首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The association and interaction of plectin (Mr 300,000) with intermediate filaments and filament subunit proteins were studied. Immunoelectron microscopy of whole mount cytoskeletons from various cultured cell lines (rat glioma C6, mouse BALB/c 3T3, and Chinese hamster ovary) and quick-frozen, deep-etched replicas of Triton X-100-extracted rat embryo fibroblast cells revealed that plectin was primarily located at junction sites and branching points of intermediate filaments. These results were corroborated by in vitro recombination studies using vimentin and plectin purified from C6 cells. Filaments assembled from mixtures of both proteins were extensively crosslinked by oligomeric plectin structures, as demonstrated by electron microscopy of negatively stained and rotary-shadowed specimens as well as by immunoelectron microscopy; the binding of plectin structures on the surface of filaments and cross-link formation occurred without apparent periodicity. Plectin's cross-linking of reconstituted filaments was also shown by ultracentrifugation experiments. As revealed by the rotary-shadowing technique, filament-bound plectin structures were oligomeric and predominantly consisted of a central globular core region of 30-50 nm with extending filaments or filamentous loops. Solid-phase binding to proteolytically degraded vimentin fragments suggested that plectin interacts with the helical rod domain of vimentin, a highly conserved structural element of all intermediate filament proteins. Accordingly, plectin was found to bind to the glial fibrillar acidic protein, the three neurofilament polypeptides, and skin keratins. These results suggest that plectin is a cross-linker of vimentin filaments and possibly also of other intermediate filament types.  相似文献   

2.
The distribution of plectin in the cytoplasm of Rat1 and glioma C6 cells was examined using a combination of double and triple immunofluorescence microscopy and interference reflection microscopy. In cells examined shortly after subcultivation (less than 48 h), filamentous networks of plectin structures, resembling and partially colocalizing with vimentin filaments, were observed as reported in previous studies. In cells kept attached to the substrate without growth for periods of 72 h to 8 days (stationary cultures), thick fibrillary plectin structures were observed. These structures were located at the end of actin filament bundles and showed co-distribution with adhesion plaques (focal contacts), vinculin, and vimentin. Only relatively large adhesion plaques (dash-like contacts) were decorated by antibodies to plectin, smaller dot-like contacts at the cell edges remained undecorated. Moreover, in stationary Rat1 cells plectin structures were found to be predominantly colocalized with actin stress fibers. However, after treatment of such cells with colcemid, plectin's distribution changed dramatically. The protein was no longer associated with actin structures, but was distributed diffusely throughout the cytoplasm. After a similar treatment with cytochalasin B, plectin's association with stress fibers again was completely abolished, although stress fibers were still present. The association of plectin with focal contact-associated intermediate filaments was demonstrated also by immunogold electron microscopy of quick-frozen, deep-etched replicas of rat embryo fibroblasts. These data confirm previous reports suggesting a relationship between intermediate filaments on the one hand, and actin stress fibers and their associated plasma membrane junctional complexes, on the other. Furthermore, the data establish plectin as a novel component of focal contact complexes and suggest that plectin plays a role as mediator between intermediate filaments and actin filaments.  相似文献   

3.
Promotion of MAP/MAP interaction by taxol   总被引:3,自引:0,他引:3  
The effects of taxol on microtubule-associated proteins of high molecular weight (MAPs) were studied in vitro. After negative staining, microtubules reconstituted in the presence of taxol from preparations of partially purified tubulin and MAPs, besides being bundled, displayed prominent elongated or globular extensions without apparent regularity. These extensions, but not the tubulin polymer, were heavily decorated after immuno-gold-labeling using antibodies to MAP-1 and MAP-2. Microtubules reconsituted in the absence of taxol showed a much more regular, and apparently helical, arrangement of MAPs along their surfaces. The formation of polymeric structures was also observed when preparation of MAPs free of tubulin were incubated with taxol. In this case in addition to large network-type aggregates with little apparent substructure, more regular structures seemingly consisting of approximately 5-nm-thick filaments arrayed in parallel were observed. Taxol-induced MAP aggregation occurred rapidly and was directly proportional to the concentration of protein, as revealed by optical density measurements. It is concluded that taxol, aside from promoting the assembly of tubulin and stabilizing microtubules, promotes MAP/MAP interaction.  相似文献   

4.
Monoclonal antibodies were generated against detergent-insoluble cytoskeletal proteins isolated from low-density membrane fractions of rat liver. By immunofluorescence, one of the antibodies stains three distinct structures in cultured rat fibroblast and hepatocyte lines as well as the PtK2 rat-kangaroo kidney epithelial line. These structures are: i) many tangled filaments similar to intermediate filaments (IFs), ii) fewer and variable numbers of straight filaments, and iii) punctate cytoplasmic foci, often most intense around the nucleus. All three of these structures are resistant to extraction by non-ionic detergent. Close examination reveals that the tangled and straight filaments are not stained uniformly, but as a series of bright patches. In cells treated with nocodazole, the antibody reacts strongly with a perinuclear filamentous cage. Very few tangled filaments are detected in these cells, however, the straight filaments and punctate cytoplasmic staining are resistant to nocodazole treatment. Double-label immunofluorescence shows that, even though tangled filament distribution and nocodazole sensitivity are similar to the behavior of vimentin IFs, there is only partial coincidence of staining with either vimentin or cytokeratin IFs. The straight filaments coincide with some actin stress fibers, but the punctate cytoplasmic staining is not related to IFs, actin, or tubulin. Thus, this monoclonal antibody stains a novel group of three seemingly unrelated cytoskeletal structures, including a previously undescribed insoluble nonfilamentous pool. Taken as a whole, two hypotheses are consistent with these data. i) The antigen recognized may be a protein which has a large insoluble cytoplasmic pool and binds both IFs and actin, but only binds to a subset of each class of filaments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Indirect immunofluorescence microscopy has been used to detect cytoskeletal proteins, which allow a distinction between the two cell types present in the mouse blastocyst: i.e. the cells of the inner cell mass (ICM) and the outer trophoblastic cells. Antibodies against three classes of intermediate-sized filaments (cytokeratins, desmin and vimentin), as well as antibodies against actin and tubulin were studied. Antibodies against prekeratin stain the outer trophoblastic cells but not the ICM in agreement with the findings on adult tissues that cytokeratins are a marker for various epithelial cells. Interestingly, vimentin filaments typical of mesenchymal cells as well as of cells growing in culture seem to be absent in both cell types of the blastocyst. Thus, the cytokeratins of the trophoblastic cells seem to be the first intermediate-sized filaments expressed in embryogenesis. Antibodies to tubulin and actin show that microtubules and microfilaments are ubiquitous structures, although microfilaments have a noticeably different organization in the two cell types. In addition, since early embryogenic multipotential cells show close similarities to teratocarcinomic cells, a comparison is made between the cells of the blastocyst, embryonal carcinoma cells (EC cells) and an epithelial endodermal cell line (PYS2 cells) derived from EC cells. EC cells display vimentin filaments whereas PYS2 cells show both vimentin and cytokeratin filaments. The results emphasize the usefulness of antibodies specific for different classes of intermediate filaments in further embryological studies, and suggest that cells of the blastocyst and EC cells differ with respect to vimentin filaments.  相似文献   

6.
Proteins of contractile and cytoskeletal elements have been studied in bovine lens-forming cells growing in culture as well as in bovine and murine lenses grown in situ by immunofluorescence microscopy using antibodies to the following proteins: actin, myosin, tropomyosin, α-actinin, tubulin, prekeratin, vimentin, and desmin. Lens-forming cells contain actin, myosin, tropomyosin, and α-actinin which in cells grown in culture are enriched in typical cable-like structures, i.e. microfilament bundles. Antibodies to tubulin stain normal, predominantly radial arrays of microtubules. In the epithelioid lens-forming cells of both monolayer cultures grown in vitro and lens tissue grown in situ intermediate-sized filaments of the vimentin type are abundant, whereas filaments containing prekeratin-like proteins (‘cytokeratins’) and desmin filaments have not been found. The absence of cytokeratin proteins observed by immunological methods is supported by gel electrophoretic analyses of cytoskeletal proteins, which show the prominence of vimentin and the absence of detectable amounts of cytokeratins and desmin. This also correlates with electron microscopic observations that typical desmosomes and tonofilament bundles are absent in lens-forming cells, as opposed to a high density of vimentin filaments. Our observations show that the epithelioid lens-forming cells have normal arrays of (i) microfilament bundles containing proteins of contractile structures; (ii) microtubules; and (iii) vimentin filaments, but differ from most true epithelial cells by the absence of cytokeratins, tonofilaments and typical desmosomes. The question of their relationship to other epithelial tissues is discussed in relation to lens differentiation during embryogenesis. We conclude that the lens-forming cells either represent an example of cell differentiation of non-epithelial cells to epithelioid morphology, or represent a special pathway of epithelial differentiation characterized by the absence of cytokeratin filaments and desmosomes. Thus two classes of tissue with epithelia-like morphology can be distinguished: those epithelia which contain desmosomes and cytokeratin filaments and those epithelioid tissues which do not contain these structures but are rich in vimentin filaments (lens cells, germ epithelium of testis, endothelium).  相似文献   

7.
The distribution of three high molecular weight proteins, MAP-1 (Mr 330 000), MAP-2 (Mr 300 000) and plectin (Mr 300 000) in various fractions obtained in cycles of temperature-dependent polymerization/depolymerization of microtubules from rat glioma C6 cells was studied. Using gel electrophoresis and immunoautoradiography/immunoblotting all three proteins were found to codistribute only partially with tubulin because considerable parts remained in the cold-insoluble fractions. Moreover, the proteins, particularly MAPs, were proteolytically degraded during cycling. By contrast, when microtubules were polymerized with taxol after isotonic cell lysis a considerable enrichment of MAP-1 and MAP-2 was achieved; again, plectin co-distributed only partially. In this procedure too, MAPs, especially MAP-2, were found to be highly subject to proteolysis, unless free Ca2+-ions were rigorously avoided. Proteolytic fragments generated from MAP-2 were of similar size independent of whether temperature- or taxol-dependent polymerization procedures were used, suggesting the occurrence of a MAP-2-specific protease. When the spatial arrangement of the high Mr proteins on taxol-polymerized C6 cell microtubules was directly visualized using gold-immunoelectron microscopy, a periodical, apparently helical, decoration of microtubules was found for MAP-1 and MAP-2; plectin was irregularly arrayed. A predominantly helical arrangement of both MAPs was demonstrated also for microtubules reconstituted from mammalian brain.  相似文献   

8.
It has been demonstrated that microtubule-associated proteins (MAPs) interact with tubulin in vitro and in vivo. However, there is no clear evidence on the possible roles of the interactions of MAPs in vivo with other cytoskeletal components in maintaining the integrity of the cell architecture. To address this question we extracted the neuronal cytoskeleton from brain cells and studied the selective dissociation of specific molecular isospecies of tau protein under various experimental conditions. Tau, and in some cases MPA-2, were analysed by the use of anti-idiotypic antibodies that recognize epitopes on their tubulin binding sites. Fractions of microtubule-bound tau isoforms were extracted with 0.35 M NaCl or after the addition of nocodazole to allow microtubule depolymerization. Protein eluted with this inhibitor contained most of the assembled tubulin dimer pool and part of the remaining tau and MAP-2. When the remaining cytoskeletal pellet was treated with cytochalasin D to allow depolymerization of actin filaments, only tau isoforms were extracted. Immunoprecipitation studies along with immunolocalization experiments in cell lines containing tau-like components supported the findings on the roles of tau isospecies as linkers between tubulin in the microtubular structure with actin filaments. Interestingly, in certain types of cells, antibody-reactive tau isospecies were detected by immunofluorescence with a discrete distribution pattern along actin filaments, which was affected by cytochalasin disruption of the actin filament network. These results suggest the possible in vivo roles of subsets of tau protein in modulating the interactions between microtubules and actin filaments.  相似文献   

9.
Chemokine-induced polarization of lymphocytes involves the rapid collapse of vimentin intermediate filaments (IFs) into an aggregate within the uropod. Little is known about the interactions of lymphocyte vimentin with other cytoskeletal elements. We demonstrate that human peripheral blood T lymphocytes express plectin, an IF-binding, cytoskeletal cross-linking protein. Plectin associates with a complex of structural proteins including vimentin, actin, fodrin, moesin, and lamin B in resting peripheral blood T lymphocytes. During chemokine-induced polarization, plectin redistributes to the uropod associated with vimentin and fodrin; their spatial distribution indicates that this vimentin-plectin-fodrin complex provides a continuous linkage from the nucleus (lamin B) to the cortical cytoskeleton. Overexpression of the plectin IF-binding domain in the T cell line Jurkat induces the perinuclear aggregation of vimentin IFs. Plectin is therefore likely to serve as an important organizer of the lymphocyte cytoskeleton and may regulate changes of lymphocyte cytoarchitecture during polarization and extravasation.  相似文献   

10.
Plectin is a typical cytolinker protein that connects intermediate filaments to the other cytoskeletal filament systems and anchors them at membrane-associated junctional sites. One of the most important binding partners of plectin in fibroblasts is the intermediate filament subunit protein vimentin. Previous studies have demonstrated that vimentin networks are highly dynamic structures whose assembly and disassembly is accomplished stepwise via several intermediates. The precursor forms as well as polymerized (filamentous) vimentin are found in the cells in a dynamic equilibrium characterized by the turnover of the subunits within the polymer and the movement of the smaller precursors. To examine whether plectin plays a role in intermediate filament dynamics, we studied vimentin filament formation in plectin-deficient compared to wild-type fibroblasts using GFP-tagged vimentin. Monitoring vimentin and plectin in spreading and dividing cells, we demonstrate that plectin is associated with vimentin from the early stages of assembly and is required for vimentin motility as well as for the stepwise formation of stable filaments. Furthermore, plectin prevents vimentin networks from complete disassembly during mitosis, facilitating the rebuilding of the intermediate filament network in daughter cells.  相似文献   

11.
The occurrence and cellular localization of polypeptides related to hog brain microtubule-associated proteins 1 and 2 (MAP-1 and MAP-2) in non-neuronal cell lines of various species and types, and in several tissues from rat was studied. When insoluble cell fractions were prepared by incubation of isotonic cell extracts with 20 microM taxol, polypeptides co-migrating with MAP-1 and MAP-2 upon gel electrophoresis were observed in virtually all cases examined. Immunoblotting of preparations from 3T6, CHO, HeLa and N2A cells, as well as pituitary, heart, testis and liver revealed immuno-reactivity with antibodies to neuronal MAP-1 for polypeptides co-migrating with MAP-1 in all cases, except for HeLa cells and liver. With similar preparations, antibodies raised to neuronal MAP-2 were barely reactive with bands of the MAP-2 size except for N2A cells and pituitary gland. In all cases of non-neuronal cells and tissues, major cross-reactive bands, however, were of mol. wt. lower than that of MAP-2, indicating, most likely, proteolytic breakdown of MAP-2 during cell fractionation. As shown by double immunofluorescence microscopy of various cultured cell lines using affinity-purified antibodies to MAPs, and monoclonal antibodies to tubulin, MAP-1-as well as MAP-2-related antigens were generally, but not exclusively, associated with typical microtubule structures of the cytoplasm, spindle, midbody and primary cilia. Antigens related to both MAPs were also localized in frozen sections of rat trachea, testis, pituitary, kidney and cardiac and skeletal muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Using both monoclonal and polyclonal antibodies against mammalian plectin (multifunctional protein cross-linking cytoskeletal structures, mainly intermediate filaments, in mammalian cells), several putative isoforms of plectin-like proteins were found in protein extracts from the green algaChlamydomonas eugametos (Volvocales). Immunofluorescence and immunoblotting revealed that some of the plectin-like proteins were present in perinuclear region or localized near the cell wall, probably being attached to the cytoplasmic membrane.  相似文献   

13.
《The Journal of cell biology》1984,98(3):1072-1081
Desmosomal proteins are co-expressed with intermediate-sized filaments (IF) of the cytokeratin type in epithelial cells, and these IF are firmly attached to the desmosomal plaque. In meningiomal and certain arachnoidal cells, however, vimentin IF are attached to desmosomal plaques. Meningiomas obtained after surgery, arachnoid "membranes", and arachnoid granulations at autopsy, as well as meningiomal cells grown in short-term culture have been examined by single and double immunofluorescence and immunoelectron microscopy using antibodies to desmoplakins, vimentin, cytokeratins, glial filament protein, neurofilament protein, and procollagen. In addition, two-dimensional gel electrophoresis of the cytoskeletal proteins has been performed. Using all of these techniques, vimentin was the only IF protein that was detected in significant amounts. The junctions morphologically resembling desmosomes of epithelial cells have been identified as true desmosomes by antibodies specific for desmoplakins and they provided the membrane attachment sites for the vimentin IF. These findings show that anchorage of IF to the cell surface at desmosomal plaques is not restricted to cytokeratin IF as in epithelial cells and desmin IF as in cardiac myocytes, suggesting that binding to desmosomes and hemidesmosomes is a more common feature of IF organization. The co- expression of desmosomal proteins and IF of the vimentin type only defines a new class of cell ("desmofibrocyte") and may also provide an important histodiagnostic criterion.  相似文献   

14.
Cultured pig kidney epithelial cells were centrifuged at 20,000 gav so that the centrifugation force was oriented parallel to the substrate, fixed and processed for indirect immunofluorescent staining with tubulin and vimentin antibodies. After a 2 hour centrifugation vimentin filaments aggregated in the centripetal parts of the cells (probably, because of their association with floating lipid vesicles). Microtubule-organizing centers were found near the centripetal poles of the nuclei, which migrated in the direction of the centrifugal force. The distribution of the cytoplasmic microtubules did not change during centrifugation. The staining of the cultures one hour after centrifugation revealed vimentin-containing spots with radiating intermediate filaments in most of the cells. These spots were localized near the cell nuclei; double immunofluorescent staining with tubulin and vimentin antibodies showed that their position was identical to that of the microtubule-organizing centers. Similar foci of vimentin filaments were seen in the cells after a 3-4 hour centrifugation. Probably, these structures participate in organizing the intermediate filament cytoskeleton in cells.  相似文献   

15.
Plectin, a widespread and abundant cytoskeletal cross-linking protein, serves as a target for protein kinases throughout the cell cycle, without any significant variation in overall phosphorylation level. One of the various phosphorylation sites of the molecule was found to be phosphorylated preferentially during mitosis. By in vivo phosphorylation of ectopically expressed plectin domains in stably transfected Chinese hamster ovary cells, this site was mapped to the C-terminal repeat 6 domain of the polypeptide. The same site has been identified as an in vitro target for p34cdc2 kinase. Mitosis-specific phosphorylation of plectin was accompanied by a rearrangement of plectin structures, changing from a filamentous, largely vimentin-associated state in interphase to a diffuse vimentin-independent distribution in mitosis as visualized by immunofluorescence microscopy. Subcellular fractionation studies showed that in interphase cells up to 80% of cellular plectin was found associated with an insoluble cell fraction mostly consisting of intermediate filaments, while during mitosis the majority of plectin (> 75%) became soluble. Furthermore, phosphorylation of purified plectin by p34cdc2 kinase decreased plectin's ability to interact with preassembled vimentin filaments in vitro. Together, our data suggest that a mitosis-specific phosphorylation involving p34cdc2 kinase regulates plectin's cross-linking activities and association with intermediate filaments during the cell cycle.  相似文献   

16.
Plectin is a versatile linker protein which is associated with various types of cytoskeletal components and/or filaments including intermediate filaments. To better understand the functional roles of plectin in smooth muscle cells, we examined the distribution of plectin and other related proteins in rat colon smooth muscles by confocal laser and electron microscopy. The sarcolemma of smooth muscle cells exhibits two ultrastructurally distinct domains, domains associated with dense plaques and caveola-rich domains. Staining with anti-plectin and anti-desmin antibodies showed that plectin was localized along the sarcolemma in an intermittent manner and desmin was distributed in the sarcoplasm and intermittently at the cell periphery where it was codistributed with desmin. Plectin exhibited complementary and non-overlapping distribution to caveolin-1 and dystrophin, components of caveola domains, whereas plectin was codistributed with vinculin, talin and integrin beta1, components of dense plaques. Plectin was also codistributed with beta2-chain laminin but not with beta1-chain laminin. Electron microscopic observations on the sarcolemma revealed close association of intermediate filaments with dense plaques. Correlated confocal and electron microscopy clearly demonstrated that anti-plectin fluorescence corresponded to dense plaques but not to caveola domains in electron microscopic images. These findings indicate that plectin is confined to dense plaques to which desmin intermediate filaments may be anchored in rat colon smooth muscle cells.  相似文献   

17.
To investigate the molecular mechanisms of cancer metastasis, we have isolated a high-metastatic bladder cancer cell subpopulation from a low-metastatic cell line by using an in vivo selection system. Cells in the subpopulation showed a high ability to form invadopodia, the filamentous actin (F-actin)-based membrane protrusions that play an essential role in cancer cell invasion. Analysis of the gene expression profile revealed that the expression of an intermediate filament (IF) protein, vimentin and a cytoskeletal linker protein, plectin was up-regulated in the high-metastatic subpopulation compared with the low metastatic cell line. Here we report a novel role of vimentin IF and plectin in metastasis. In invasive bladder cancer cells, the vimentin IF-plectin-invadopodia F-actin link was formed. Disruption of this link severely impaired invadopodia formation, reducing the capacities of extracellular matrix degradation, transendothelial migration and metastasis. In addition, the vimentin assembly into the filaments was required for invadopodia formation. Our results suggest that plectin anchoring invadopodia to vimentin IF scaffolds and stabilizes invadopodia, which is a critical molecular process for cancer cell invasion and extravasation for metastasis.  相似文献   

18.
Antisera were raised in rabbits against the two major components of intermediate filament preparations from glia-derived C6 cells, polypeptides of Mr around 300 000 and 58 000 (vimentin). These, and a third antiserum raised against microtubule proteins from hog brain, were shown to be specific for their respective immunogens. The assay employed involved the separation of components of crude cell extracts or filament preparations by SDS-polyacrylamide gel electrophoresis, and their subsequent transfer to and immobilization on nitrocellulose sheets. Cross-reacting counterparts of the immunogens were found in various cell lines, including C6, BALB/c 3T3, SV101, CHO, HeLa and PtK2 cells. In indirect immunofluorescence studies, antibodies to the high-Mr polypeptide component stained dense cytoplasmic network arrays of seemingly short, irregularly oriented fibres and lines of dots, in fibroblasts and in HeLa cells, but not in PtK2 cells. In well spread cells these networks were clearly distinguishable in morphology from the fibres decorated by antibodies to either microtubule protein or vimentin. The network arrays were resistant towards treatments with Triton X-100 and colcemid. By double immunofluorescence microscopy of single cells, using an additional antibody preparation to vimentin raised in guinea pigs, it was shown that after prolonged colcemid treatment of BALB/c 3T3 cells both; vimentin filaments and the structures stained by antibodies to the high-Mr component, accumulated in corresponding areas of the cytoplasm. The possibilities are discussed that this novel network-like structure is of the intermediate filament type and that it might function as a cross-linker of cytoplasmic—in particular cytoskeletal—elements. To signify its fluorescent localization and its possible linking role it is proposed to call the high-Mr component of intermediate filament preparations from cultured cells ‘plectin’.  相似文献   

19.
黄海艳  陈耀东 《微生物学通报》2017,44(11):2741-2747
自从1992年确定细菌分裂的关键蛋白Fts Z属于微管蛋白家族以来,越来越多的细菌细胞骨架蛋白被发现。原核生物中的微管同源蛋白主要有Fts Z、Cet Z、Tub Z和Btub A/B等。它们与微管蛋白具有相似的三级结构,可以结合鸟嘌呤-5′-三磷酸(Guanosine triphosphate,GTP)自聚合成不同的线状原丝纤维结构:单线状原丝纤维、双螺旋纤维结构或聚集成束状结构,在细菌细胞分裂、维持细胞形态、质粒分离等诸多重要生理功能中起着重要作用。  相似文献   

20.
Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号