首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effects of quinidine, amiloride and Li+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. Quinidine reversibly inhibited the initial rate of Na+-H+ exchange (I50 200 microM). The plot of 1/V versus [quinidine] was curvilinear, with Hill coefficient greater than 1.0, indicating that the drug interacts at two or more inhibitory sites or at a single site on at least two different conformations of the transporter. Quinidine decreased the Vmax for Na+-H+ exchange and increased the Km for Na+, indicating a mixed-type mechanism of inhibition. In contrast, plots of 1/V versus [amiloride] and 1/V versus [Li+] were linear, indicating single inhibitory sites; amiloride and Li+ each increased the Km for Na+ with no effect on Vmax, indicating a competitive mechanism of inhibition. Addition of Li+ increased the intercept with no change in slope of the 1/V versus [amiloride] plot, indicating that Li+ and amiloride are mutually exclusive inhibitors of Na+-H+ exchange. Addition of quinidine increased the slopes of the plots of 1/V versus [amiloride] and 1/V versus [Li+], indicating that the binding of quinidine is not mutually exclusive with the binding of amiloride and Li+. Results from this and previous studies are consistent with the concept that the inhibitor amiloride and the transportable substrates Na+, H+, Li+, and NH+4 all mutually compete for binding to a single site, the external transport site of the renal Na+-H+ exchanger. However, our findings indicate that quinidine interacts with the Na+-H+ exchanger on at least one additional site that is not shared by Na+, Li+, or amiloride.  相似文献   

2.
Li(+) is the most effective drug used to treat bipolar disorder; however, its exact mechanism of action has yet to be elucidated. One hypothesis is that Li(+) competes with Mg2+ for the Mg2+ binding sites on guanine-nucleotide binding proteins (G-proteins). Using 7Li T1 relaxation measurements and fluorescence spectroscopy with the Mg2+ fluorophore furaptra, we detected Li(+)/Mg(2+) competition in three preparations: the purified G-protein transducin (Gt), stripped rod outer segment membranes (SROS), and SROS with purified Gt reattached (ROS-T). When purified ROS-T, SROS or transducin were titrated with Li+ in the presence of fixed amounts of Mg(2+), the apparent Li(+) binding constant decreased due to Li(+)/Mg(2+) competition. Whereas for SROS the competition mechanism was monophasic, for G(t), the competition was biphasic, suggesting that in G(t), Li(+)/Mg(2+) competition occurred with different affinities for Mg(2+) in two types of Mg(2+) binding sites. Moreover, as [Li(+)] increased, the fluorescence excitation spectra of both ROS-T and G(t) were blue shifted, indicating an increase in free [Mg(2+)] compatible with Li(+) displacement of Mg(2+) from two low affinity Mg(2+) binding sites of G(t). G(t) release from ROS-T membrane was also inhibited by Li(+) addition. In summary, we found evidence of Li(+)/Mg(2+) competition in G(t)-containing preparations.  相似文献   

3.
The addition of LiCl stimulated the (Na+ + K+)-dependent ATPase activity of a rat brain enzyme preparation. Stimulation was greatest in high Na+/low K+ media and at low Mg-ATP concentrations. Apparent affinities for Li+ were estimated at the alpha-sites (moderate-affinity sites for K+ demonstrable in terms of activation of the associated K+-dependent phosphatase reaction), at the beta-sites (high-affinity sites for K+ demonstrable in terms of activation of the overall ATPase reaction), and at the Na+ sites for activation. The relative efficacy of Li+ was estimated in terms of the apparent maximal velocity of the phosphatase and ATPase reactions when Li+ was substituted for K+, and also in terms of the relative effect of Li+ on the apparent Km for Mg-ATP. With these data, and previously determined values for the apparent affinities of K+ and Na+ at these same sites, quantitative kinetic models for the stimulation were examined. A composite model is required in which Li+ stimulates by relieving inhibition due to K+ and Na+ (i) by competing with K+ for the alpha-sites on the enzyme through which K+ decreases the apparent affinity for Mg-ATP and (ii) by competing with Na+ at low-affinity inhibitory sites, which may represent the external sites at which Na+ is discharged by the membrane Na+/K pump that this enzyme represents. Both these sites of action for Li+ would thus lie, in vivo, on the cell exterior.  相似文献   

4.
Enzyme inhibition studies were performed with several lithium isotopes in order to more precisely define how lithium inhibits the enzyme myo-inositol 1-phosphatase. This lithium-induced inhibition is thought to be central to the therapeutic effects of lithium in the treatment of manic-depressive disorder. Naturally occurring lithium (NLi) exists as a combination of isotopes: 6Li and 7Li. Lethality studies were performed comparing 6LiCl, 7LiCl, and NLiCl, did not demonstrate a differential effect as previous studies had suggested. Enzyme inhibition studies were performed with these individual lithium isotopes, and compared to the effects of the naturally occurring combination (NLi) on the inhibition of myo-inositol 1-phosphatase using a partially purified enzyme preparation from rat brain, liver and testes. Identical inhibition was observed with all lithium isotopes and their combinations. In addition, both D- and L-myo-inositol 1-phosphates were used as enzyme substrates and found to be equivalent. These experiments, along with previous work demonstrating lithium acting as an uncompetitive inhibitor in the reaction, and the lack of lithium binding sites on the enzyme, suggests the hypothesis that lithium is possibly inhibiting this reaction by interfering with the formation of a transition cyclic intermediate, myo-inositol 1,3-cyclic phosphate, which may be formed from either the D- or L-substrates. This proposal is in contrast to previous suggestions regarding the inhibitory mechanism of action of lithium on the myo-inositol 1-phosphatase reaction.  相似文献   

5.
Inositol-1,4-bisphosphate 4-phosphohydrolase (inositol-1,4-bisphosphatase) was highly purified from a soluble fraction of rat brain. On SDS-polyacrylamide gel electrophoresis, the purified enzyme gave a single protein band and its molecular weight was estimated to be 42000. The isoelectric point of the enzyme was 4.3. The enzyme specifically hydrolyzed the 4-phosphomonoester linkage of inositol 1,4-bisphosphate. The Km value for inositol 1,4-bisphosphate was 30 microM, and it required Mg2+ for activity. Ca2+ was a competitive inhibitor with a Ki value of 60 microM as regards the Mg2+ binding. Li+, which is known to be a strong inhibitor of inositol 1-phosphatase (EC 3.1.3.25), inhibited the enzyme activity and caused 50% inhibition at a concentration of 1 mM (IC50 = 1 mM). Li+ was an uncompetitive inhibitor of substrate binding with a Ki value of 0.6 mM. These inhibitory parameters of Li+ were quite similar to those for inositol 1-phosphatase (IC50 = 1 mM, Ki = 0.3 mM). Thus, the effect of Li+ on decreasing the free inositol level with a subsequent decrease in agonist-sensitive phosphoinositides, is caused by its inhibition of multiple enzymes involved in conversion of inositol 1,4-bisphosphate to inositol.  相似文献   

6.
Using apical membrane vesicles (AMV) prepared from mature foetal and early neonatal guinea pig lung we show that pertussis toxin (PTX)-sensitive G-protein regulation of conductive 22Na+ uptake undergoes rapid changes following birth. Thus, G-protein activation by intravesicular incorporation of 100 microM GTPgammaS into vesicles resuspended in NaCl, which in late gestation stimulated uptake, consistently induced inhibition of conductive Na+ uptake into AMV prepared from neonatal lung at 4 days of age (N4) (52+/-9%, n=8, P<0.05). This response was not significantly different in the presence of the relatively impermeant anion isethionate (Ise-) (69+/-9%, n=7, P<0.05). Changes in the regulation of uptake were already detectable on the day of birth (N0) in AMV resuspended in NaCl, with GTPgammaS inducing both stimulatory and inhibitory responses. These data indicate that the processes by which 22Na+ uptake into AMV is regulated by G-proteins undergoes a change at birth and by 4 days of age, G-protein regulation of uptake occurs predominantly via modulation of co-localised Na+ channels. Intravesicular incorporation of GDPbetaS or pre-treatment with PTX did not significantly alter conductive 22Na+ uptake in the presence of NaCl or NaIse suggesting that constitutively active G-proteins are not involved in this process. Pre-treatment of AMV with PTX prevented the inhibition of conductive 22Na+ uptake by GTPgammaS (105+/-16% n=7) indicating that a PTX-sensitive G-protein mediates the inhibition of channels in neonatal AMV. Western blotting demonstrated enrichment of Gialpha1, Gialpha2, Gialpha3 and Goalpha in the apical membrane preparations. We also show that there is a significant rise in the levels of Gialpha3 during the early neonatal period providing a potential candidate for the G-protein mediated changes in regulation of conductive 22Na+ uptake in neonatal AMV.  相似文献   

7.
We used the patch-clamp technique to study the effects of extracellular ATP on the activity of ion channels recorded in rat pancreatic beta-cells. In cell-attached membrane patches, action currents induced by 8.3 mM glucose were inhibited by 0.1 mM ATP, 0.1 mM ADP or 15 microM ADPbetaS but not by 0.1 mM AMP or 0.1 mM adenosine. In perforated membrane patches, action potentials were measured in current clamp, induced by 8.3 mM glucose, and were also inhibited by 0.1 mM ATP with a modest hyperpolarization to -43 mV. In whole-cell clamp experiments, ATP dose-dependently decreased the amplitudes of L-type Ca2+ channel currents (ICa) to 56.7+/-4.0% (p<0.001) of the control, but did not influence ATP-sensitive K+ channel currents observed in the presence of 0.1 mM ATP and 0.1 mM ADP in the pipette. Agonists of P2Y purinoceptors, 2-methylthio ATP (0.1 mM) or ADPbetaS (15 microM) mimicked the inhibitory effect of ATP on ICa, but PPADS (0.1 mM) and suramin (0.2 mM), antagonists of P2 purinoceptors, counteracted this effect. When we used 0.1 mM GTPgammaS in the pipette solution, ATP irreversibly reduced ICa to 58.4+/-6.6% of the control (p<0.001). In contrast, no inhibitory effect of ATP was observed when 0.2 mM GDPbetaS was used in the pipette solution. The use of either 20 mM BAPTA instead of 10 mM EGTA, or 0.1 mM compound 48/80, a blocker of phospholipase C (PLC), in the pipette solution abolished the inhibitory effect of ATP on ICa, but 1 microM staurosporine, a blocker of protein kinase C (PKC), did not. When the beta-cells were pretreated with 0.4 microM thapsigargin, an inhibitor of the endoplasmic reticulum (ER) Ca2+ pump, ATP lost the inhibitory effect on ICa. These results suggest that extracellular ATP inhibits action potentials by Ca2+-induced ICa inhibition in which an increase in cytosolic Ca2+ released from thapsigargin-sensitive store sites was brought about by a P2Y purinoceptor-coupled G-protein, PI-PLC and IP3 pathway.  相似文献   

8.
Treatment of human platelets with concentrations of benzyl alcohol up to 50 mM augmented adenylate cyclase activity when it was assayed in the basal state and when stimulated by prostaglandin E1 (PGE1), isoprenaline or NaF. Benzyl alcohol antagonized the stimulatory effect exerted on the catalytic unit of adenylate cyclase by the diterpene forskolin. Benzyl alcohol did not modify the magnitude of the inhibitory response when the catalytic unit of adenylate cyclase was inhibited by using either low concentrations of guanosine 5'-[beta gamma-imido]triphosphate, which acts selectively on the inhibitory guanine nucleotide-regulatory protein Gi, or during alpha 2-adrenoceptor occupancy, by using adrenaline (+ propranolol). Some 34% of the potent inhibitory action of adrenaline on PGE1-stimulated adenylate cyclase was obliterated in a dose-dependent fashion (concn. giving 50% inhibition = 12.5 mM) by benzyl alcohol, with the residual inhibitory action being apparently resistant to the action of benzyl alcohol at concentrations up to 50 mM. Treatment of membranes with benzyl alcohol did not lead to the release of either the alpha-subunit of Gi or G-protein subunits. The alpha 2-adrenoceptor-mediated inhibition of adenylate cyclase was abolished when assays were performed in the presence of Mn2+ rather than Mg2+ and, under such conditions, dose-effect curves for the action of benzyl alcohol on PGE1-stimulated adenylate cyclase activity were similar whether or not adrenaline (+propranolol) was present. We suggest that (i) alpha 2-adrenoceptor- and Gi-mediated inhibition of PGE1-stimulated adenylate cyclase may have two components, one of which is sensitive to inhibition by benzyl alcohol, and (ii) the Gi-mediated inhibition of forskolin-stimulated adenylate cyclase exhibits predominantly the benzyl alcohol-insensitive component.  相似文献   

9.
The inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) was used to probe the structure and function of the vacuolar H+-translocating ATPase from oat roots (Avena sativa var. Lang). The second-order rate constant for DCCD inhibition was inversely related to the concentration of membrane, indicating that DCCD reached the inhibitory site by concentrating in the hydrophobic environment. [14C]DCCD preferentially labeled a 16-kDa polypeptide of tonoplast vesicles, and the amount of [14C]DCCD bound to the 16-kDa peptide was directly proportional to inhibition of ATPase activity. A 16-kDa polypeptide had previously been shown to be part of the purified tonoplast ATPase. As predicted from the observed noncooperative inhibition, binding studies showed that 1 mol of DCCD was bound per mol of ATPase when the enzyme was completely inactivated. The DCCD-binding 16-kDa polypeptide was purified 12-fold by chloroform/methanol extraction. This protein was thus classified as a proteolipid, and its identity as part of the ATPase was confirmed by positive reaction with the antibody to the purified ATPase on immunoblots. From the purification studies, we estimated that the 16-kDa subunit was present in multiple (4-8) copies/holoenzyme. The purification of the proteolipid is a first step towards testing its proposed role in H+ translocation.  相似文献   

10.
We studied the effects of alkali metal cations on the terminal stages of complement lysis of human and sheep HK erythrocytes. Sensitized erythrocytes (EA) were reacted with limited amounts of complement for 1 hr at 37 degrees C in buffer containing 147 mM NaCl (Na buffer), which resulted in 10-40% lysis. The unlysed cells were washed with Na buffer at 0-2 degrees C and incubated for 1 hr at 37 degrees C in buffers containing 147 mM of the various alkali metal cations. Although additional lysis (25 to 65%) occurred with K, Rb, or Cs buffer, only minor degrees developed with Na or Li buffer, only minor degrees developed with Na or Li buffer. Intermediate levels occurred with 100 mM of the divalent alkali cations. Halogen ions and SCN-(147 MM), Ca++ (0.15mM), and Mg++ (0.5 mM) did not alter the effect of the alkali metal cations. Lysis occurring in K+, Rb+ or Cs+ proceeded without lag, was temperature dependent with an optimum of 43 degrees C, and had a pH optimum of 6.5. Lysis in K and Na buffers was unaffected by 10(-3) to 10(-5) M ouabain. Experiments with mixtures of cations indicated that Na+ had a mild inhibitory effect that could be totally overcome by K+, partially by Rb+, and not at all by Cs+. Li+ had a strong inhibitory effect, 6 X 10(-5) M causing 50% inhibition in buffers containing 147 mM K+, Rb+, or Cs+. By using intermediate complexes of EA and purified complement components we demonstrated that K+ enhances the lytic action of C8 on EAC1-7 as well as that of C9 on EAC1-8. It was known that Li+ facilitates lysis when acting on the entire complement reaction. We found that Li+ enhanced the lytic action of C8 on EAC1-7, with a kinetic that differed from that of the K+ effect. In addition, Li+ inhibited the enhancing effect of K+ upon lysis of EAC1-8 by C9. This occurred at concentration of Li+ similar to those which inhibited the additional lysis by K+, Rb+, and Cs+ of cells that were pretreated in Na buffer with the entire complement sequence. We propose that the major effects of alkali metal cations on complement lysis are due to their interaction with C8 and/or membrane constitutes.  相似文献   

11.
Direct interactions between G-protein betagamma subunits and N- or P/Q-type Ca(2+) channels mediate the inhibitory action of several neurotransmitters in the brain. Membrane potential, channel phosphorylation, or auxiliary subunit association tightly regulate these interactions and the consequent inhibition of Ca(2+) current. We now provide evidence that intracellular Ca(2+) concentration and phosphoinositides play a stabilizing role in this direct voltage-dependent inhibition. Lowering resting cytosolic Ca(2+) concentration in Xenopus oocytes expressing Ca(V)2Ca(2+) channels strongly decreased basal as well as phasic, agonist-dependent inhibition of Ca(2+) channels by G-proteins. Decreasing phosphoinositide levels also suppressed G-protein inhibition and completely occluded the effects of a subsequent injection of Ca(2+) chelator. Similar regulations are observed in mouse dorsal root ganglia neurons. Alteration of G-protein block by these agents is independent of protein phosphorylation, cytoskeleton dynamics, and GTPase or GDP/GTP exchange activity, suggesting a direct action at the level of the Ca(2+) channel/Gbetagamma-protein interaction. Moreover, affinity binding experiments of intracellular loops of the Ca(V)2.1 Ca(2+) channels to different phospholipids revealed specific interactions between the C-terminal tail of the channel and phosphoinositides. Taken together these data indicate that a Ca(2+)-sensitive interaction of the C-terminal tail of P/Q channels with the plasma membrane is important for G-protein regulation.  相似文献   

12.
The Ras-related small G-protein Gem regulates voltage-dependent Ca2+ channels (VDCCs) through interaction with the beta-subunit of the VDCC. This action of Gem is mediated by regulated alpha1-subunit expression at the plasma membrane. In the present study, we examined the mechanism of the inhibition of VDCC activity by Gem. The beta-interaction domain (BID) of the beta-subunit, which specifically interacts with the alpha-interaction domain (AID) of the alpha1-subunit, is shown to be essential for the interaction between Gem and beta-subunits. In addition, the AID peptide inhibited interaction between Gem and beta-subunits in a dose-dependent manner. GemS88N mutant, which has low binding affinity for guanine nucleotide, did not interact with beta-subunits, allowing alpha1-subunit expression at the plasma membrane. This inhibitory effect of wild-type Gem on VDCC activity was reduced in cells expressing GemS88N. The overexpression of wild-type Gem in pancreatic beta-cell line MIN6 cells suppressed Ca2+-triggered secretion, whereas overexpression of GemS88N induced Ca2+-triggered secretion to control level. These results suggest that GTPase activity of Gem is required for the binding of Gem to BID that regulates VDCC activity through interaction with AID.  相似文献   

13.
General properties of ouabain-sensitive K+ binding to purified Na+,K+-ATPase [EC 3.6.1.3] were studied by a centrifugation method with 42K+. 1) The affinity for K+ was constant at pH values higher than 6.4, and decreased at pH values lower than 6.4. 2) Mg2+ competitively inhibited the K+ binding. The dissociation constant (Kd) for Mg2+ of the enzyme was estimated to be about 1 mM, and the ratio of Kd for Mg2+ to Kd for K+ was 120 : 1. The order of inhibitory efficiency of divalent cations toward the K+ binding was Ba2+ congruent to Ca2+ greater than Zn2+ congruent to Mn2+ greater than Sr2+ greater than Co2+ greater than Ni2+ greater than Mg2+. 3) The order of displacement efficiency of monovalent cations toward the K+ binding in the presence or absence of Mg2+ was Tl+ greater than Rb+ greater than or equal to (K+) greater than NH4+ greater than or equal to Cs+ greater than Na+ greater than Li+. The inhibition patterns of Na+ and Li+ were different from those of other monovalent cations, which competitively inhibited the K+ binding. 4) The K+ binding was not influenced by different anions, such as Cl-, SO4(2-), NO3-, acetate, and glycylglycine, which were used for preparing imidazole buffers. 5) Gramicidin D and valinomycin did not affect the K+ binding, though the former (10 micrograms/ml) inhibited the Na+,K+-ATPase activity by about half. Among various inhibitors of the ATPase, 0.1 mM p-chloromercuribenzoate and 0.1 mM tri-n-butyltin chloride completely inhibited the K+ binding. Oligomycin (10 micrograms/ml) and 10 mM N-ethylmaleimide had no effect on the K+ binding. In the presence of Na+, however, oligomycin decreased the K+ binding by increasing the inhibitory effect of Na+, whether Mg2+ was present or not. 6) ATP, adenylylimido diphosphate and ADP each at 0.2 mM decreased the K+ binding to about one-fourth of the original level at 10 microM K+ without MgCl2 and at 60 microM K+ with 5 mM MgCl2. On the other hand, AMP, Pi, and p-nitrophenylphosphate each at 0.2 mM had little effect on the K+ binding.  相似文献   

14.
Theoretical expression for the rate of decay of delta pH across vesicular membrane due to carrier-mediated ion transports, 1/tau, has been modified taking note of carrier states (such as mon- and mon-H-M+) for which the translocation rate constants in the membrane are small. The rates of delta pH decay due to monensin-mediated H+ and M+ transports (M+ = Na+, K+, Li+) observed in our experiments in the pH range 6-8, and [M+] range 50-250 mM at 25 degrees C have been analysed with the help of this expression. delta pH across soybean phospholipid vesicular membranes were created by temperature jump in our experiments. The following could be inferred from our studies. (a) At low pH (approximately 6) 1/tau in a medium of Na+ is greater than that in a medium of K+. In contrast with this, at higher pH (approximately 7.5) 1/tau is greater in a medium of K+. Such contradictory observations could be understood with the help of our equation and the parameters determined in this work. The relative concentrations of the rate-limiting species (mon-H, mon-K, and mon-Li at Ph approximately 7 in vesicle solutions having Na+, K+ and Li+, respectively) can explain such behaviours. (b) The proton dissociation constant KH for mon-H in the lipid medium (pKH approximately 6.55) is larger than the reported KH in methanol. (c) The concentrations of mon- and mon-H-Na+ are not negligible under the conditions of our experiments. The latter species cause a [Na+]-dependent inhibition of ion transports. (d) The relative magnitudes of metal ion dissociation constants KHM (approximately 0.05 M) for mon-H-Na+ and KM (approximately 0.03 M) for mon-Na suggest that the carboxyl group involved in the protonation may not be dominantly involved in the metal ion complexation. (e) The estimates of KM (approximately 0.03 M for Na+, 0.5 M for K+ and 2.2 M for Li+) follow the ionophore selectivity order. (f) The rate constants k1 and k2 for the translocations of mon-H and mon-M (M+ = Na+, K+ and Li+) are similar in magnitude (approximately 9 x 10(3) s-1) and are higher than that for nig-H and nig-M (approximately 6 x 10(3) s-1) which can be expected from the relative molecular sizes of the ion carriers.  相似文献   

15.
In the rat pituitary cell line GH3, carbachol inhibits PRL secretion in a pertussis toxin-sensitive manner. For elucidation of the underlying mechanisms, we studied the effect of carbachol on voltage-dependent Ca2+ currents. Under voltage-clamp conditions, carbachol inhibited whole-cell Ca2+ currents by about 25%. This inhibitory action of carbachol was not observed in cells treated with pertussis toxin, indicating the involvement of a pertussis toxin-sensitive G-protein. In membranes of GH3 cells, carbachol stimulated a pertussis toxin-sensitive high-affinity GTPase. In immunoblot experiments with peptide antisera, we identified two forms of the Gi alpha-subunit (41 and 40 kDa) and two forms of the Go alpha-subunit (40 and 39 kDa). The 40-kDa Gi alpha-subunit was recognized by an antibody specific for the Gi2 alpha-subunit, and the 39-kDa Go alpha-subunit was detected by an antibody specific for the Go2 alpha-subunit. Incubation of membranes with the photoreactive GTP analog [alpha-32P]GTP azidoanilide resulted in photo-labelling of 40- and 39-kDa pertussis toxin substrates comigrating with G-protein alpha-subunits of the corresponding molecular masses. Carbachol dose-dependently stimulated incorporation of the photoreactive GTP analog into the 39-kDa pertussis toxin substrate and, to a lesser extent, into 40-kDa pertussis toxin substrates. The data indicate that muscarinic receptors of GH3 cells couple preferentially to Go, which is likely to be involved in the inhibition of secretion, possibly by conferring an inhibitory effect to voltage-dependent Ca2+ channels.  相似文献   

16.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

17.
We report on the interactions of Li+, a congener of K+ with the (Na+ + K+)-ATPase from E Electricus as measured by their effects on the rate of [3H]-ouabain binding to this enzyme. Like K+, Li+ slows ouabain binding under both Type I (Na+ + ATP) and Type II (P1) conditions, but with lower affinity. In contrast to K+, the Li+ inhibition curve is hyperbolic, suggesting interaction at an uncoupled site. Also differing from the complete inhibition by high K+, a residual ouabain-binding rate persists at high Li+. The interactions of Li+ and K+ are synergistic: the apparent K+ affinity increases 3 to 4-fold in presence of Li+. These results are consistent with the conclusion that Li+ interacts with only one of the two K+ sites and may be of interest in interpreting lithium pharmacology.  相似文献   

18.
The cytotoxicity of 1-methyl-4-phenylpyridinium (MPP+) is believed to arise as a consequence of its time- and energy-dependent accumulation inside mitochondria, followed by inhibition of electron transport at Complex I of the respiratory chain. Consistent with our proposal that the accumulation of MPP+ represents a passive Nernstian transport into mitochondria in response to the transmembrane electrochemical potential gradient, tetraphenylborate (TPB-) was found to accelerate the onset of the respiratory inhibition by MPP+ on intact mitochondria. Moreover, the ultimate level of inhibition reached was unexpectedly also increased. The latter is now explained by our finding that TPB- elicits a 12-fold enhancement of MPP+ inhibition of respiration in electron transport particles. It is suggested that TPB- facilitates access of MPP+ to its intramembrane site of inhibitory action in Complex I.  相似文献   

19.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

20.
The only known cellular action of AlF4- is to stimulate the G-proteins. The aim of the present work is to demonstrate that AlF4- also inhibits 'P'-type cation-transport ATPases. NaF plus AlCl3 completely and reversibly inhibits the activity of the purified (Na+ + K+)-ATPase (Na+- and K+-activated ATPase) and of the purified plasmalemmal (Ca2+ + Mg2+)-ATPase (Ca2+-stimulated and Mg2+-dependent ATPase). It partially inhibits the activity of the sarcoplasmic-reticulum (Ca2+ + Mg2+)-ATPase, whereas it does not affect the mitochondrial H+-transporting ATPase. The inhibitory substances are neither F- nor Al3+ but rather fluoroaluminate complexes. Because AlF4- still inhibits the ATPase in the presence of guanosine 5'-[beta-thio]diphosphate, and because guanosine 5'-[beta gamma-imido]triphosphate does not inhibit the ATPase, it is unlikely that the inhibition could be due to the activation of an unknown G-protein. The time course of inhibition and the concentrations of NaF and AlCl3 required for this inhibition differ for the different ATPases. AlF4- inhibits the (Na+ + K+)-ATPase and the plasmalemmal (Ca2+ + Mg2+)-ATPase noncompetitively with respect to ATP and to their respective cationic substrates, Na+ and Ca2+. AlF4- probably binds to the phosphate-binding site of the ATPase, as the Ki for inhibition of the (Na+ + K+)-ATPase and of the plasmalemmal (Ca2+ + Mg2+)-ATPase is shifted in the presence of respectively 5 and 50 mM-Pi to higher concentrations of NaF. Moreover, AlF4- inhibits the K+-activated p-nitrophenylphosphatase of the (Na+ + K+)-ATPase competitively with respect to p-nitrophenyl phosphate. This AlF4- -induced inhibition of 'P'-type cation-transport ATPases warns us against explaining all the effects of AlF4- on intact cells by an activation of G-proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号