首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Application of the tetradecapeptide mastoparan to the prothoracic glands (PGs) of the tobacco hornworm, Manduca sexta, and the silkworm, Bombyx mori, resulted in increases in intracellular Ca(2+) ([Ca(2+)](i)). In M. sexta, Gi proteins are involved in the mastoparan-stimulated increase in [Ca(2+)](i). However, there is no involvement of Gi proteins in the mastoparan-stimulated increase in [Ca(2+)](i) in prothoracic gland cells from B. mori. Unlike in M. sexta prothoracic glands, in B. mori prothoracic glands mastoparan increases [Ca(2+)](i) even in the absence of extracellular Ca(2+). Pharmacological manipulation of the Ca(2+) signalling cascades in the prothoracic glands of both insect species suggests that in M. sexta prothoracic glands, mastoparan's first site of action is influx of Ca(2+) through plasma membrane Ca(2+) channels while in B. mori prothoracic glands, mastoparan's first site of action is mobilization of Ca(2+) from intracellular stores. In M. sexta, the combined results indicate the presence of mastoparan-sensitive plasma membrane Ca(2+) channels, distinct from those activated by prothoracicotropic hormone or the IP(3) signalling cascade, that coordinate spatial increases in [Ca(2+)](i) in prothoracic gland cells. We propose that in B. mori, mastoparan stimulates Ca(2+) mobilization from ryanodine-sensitive intracellular Ca(2+) stores in prothoracic gland cells.  相似文献   

2.
Arginine vasopressin (AVP) regulates biological processes by binding to G protein-coupled receptors. In Swiss 3T3 fibroblasts, expressing the V(1a) subtype of vasopressin receptors, AVP mobilizes calcium from intracellular stores. In proliferating cells, the AVP-induced increase in intracellular calcium concentration ([Ca(2+)](i)) was mediated by G proteins of the G(q) family, which are insensitive to pertussis toxin (PTX) pretreatment of the cells. In quiescent cells, the AVP-induced increase in [Ca(2+)](i) was partially PTX-sensitive, suggesting an involvement of G(i) proteins. We confirmed this by photoaffinity labeling of G proteins in Swiss 3T3 cell membranes activated by AVP. In Swiss 3T3 cells arrested in the G(0)/G(1) phase of the cell cycle, the AVP-induced increase in [Ca(2+)](i) was also partially PTX-sensitive but was PTX-insensitive in cells arrested in other phases of the cell cycles. The blocking effect of PTX pretreatment in G(0)/G(1) cells was mimicked by microinjection of antisense oligonucleotides suppressing the expression of the Galpha(i3) subunits. These results were confirmed by microinjection of antibodies directed against the C terminus of G protein alpha-subunits. The data presented indicate that in Swiss 3T3 fibroblasts synchronized in the G(0)/G(1) phase of the cell cycle the V(1a) receptor couples to G(q/11) and G(i3) to activate the phospholipase C-beta, leading to release of intracellular calcium.  相似文献   

3.
In this study, we observed that lysophosphatidylserine (LPS) stimulated intracellular calcium ([Ca(2+)](i)) increase in leukemic cells but not in normal human peripheral blood mononuclear cells. LPS also stimulated [Ca(2+)](i) increase in human leukemic THP-1 cells. LPS-stimulated [Ca(2+)](i) increase was inhibited by U-73122 but not by U-73343. LPS also stimulated inositol phosphates formation in THP-1 cells, suggesting that LPS stimulates calcium signaling via phospholipase C activation. Moreover, pertussis toxin (PTX) completely inhibited [Ca(2+)](i) increase by LPS, indicating the activation of PTX-sensitive G-proteins. We also found that LPS-induced [Ca(2+)](i) increase was completely inhibited by suramin, suggesting G-protein coupled receptor activation. Since LPS specifically stimulates PTX-sensitive G-proteins, phospholipase C-dependent [Ca(2+)](i) increase in leukemic cells but not normal peripheral blood leukocytes, LPS receptor may be associated with leukemia.  相似文献   

4.
低浓度双氢哇巴因对豚鼠心室肌细胞内游离钙浓度的影响   总被引:6,自引:1,他引:5  
Yin JX  Wang YL  Li Q  Shang ZL  Su SW 《生理学报》2002,54(5):385-389
用激光共聚焦显微镜检查研究低浓度双氢哇巴因(DHO)对豚鼠心室肌细胞内钙浓度([Ca^2 ]i)的影响。DHO 1fmol/L-1 mmol/L可增加心室肌细胞的[Ca^2 ]i,尤其以10pmol/L DHO为显著,Nisoldipine,EGTA或TTX可分别部分抑制10pmol/L DHO的作用,去除胞外K^ 和Na^ 后,上述作用仍存在,以上结果表明,低浓度DHO中通过激活钙通道和TTX敏感的钠通道,或许还可直接促进胞内钙释放来增加[Ca^2 ]i,并有不依赖Na^ /K^ 泵而升高[Ca^2 ]i的作用。  相似文献   

5.
The subcommissural organ (SCO), an ependymal (glial) circumventricular organ, releases glycoproteins into the cerebrospinal fluid; however, the regulation of its secretory activity is largely unknown. To identify neuroactive substances that may regulate SCO activity, we investigated immunocytochemically identified bovine SCO cells by means of calcium imaging. This analysis was focused on: (1) serotonin (5HT) and substance P (SP), immunocytochemically shown to be present in axons innervating the bovine SCO; and (2) ATP, known to activate glial cells. 5HT had no effect on the intracellular calcium concentration ([Ca(2+)](i)), and its precise role remains to be clarified. SP elicited rises in [Ca(2+)](i) in approx. 30% and ATP in even 85% of the analyzed SCO cells. These effects were dose-dependent, involved NK(3) and P2Y(2) receptors linked to G protein and phospholipase C (PLC) activation, and could not be mimicked by forskolin or 8-bromo-cAMP. In 50% of the SP-sensitive cells, the increases in [Ca(2+)](i) comprised calcium release from thapsigargin-sensitive intracellular stores and an influx of extracellular calcium via protein kinase C (PKC)-induced opening of L-type voltage-gated calcium channels (VGCCs). In the remaining SP-sensitive cells, the increase in [Ca(2+)](i) was caused exclusively by influx of extracellular calcium via VGCCs of the L-type. In all ATP-sensitive cells the increase in [Ca(2+)](i) involved calcium release from thapsigargin-sensitive intracellular stores and a PKC-mediated influx of extracellular calcium via L-type VGCCs. Our data suggest that SP and ATP are involved in regulation of the activity of SCO cells.  相似文献   

6.
Qiu J  Wang CG  Huang XY  Chen YZ 《Life sciences》2003,72(22):2533-2542
Many stimulants, including bradykinin (BK), can induce increase in [Ca(2+)](i) in PC12 cells. Bradykinin induces an increase in [Ca(2+)](i) via intracellular Ca(2+) release and extracellular Ca(2+) influx through the transduction of G protein, but not through voltage-sensitive calcium channels. In this experiment, We analyzed how corticosterone (Cort) influences BK-induced intracellular Ca(2+) release and extracellular Ca(2+) influx, and further studied the mechanism of glucocorticoid's action. To dissociate the intracellular Ca(2+) release and extracellular Ca(2+) influx induced by BK, the Ca(2+)-free/Ca(2+)- reintroduction protocol was used. The results were as follows: (1) The Ca(2+) influx induced by BK could be rapidly inhibited by Cort, but intracellular Ca(2+) release could not be affected significantly. (2) The inhibitory effect of Cort-BSA (BSA -conjugated Cort) on Ca(2+) influx induced by BK was the same as the effect of free Cort. (3) Protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) could mimic and PKC inhibitor G?6976 could reverse the inhibitory effect of Cort. (4) There was no inhibitory effect of Cort on Ca(2+) influx induced by BK when pretreated with pertussis toxin. The results suggested, for the first time, that Cort might act via a putative membrane receptor and inhibit the Ca(2+) influx induced by BK through the pertussis toxin -sensitive G protein-PKC pathway.  相似文献   

7.
Measurements of Ca2+ influx in Fura-2/AM loaded steroidogenic cells (prothoracic glands; PGs) of the silkworm, Bombyx mori showed that application of the neuropeptide prothoracicotropic hormone (PTTH) can increase the intracellular [Ca2+]i. This PTTH-mediated Ca2+ influx in PG cells had kinetic patterns and pharmacological characteristics similar to those induced by thapsigargin. Namely, it produced increases in intracellular Ca2+ levels only in the presence of extracellular Ca2+, it was blocked by Gd3+ and 2-Aminoethoxydiphenylborate (2-APB), and it was unaffected by several toxins or compounds that block voltage-activated Ca2+ channels. Moreover, the PTTH-stimulated increase of Ca2+ levels was eliminated in the presence of heparin (an IP3 receptor blocker), and by TMB-8 which also blocked any PTTH-dependent increase of ecdysteroid secretion. The PTTH-mediated increase of Ca2+ levels was not affected by the non-hydrolysable GDP analogue, GDPbetaS, an indication that a G protein is not downstream of the PTTH receptor. These results argue strongly in favor of gating by the PTTH receptor of capacitative Ca2+ entry (CCE) channels (or store-operated Ca2+ channels (SOCs)) by a mechanism that does not involve any G proteins but requires the presence of functional IP3 receptors. Because the ability of PTTH to stimulate the [Ca2+]i levels of PG cells was completely mimicked by thapsigargin and exhibited a pharmacological profile similar to CCE mechanisms, we believe that PTTH directly regulates a CCE pathway in PG cells thereby activating a plethora of downstream regulators responsible for ecdysteroid secretion by the PGs of Bombyx mori.  相似文献   

8.
Thrombin, the ultimate protease in the blood coagulation cascade, mediates its known cellular effects by unique proteolytic activation of G-protein-coupled protease-activated receptors (PARs), such as PAR1, PAR3, and PAR4, and a "tethered ligand" mechanism. PAR1 is variably expressed in subpopulations of neurons and largely determines thrombin's effects on morphology, calcium mobilization, and caspase-mediated apoptosis. In spinal cord motoneurons, PAR1 expression correlates with transient thrombin-mediated [Ca(2+)](i) flux, receptor cleavage, and elevation of rest [Ca(2+)](i) activating intracellular proteases. At nanomolar concentrations, thrombin retracts neurites via PAR1 activation of the monomeric, 21 kDa Ras G-protein RhoA, which is also involved in neuroprotection at lower thrombin concentrations. Such results suggest potential downstream targets for thrombin's injurious effects. Consequently, we employed several G-protein-specific modulators prior to thrombin exposure in an attempt to uncouple both heterotrimeric and monomeric G-proteins from motoneuronal PAR1. Cholera toxin, stimulating Gs, and lovastatin, which blocks isoprenylation of Rho, reduced thrombin-induced calcium mobilization. In contrast, pertussis toxin and mastoparan, inhibiting or stimulating G(o)/G(i), were found to exacerbate thrombin action. Effects on neuronal rounding and apoptosis were also detected, suggesting therapeutic utility may result from interference with downstream components of thrombin signaling pathways in human motor neuron disorders, and possibly other neurodegenerative diseases. Published 2001 John Wiley & Sons, Inc.  相似文献   

9.
Thrombin receptors couple to G(i/o), G(q), and G(12/13) proteins to regulate a variety of signal transduction pathways that underlie the physiological role of endothelial cells in wound healing or inflammation. Whereas the involvement of G(i), G(q), G(12), or G(13) proteins in thrombin signaling has been investigated extensively, the role of G(o) proteins has largely been ignored. To determine whether G(o) proteins could contribute to thrombin-mediated signaling in endothelial cells, we have developed minigenes that encode an 11-amino acid C-terminal peptide of G(o1) proteins. Previously, we have shown that use of the C-terminal minigenes can specifically block receptor activation of G protein families (). In this study, we demonstrate that G(o) proteins are present in human microvascular endothelial cells (HMECs). Moreover, we show that thrombin receptors can stimulate [(35)S]guanosine-5'-O-(3-thio)triphosphate binding to G(o) proteins when co-expressed in Sf9 membranes. The potential coupling of thrombin receptors to G(o) proteins was substantiated by transfection of the G(o1) minigene into HMECs, which led to a blockade of thrombin-stimulated release of [Ca(2+)](i) from intracellular stores. Transfection of the beta-adrenergic kinase C terminus blocked the [Ca(2+)](i) response to the same extent as with G(o1) minigene peptide, suggesting that this G(o)-mediated [Ca(2+)](i) transient was caused by Gbetagamma stimulation of PLCbeta. Transfection of a G(i1/2) minigene had no effect on thrombin-stimulated [Ca(2+)](i) signaling in HMEC, suggesting that Gbetagamma derived from G(o) but not G(i) could activate PLCbeta. The involvement of G(o) proteins on events downstream from calcium signaling was further evidenced by investigating the effect of G(o1) minigenes on thrombin-stimulated stress fiber formation and endothelial barrier permeability. Both of these effects were sensitive to pertussis toxin treatment and could be blocked by transfection of G(o1) minigenes but not G(i1/2) minigenes. We conclude that the G(o) proteins play a role in thrombin signaling distinct from G(i1/2) proteins, which are mediated through their Gbetagamma subunits and involve coupling to calcium signaling and cytoskeletal rearrangements.  相似文献   

10.
Although lysophosphatidic acid (LPA) is known to increase intracellularfree calcium concentration ([Ca(2+)](i)) in different cell types, the effect of LPA on the skeletal muscle cells is not known. The present study was therefore undertaken to examine the effect of LPA on the [Ca(2+)](i) in C2C12 cells. LPA induced a concentration and time dependent increase in [Ca(2+)](i), which was inhibited by VPC12249, VPC 32183 and dioctanoyl glycerol pyrophosphate, LPA1/3 receptor antagonists. Pertussis toxin, a G(i) protein inhibitor, also inhibited the LPA-induced increase in [Ca(2+)](i). Inhibition of tyrosine kinase activities with tyrphostin A9 and genistein also prevented the increase in [Ca(2+)](i) due to LPA. Likewise, wortmannin and LY 294002, phosphatidylinositol 3-kinase (PI3-K) inhibitors, inhibited [Ca(2+)](i) response to LPA. The LPA effect was also attenuated by ethylene glycolbis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), an extracellular Ca(2+) chelator, Ni(2+) and KB-R7943, inhibitors of the Na(+)-Ca(2+) exchanger; the receptor operated Ca(2+) channel (ROC) blockers, 2-aminoethoxydiphenyl borate and SK&F 96365. However, the L-type Ca(2+) channel blockers, verapamil and diltiazem; the store operated Ca(2+) channel blockers, La(3+) and Gd(3+); a sarcoplasmic reticulum calcium pump inhibitor, thapsigargin; an inositol trisphosphate receptor antagonist, xestospongin and a phospholipase C inhibitor, U73122, did not prevent the increase [Ca(2+)](i) due to LPA. Our data suggest that the LPA-induced increase in [Ca(2+)](i) might occur through G(i)-protein coupled LPA(1/3) receptors that may be linked to tyrosine kinase and PI3-K, and may also involve the Na(+)-Ca(2+) exchanger as well as the ROC. In addition, LPA stimulated C2C12 cell proliferation via PI3-K. Thus, LPA may be an important phospholipid in the regulation of [Ca(2+)](i) and growth of skeletal muscle cells.  相似文献   

11.
The present study was designed to investigate the possible effects of peroxynitrite (ONOO(-)) on the intracellular calcium concentration ([Ca(2+)](i)) of mesenteric arteriolar smooth muscle cells (ASMCs), and to reveal the underlying mechanisms by using fluorescence imaging analysis. The results showed that ONOO(-) could exert a concentration- and time-dependent but also a dual effect on [Ca(2+)](i). Bolus administration with a low concentration of ONOO(-) (25 microM) decreased [Ca(2+)](i), whereas higher concentrations (50 or 100 microM) increased [Ca(2+)](i) persistently. Further experiments demonstrated that pretreatment of ASMCs with calcium-free medium completely abolished [Ca(2+)](i) increase by 100 microM ONOO(-). Additionally, nifedipine, an antagonist of selective L-type voltage-gated calcium channels (VGCCs), delayed the [Ca(2+)](i) response to ONOO(-), and ryanodine, an inhibitor of intracellular calcium release from the sarcoplasmic reticulum, effectively antagonized [Ca(2+)](i) increase during the late stage of ONOO(-) exposure. Furthermore, [Ca(2+)](i) alteration by ONOO(-) appeared to be intimately associated with the subsequent membrane potential changes. Although the mechanisms by which ONOO(-) alters [Ca(2+)](i) are complex, we conclude that a series of variables such as external calcium influx, activation of VGCCs, intracellular calcium release, and membrane potential changes are involved. The decrease of [Ca(2+)](i) in ASMCs by a low concentration of ONOO(-) may participate in the pathogenesis of low vasoreactivity in shock, and the increase of [Ca(2+)](i) by high concentrations of ONOO(-) may lead to calcium overload with cellular injury.  相似文献   

12.
Ca-sensing receptor (CaSR), a member of the G protein-coupled receptor family, regulates the synthesis of parathyroid hormone in response to changes in serum Ca(2+) concentrations. The functions of CaSR in human vascular smooth muscle cells are largely unknown. Here we sought to study CaSR activation and the underlying molecular mechanisms in human aortic smooth muscle cells (HASMC). Extracellular Ca(2+) ([Ca(2+)](o)) dose-dependently increased free cytosolic Ca(2+) ([Ca(2+)](cyt)) in HASMC, with a half-maximal response (EC(50)) of 0.52 mM and a Hill coefficient of 5.50. CaSR was expressed in HASMC, and the [Ca(2+)](o)-induced [Ca(2+)](cyt) rise was abolished by dominant negative mutants of CaSR. The CaSR-mediated increase in [Ca(2+)](cyt) was also significantly inhibited by pertussis toxin, the phospholipase C inhibitor U-73122, or the general protein kinase C (PKC) inhibitor chelerythrine, but not by the conventional PKC inhibitor, G?6976. Depletion of membrane cholesterol by pretreatment with methyl-β-cyclodextrin markedly decreased CaSR-induced increase in [Ca(2+)](cyt). Blockade of TRPC channels with 2-aminoethoxydiphenyl borate, SKF-96365, or La(3) significantly inhibited [Ca(2+)](o) entry, whereas activation of TRPC6 channels with flufenamic acid potentiated [Ca(2+)](o) entry. Neither cyclopiazonic acid nor caffeine or ionomycin had any effect on [Ca(2+)](cyt) in [Ca(2+)](o)-free solutions. TRPC6 and PKCε mRNA and proteins were detected in HASMC, and [Ca(2+)](o) induced PKCε phosphorylation, which could be prevented by chelerythrine. Our data suggest that CaSR activation mediates [Ca(2+)](o) entry, likely through TRPC6-encoded receptor-operated channels that are regulated by a PLC/PKCε cascade. Our study therefore provides evidence not only for functional expression of CaSR, but also for a novel pathway whereby it regulates [Ca(2+)](o) entry in HASMC.  相似文献   

13.
Lai JN  Wang OY  Lin VH  Liao CF  Tarng DC  Chien EJ 《Steroids》2012,77(10):1017-1024
Progesterone is an endogenous immunomodulator that is able to suppress T cell activation during pregnancy. An increased intracellular free calcium concentration ([Ca(2+)](i)), acidification, and an inhibition of Na(+)/H(+)-exchange 1 (NHE1) are associated with this progesterone rapid non-genomic response that involves plasma membrane sites. Such acidification, when induced by phytohemagglutinin, is calcium dependent in PKC down-regulated T cells. We investigated the relationship between this rapid response involving the [Ca(2+)](i) increase and various membrane progesterone receptors (mPRs). In addition, we explored whether the induction of acidification in T cells by progesterone is a direct result of the [Ca(2+)](i) increase. The results show that the intracellular calcium elevation caused by progesterone is inhibited by SKF96365, U73122, and 2-APB, but not by pertussis toxin or U73343. The elevation is enhanced by the protein tyrosine kinase inhibitor staurosporine and the protein kinase C inhibitors Ro318220 and Go6983. These findings suggest that progesterone does not stimulate the [Ca(2+)](i) increase via the Gi coupled mPR(α). Furthermore, progesterone-induced acidification was found to be dependent on Ca(2+) entry and blocked by the inorganic channel blocker, Ni(2+). However, BAPTA, an intracellular calcium chelator, was found to prevent progesterone-induced acidification but not the inhibition of NHE1. This implies that acidification by progesterone is a direct result of the [Ca(2+)](i) increase and does not directly involve NHE1. Taken together, further investigations are needed to explore whether one or more mPRs or PGRMC1 are involved in bringing about the T cell rapid response that results in the [Ca(2+)](i) increase and inhibition of NHE1.  相似文献   

14.
The interplay between activated G proteins and intracellular calcium ([Ca(2+)](i)) in the regulation of secretion was studied in the macrophage, coupling membrane capacitance with calcium-sensitive microfluorimetry. Intracellular elevation of either the nonhydrolyzable analogue of GTP, guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S), or [Ca(2+)](i) enhanced the amplitude and shortened the time course of stimulus-induced secretion in a dose-dependent manner. Both the ionophore- and the stimulus-induced secretory response were abolished in the presence of guanosine-5'-O-(2-thiodiphosphate) (GDP beta S). The K(d) of Ca(2+)-driven secretion was independent of GTP gamma S concentration, whereas the K(d) of the GTP gamma S-driven response decreased from 63 to 31 microM in the presence of saturating concentrations of [Ca(2+)](i). The time course of stimulus-induced secretion was dependent upon the concentration of [Ca(2+)](i). The time course of GTP gamma S-driven secretion was concentration-independent at high levels of [Ca(2+)](i), suggesting that a calcium-dependent translocation/binding step was rate-limiting. Our data strongly support a model in which [Ca(2+)](i) and activated G proteins act independently of one another in the sequential regulation of macrophage secretion. [Ca(2+)](i) appears to play a role in the recruitment and priming of vesicles from reserve intracellular pools at a step that is upstream of G protein activation. While activated, G proteins appear to play a key role in fusion of docked vesicles. Thus, secretion can result either from activating more G proteins or from elevating [Ca(2+)](i) at basal levels of G protein activation.  相似文献   

15.
LH increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in mice Leydig cells, in a process triggered by calcium influx through T-type Ca(2+) channels. Here we show that LH modulates both T-type Ca(2+) currents and [Ca(2+)](i) transients through the effects of PKA and PKC. LH increases the peak calcium current (at -20mV) by 40%. A similar effect is seen with PMA. The effect of LH is completely blocked by the PKA inhibitors H89 and a synthetic inhibitory peptide (IP-20), but only partially by chelerythrine (PKC inhibitor). LH and the blockers induced only minor changes in the voltage dependence of activation, inactivation or deactivation of the currents. Staurosporine (blocker of PKA and PKC) impaired the [Ca(2+)](i) changes induced by LH. A similar effect was seen with H89. Although PMA slowly increased the [Ca(2+)](i) the subsequent addition of LH still triggered the typical transients in [Ca(2+)](i). Chelerythrine also does not avoid the Ca(2+) transients, showing that blockage of PKC is not sufficient to inhibit the LH induced [Ca(2+)](i) rise. In summary, these two kinases are not only directly involved in promoting testosterone synthesis but also act on the overall calcium dynamics in Leydig cells, mostly through the activation of PKA by LH.  相似文献   

16.
Using Fura-2 to measure changes in intracellular calcium ([Ca(2+)](i)), we show that P(2U)receptors in HT29 cells trigger an increase in [Ca(2+)](i)by pertussis toxin-insensitive G proteins. We then use replication-deficient adenoviruses expressing wild-type and dominant negative mutants of G(alpha q)and G(alpha i2), antisense directed against G(alpha q)or the C-terminal fragment of beta-adrenergic receptor kinase (beta ARK-CT) to identify these G proteins. We find the [Ca(2+)](i)response to UTP is not affected by increased expression of the wild-type G(alpha q), wild-type G(alpha i2)or beta ARK-CT, while it is blocked by over-expression of dominant negative G(alpha q). The timecourse of the UTP response is, however, altered by wild-type G(alpha q)and is only weakly inhibited by antisense G(alpha q). This suggests that the P(2U)response is mediated, at least partially, by a G protein distinct from G(alpha q). In contrast, the M(3)muscarinic response is inhibited by over-expression of antisense against G(alpha q), or over-expression of beta ARK-CT, a finding in agreement with our previous observation that the muscarinic response in HT29 cells is mediated by the beta gamma-subunits of G(q). We also find that P(2U)and M(3)receptors do not control identical Ca(2+)stores, suggesting that differential activation of G proteins can lead to Ca(2+)release from distinct stores.  相似文献   

17.
Galectin-1 (gal-1) a member of the mammalian beta-galactoside-binding proteins recognizes preferentially Galbeta1-4GlcNAc sequences of oligosaccharides associated with several cell surface glycoconjugates. In the present work, gal-1 has been identified to be a ligand for the CD3-complex as well as for CD2 as detected by affinity chromatography of Jurkat T-cell lysates on gal-1 agarose and by binding of the biotinylated lectin to CD3 and CD2 immunoprecipitates on blots. In CD45(+)Jurkat E6.1 cells, the lectin stimulates a sustained increase in the intracytoplasmic calcium concentration ([Ca(2+)](i)) consisting of both the release of calcium from intracellular stores and the calcium influx from the extracellular space. This effect of gal-1 on [Ca(2+)](i)is completely inhibited by lactose at 10 mM and was absent in CD45(-)Jurkat J45.01 cells. Preincubation of Jurkat E6.1 cells with cholera toxin or with the protein tyrosine kinase inhibitor herbimycin A reduced the gal-1 induced calcium response whereas the increase in [Ca(2+)](i)stimulated by CD2 or CD3 monoclonal antibodies (mAbs) was completely inhibited. Depolarization of E6.1 cells in a high-potassium buffer, a standard method to activate voltage-operated calcium channels, was without effect on [Ca(2+)](i). Membrane depolarization with gramicidin or by a high-potassium buffer was without effects on the lectin-mediated calcium release from intracellular stores but inhibited the gal-1 induced receptor-operated calcium influx. In Jurkat E6.1 cells the lectin stimulates the transient generation of inositol-1,4,5-trisphosphate and the tyrosine phosphorylation of phospholipase Cgamma1. The results suggest that the ligation of CD2 and CD3 by gal-1 induces early events in T-cell activation comparable with that elicited by CD2 or CD3 mAbs.  相似文献   

18.
The effect of micromolar intracellular levels of ryanodine was tested on the myoplasmic free calcium concentration ([Ca(2+)](i)) measured from a portion of isolated mouse skeletal muscle fibers voltage-clamped at -80 mV. When ryanodine-injected fibers were transiently depolarized to 0 mV, the early decay phase of [Ca(2+)](i) upon membrane repolarization was followed by a steady elevated [Ca(2+)](i) level. This effect could be qualitatively well simulated, assuming that ryanodine binds to release channels that open during depolarization and that ryanodine-bound channels do not close upon repolarization. The amplitude of the postpulse [Ca(2+)](i) elevation depended on the duration of the depolarization, being hardly detectable for pulses shorter than 100 ms, and very prominent for duration pulses of seconds. Within a series of consecutive pulses of the same duration, the effect of ryanodine produced a staircase increase in resting [Ca(2+)](i), the slope of which was approximately twice larger for depolarizations to 0 or +10 mV than to -30 or -20 mV. Overall results are consistent with the "open-locked" state because of ryanodine binding to calcium release channels that open during depolarization. Within the voltage-sensitive range of calcium release, increasing either the amplitude or the duration of the depolarization seems to enhance the fraction of release channels accessible to ryanodine.  相似文献   

19.
Stretch-elicited intracellular calcium ([Ca(2+)](i)) changes in individual smooth muscle cells in a ring of aorta were measured simultaneously with the force developed by the ring. A phasic increase in [Ca(2+)](i) was observed in 30% of the cells and a sustained one in 10%. Depletion of intracellular calcium store by thapsigargin and caffeine decreased phasic and increased sustained calcium responses. The inhibition of calcium entry either by stretching the aorta in a calcium-free medium or by the inhibition of stretch-activated, non-selective cationic channels by 5 microM GsMtx-4 toxin, decreased the proportion of sustained [Ca(2+)](i) responses but increased transient responses. In this condition, a third of the cells responded to stretch by a bursts of [Ca(2+)](i) spikes. The decrease of calcium influx triggered the generation of burst of calcium spikes after the application of stretch steps to the vascular wall. We conclude that progressive recruitment of smooth muscle cells is the mechanism underlying the force-generating part of the myogenic response. Two types of stretch-elicited calcium responses were observed during the recruitment of the smooth muscle cells. One was a phasic calcium discharge generated by the sarcoplasmic reticulum. The second was a tonic response produced by the activation of the stretch-sensitive cationic channels allowing extracellular Ca(2+) entry.  相似文献   

20.
Recently, glycine has been shown to prevent liver injury after endotoxin treatment in vivo. We demonstrated that ethanol and endotoxin stimulated Kupffer cells to release PGE(2), which elevated oxygen consumption in parenchymal cells. Because glycine has been reported to protect renal tubular cells, isolated hepatocytes, and perfused livers against hypoxic injury, the purpose of this study was to determine whether glycine prevents increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in hepatic parenchymal cells by agonists released during stress, such as with PGE(2) and adrenergic hormones. Liver parenchymal cells isolated from female Sprague-Dawley rats were cultured for 4 h in DMEM/F12 medium, and [Ca(2+)](i) in individual cells was assessed fluorometrically using the fluorescent calcium indicator fura 2. PGE(2) caused a dose-dependent increase in [Ca(2+)](i) from basal values of 130 +/- 10 to maximal levels of 434 +/- 55 nM. EGTA partially prevented this increase, indicating that either extracellular calcium or agonist binding is Ca(2+) dependent. 8-(Diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), an agent that prevents the release of Ca(2+) from intracellular stores, also partially blocked the increase in [Ca(2+)](i) caused by PGE(2), suggesting that intracellular Ca(2+) pools are involved. Together, these results are consistent with the hypothesis that both the intracellular and extracellular Ca(2+) pools are involved in the increase in [Ca(2+)](i) caused by PGE(2). Interestingly, glycine, which activates anion (i.e., chloride) channels, blocked the increase in [Ca(2+)](i) due to PGE(2) in a dose-dependent manner. Low-dose strychnine, an antagonist of glycine-gated chloride channel in the central nervous system, partially reversed the inhibition by glycine. When extracellular Cl(-) was omitted, glycine was much less effective in preventing the increase in [Ca(2+)](i) due to PGE(2). Phenylephrine, an alpha(1)-type adrenergic receptor agonist, also increased [Ca(2+)](i), as expected, from 159 +/- 20 to 432 +/- 43 nM. Glycine also blocked the increase in [Ca(2+)](i) due to phenylephrine, and the effect was also reversed by low-dose strychnine. Together, these data indicate that glycine rapidly blocks the increase in [Ca(2+)](i) in hepatic parenchymal cells due to agonists released during stress, most likely by actions on a glycine-sensitive anion channel and that this may be a major aspect of glycine-induced hepatoprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号