T cells requires T-T cooperation. The interaction between precursor and effector helper T cells is mediated by the recognition of epitopes that must be physically linked to one another. In more detail, hapten-Ficoll conjugates and xenogeneic red blood cells induce medium-density but not low-density cultures of unprimed murine spleen cells to express antigen-specific DTH. Low-density cultures do not support the induction of DTH unless they are supplemented with specific irradiated helper T cells. These helper T cells are themselves induced when antigen is added to medium-density but not low-density cultures. Precursor helper T cells in low-density cultures are only induced by antigen in the presence of additional specific irradiated T cells. Further experiments were directed at analyzing the nature of this T-T interaction. Irradiated hapten-primed T cells help the induction of precursor helper T cells specific for burro red blood cells (BRBC) in the presence of haptenated BRBC and chicken red blood cells (CRBC), but do not help in the presence of haptenated CRBC and BRBC. These experiments demonstrate that the interaction between precursor and effector T cells is mediated by the linked recognition of antigen. These findings show that the induction of precursor cells for both DTH reactivity, and those T cells able to help in the induction of DTH, require specific helper T cells. It is further shown that the induction of T cells able to help in the induction of helper precursor cells takes place in medium-density but not low-density cultures. In order words, antigen, when added to medium-density cultures of normal spleen cells, induces T cells able to mediate DTH, and T cells able to help in the induction of these helper T cells, whereas antigen induces none of these T cells when added to low-density cultures unless appropriate specific helper T cells are added.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The SJL strain of mice possess a unique developmental delay in the ability to exhibit delayed-type hypersensitivity (DTH) responses after immunization with a wide variety of Ag. Similar to other models of DTH, the adoptive transfer of syngeneic Ag-pulsed macrophages from DTH-responsive mice into these DTH-unresponsive mice results in the activation of Ag-specific, CD4+ DTH effector Th1 T cells. The absence of other defects in APC-dependent immune responses indicate that the macrophages is the sole APC required for the induction of DTH effector T cells in SJL mice. The defect occurs during the sensitization phase of the DTH response; however, it has not been determined whether a Th cell, which is required for the induction of CD4+ DTH effector T cells, was present in the DTH unresponsive SJL mice. In this study, we have determined that the Thy-1+ helper cell is induced upon Ag stimulation of nonresponder mice and present evidence for the existence of an accessory cell distinct from the macrophage that induces CD4+ DTH effector T cells. Our data indicate that CD4+ DTH effector T cells are induced in an Ag-specific and MHC-restricted manner by an adherent macrophage that expresses the Mac-1+, Mac-2-, Mac-3+, I-A+ phenotype. Adoptive transfer of as few as 100 of the Mac-1+, Mac-2-, or Mac-3+ subsets from DTH responsive donors to DTH unresponsive recipients is able to overcome the DTH deficit. The activation of CD4+ DTH effector T cells in the SJL mouse cells also requires a Thy-1+, Lyt-1+, CD3-, CD4-, CD8-, helper cell. In contrast to the Mac-1+, Mac-3+, I-A+ accessory cell, this helper cell requires an adherent, irradiation resistant, accessory cell that expresses the Mac-1+, Mac-2-, Mac-3-, I-A- surface phenotype for activation. Further, the interaction between this accessory cell and the Thy-1+ helper cell is neither Ag-specific nor MHC restricted. This is the first demonstration of an accessory cell requirement for the Thy-1+, Lyt-1+, B220-, CD4-, CD8-, CD3- DTH Th cell. These data indicate that the activation of the triple negative helper cells and subsequent activation of the CD4+ effector T cells are regulated by two distinct macrophage subpopulations.  相似文献   

18.
Anterior chamber-associated immune deviation (ACAID) is a complex set of immune responses induced by the inoculation of antigens into the anterior chamber of the eye. Histocompatibility antigens, tumor-specific antigens, reactive haptens, and viral antigens have been shown to induce this phenomenon, which comprises the following specific host responses: high titer humoral antibodies, primed cytotoxic T cells, but specifically, impaired skin graft rejection and delayed-type hypersensitivity (DTH). Using the model system of ACAID induced by inoculation of P815 mastocytoma cells into the anterior chambers of H-2-compatible, but minor H-incompatible, BALB/c mice, we demonstrate that the impaired capacity of these animals to develop and express DTH is due to the activation of suppressor T cells. Generation of these cells requires an intact spleen, is not inhibited by cyclophosphamide pretreatment, and is abrogated by systemic treatment of the host with anti-I-J monoclonal antibodies. This splenic suppressor cell(s) can transfer suppression of DTH adoptively to naive syngeneic mice. One suppressor cell is Thy-1.2, Lyt-2.2, and I-Jd positive. A minority of these cells (or a second population of suppressor cells) also expresses the L3T4 surface marker. Suppression is exerted on the efferent limb of DTH expression, although afferent suppression is not excluded. P815-induced ACAID suppressor cells resemble similar cells induced by haptenated spleen cells inoculated into the anterior chamber of the eye. We propose that induction of these suppressor cells, whose target of action is selective for T DTH cells, but not for other types of T cells, is responsible for the phenomenon of immune privilege in the anterior chamber of the eye.  相似文献   

19.
A major impediment to the use of adeno-associated virus (AAV)-mediated gene delivery to muscle in clinical applications is the pre-existing immune responses against the vector. Pre-existing humoral response to different AAV serotypes is now well documented. In contrast, cellular responses to AAV capsid have not been analyzed in a systematic manner, despite the risk of T cell reactivation upon gene transfer. AAV1 has been widely used in humans to target muscle. In this study, we analyzed PBMCs and sera of healthy donors for the presence of AAV1 capsid-specific T cell responses and AAV1 neutralizing factors. Approximately 30% of donors presented AAV1 capsid-specific T cells, mainly effector memory CD8(+) cells. IFN-γ-producing cells were also observed among effector memory CD4(+) cells for two of these donors. Moreover, to our knowledge, this study shows for the first time on a large cohort that there was no correlation between AAV1-specific T cell and humoral responses. Indeed, most donors presenting specific Ig and neutralizing factors were negative for cellular response (and vice versa). These new data raise the question of prescreening patients not only for the humoral response, but also for the cellular response. Clearly, a better understanding of the natural immunology of AAV serotypes will allow us to improve AAV gene therapy and make it an efficient treatment for genetic disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号