首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A class of F' plasmids, designated Fpoh+, was previously shown to be able to replicate extra-chromosomally on Hfr strains by virtue of carrying the specific site or region poh+ (permissive on Hfr) of the E. coli chromosome (Hiraga, 1975, 1976a). These plasmids were now found to replicate on E. coli mafA mutants (mafA1 and mafA23) that cannot support vegetative replication of F and some other F-like plasmids. The derivatives of Fpoh+ that have lost the poh+ site, on the other hand, failed to replicate on mafA mutants. These mutants harboring Fpoh+ (but not Poh- derivatives thereof) exhibit abnormal cell division and form elongated cells, presumably due to competition between Fpoh+ and the host chromosome for some factor(s) essential for the initiation of DNA replication of the both replicons. It is tentatively concluded that the poh+ site is required for F' plasmids to replicate on mafA mutants as well as on Hfr strains. In view of the fact that the mechanism of inhibition of autonomous F DNA replication in mafA mutants and in Hfr strains are clearly different, the present data seem to provide strong support to the notion that the poh+ region contains the replication origin of the E. coli chromosome.  相似文献   

2.
The chromosomal DNA replication origins (oriC) from two members of the family Enterobacteriaceae, Enterobacter aerogenes and Klebsiella pneumoniae, have been isolated as functional replication origins in Escherichia coli. The origins in the SalI restriction fragments of 17.5 and 10.2 kilobase pairs, cloned from E. aerogenes and K. pneumoniae, respectively, were found to be between the asnA and uncB genes, as are the origins of the E. coli and Salmonella typhimurium chromosomes. Plasmids containing oriC from E aerogenes, K. pneumoniae, and S. typhimurium replicate in the E. coli cell-free enzyme system (Fuller, et al., Proc. Natl. Acad. Sci. U.S.A. 78:7370--7374, 1981), and this replication is dependent on dnaA protein activity. These SalI fragments from E. aerogenes and K. pneumoniae carry a region which is lethal to E. coli when many copies are present. We show that this region is also carried on the E. coli 9.0-kilobase-pair EcoRI restriction fragment containing oriC. The F0 genes of the atp or unc operon, when linked to the unc operon promoter, are apparently responsible for the lethality.  相似文献   

3.
An F' factor, FS400, carrying the his operon, the gnd gene, and the rfb gene cluster of Salmonella typhimurium was isolated. FS400 was introduced into an Escherichia coli strain having a lengthy deletion of the his gene region. From this strain, Hfr derivatives were isolated which had the F' factor integrated in the tonB locus near the attachment site of phi80. One of the Hfr strains was lysogenized with a heat-inducible, h mutant of phi80, and from this strain a high-frequency transducing phage carrying the his genes and the gnd gene of Salmonella was isolated.  相似文献   

4.
The transposable drug resistance element Tn10 was employed as a region of homology to direct the insertion of Tn10-containing derivatives of F'ts114 lac into the chromosome of a Salmonella typhimurium strain that carries a Tn10 insertion in the histidine transport operon. Based on the direction of transfer of the resulting Hfr strains, the chromosomal Tn10 insertion was determined to be in orientation "A." New F' plasmids were selectively generated from one of the Hfr strains. The F' factors carry an intact dhuA hisJ portion of the histidine transport operon. A Southern hybridization revealed that one of the F' plasmids was formed by a type II excision event.  相似文献   

5.
Episome F' ts114 lac+ (F42-114) was transferred into Salmonella typhimurium carrying an F'his+ (FS400) episome, and fused episome F' ts114 lac+, his+ (F42-400) was obtained. Episome F42-400 could be transferred to S. typhimurium, Escherichia coli and Klebsiella pneumoniae. Identification of the episome was based on: (i) temperature sensitivity of the Lac+ and His+ phenotypes; (ii) the fact that F- segregants, obtained after temperature curing or acridine orange curing, were simultaneously Lac- and His-; and (iii) linkage of lac+ with his+ in episomal transfers to E. coli and S. typhimurium. The frequency of episome transfer was influenced by the genotype of the donor. Plasmid LT2, prevalent in S. typhimurium LT2 strains, was suggested to be responsible for the low fertility of S. typhimurium donors. Episome F42-400 was capable of chromosome mobilization, and the extent of chromosome mobilization was not influenced by the presence or absence of the histidine region on the donor chromosome. Growth in a defined medium with acridine orange was able to cure F42-400. The frequency of curing was increased (the frequency of His+ cells was 0.0001%) if the cells were grown at 40 C in the presence of acridine orange. Selection for temperature-resistant Lac+, His+ derivatives in a strain without histidine deletion yielded Hfr strains. However, similar and stronger selections in strains without the chromosomal histidine region failed to yield Hfr strains. Our inability to obtain Hfr's in strains without the chromosomal histidine region was explained by assuming that the episome F42-400 has lost the F sites involved in integration into the S. typhimurium chromosome.  相似文献   

6.
Twenty-four genes from Salmonella typhimurium that affect DNA replication were isolated from a lambda-Salmonella genomic library by lysogenic complementation of temperature-sensitive mutants of Salmonella or E. coli, using a new plaque complementation assay. The complementing lambda clones, which make red plaques in this assay, and noncomplementing mutant derivatives, which make uncolored plaques, were used to further characterize the temperature-sensitive Salmonella mutants and to establish the functional similarity of E. coli and Salmonella DNA replication genes. For 17 of 18 E. coli mutants representing distinct loci, a Salmonella gene that complemented the mutant was found. This result indicates that single Salmonella replication proteins are able to function in otherwise all E. coli replication complexes and suggests that the detailed properties of Salmonella and E. coli replication proteins are very similar. The other seven Salmonella genes that were cloned were unrelated functionally to any E. coli genes examined. --As an aid to the derivation of chromosomal mutations affecting some of the cloned genes, a general method was developed for placing a transposon in the Salmonella chromosome in a segment corresponding to cloned DNA. Chromosomal mutations were derived in Salmonella affecting a gene (dnaA) that was cloned by complementation of an E. coli mutant by using the transposon-encoded drug resistance as a selectable marker in local mutagenesis.  相似文献   

7.
ATP binding to dnaA protein is essential for its action in initiating the replication of plasmids that bear the unique origin of the Escherichia coli chromosome (oriC). ADP bound to that site renders dnaA protein inactive for replication. Diphosphatidylglycerol (cardiolipin), a diacidic membrane phospholipid, displaces the bound nucleotide, and in the presence of components that reconstitute replication, fully reactivates the inert ADP form of dnaA protein. The monacidic phosphatidylglycerol is one-tenth as active as cardiolipin, whereas the neutral phosphatidylethanolamine, the principal E. coli phospholipid, is inactive. Fluphenazine, a tranquilizer drug, blocks cardiolipin activation of dnaA protein, in keeping with the inhibitory action of such agents on phospholipid-dependent enzymes. With the use of this drug to terminate cardiolipin action, dependence of the activation on time, elevated temperature, and high levels of ATP was demonstrated. Cardiolipin binding of nucleotide-free dnaA protein prevents binding of ATP and initiation of oriC replication. Removal of a fatty acid from cardiolipin by phospholipase A reverses this inhibitory effect. The strong and specific interaction of cardiolipin, a cell membrane component, with an essential nucleotide-binding site of dnaA protein, the protein essential for the initiation of chromosome replication, may be an important element in regulating the cell cycle.  相似文献   

8.
Activity of Chi Recombinational Hotspots in SALMONELLA TYPHIMURIUM   总被引:6,自引:1,他引:5       下载免费PDF全文
Chi sites have previously been shown to stimulate homologous recombination by the Escherichia coli RecBC pathway. To test the activity of Chi in another organism, bacteriophage lambda crosses were carried out in Salmonella typhimurium strains bearing the E. coli lambda receptor protein. Chi is active in these crosses in S. typhimurium, but is less active than in the same crosses carried out in E. coli. The lower Chi activity in S. typhimurium appears to be intrinsic to the S. typhimurium RecBC enzyme, since the Chi activity in E. coli-S. typhimurium hybrids depends on the species of origin of their RecBC enzyme. For these studies we constructed and F' factor and a pBR322-derived plasmid carrying the thyA+ recC+ recB+ argA+ region of the S. typhimurium chromosome.  相似文献   

9.
The replication region (oriC) of the Spiroplasma citri chromosome has been recently sequenced, and a 2-kbp DNA fragment was characterized as an autonomously replicating sequence (F. Ye, J. Renaudin, J. M. Bové, and F. Laigret, Curr. Microbiol. 29:23-29, 1994). In the present studies, we have combined this DNA fragment, containing the dnaA gene and the flanking dnaA boxes, with a ColE1-derived Escherichia coli replicon and the Tet M determinant, which confers resistance to tetracycline. The recombinant plasmid, named pBOT1, was introduced into S. citri cells, in which it replicated. Plasmid pBOT1 was shuttled from E. coli to S. citri and back to E. coli. In S. citri, replication of pBOT1 did not require the presence of a functional dnaA gene on the plasmid. However, the dnaA box region downstream of the dnaA gene was essential. Upon passaging of the S. citri transformants, the plasmid integrated into the spiroplasmal host chromosome by recombination at the replication origin. The integration process led to duplication of the oriC sequences. In contrast to the integrative pBOT1, plasmid pOT1, which does not contain the E. coli replicon, was stably maintained as a free extrachromosomal element. Plasmid pOT1 was used as a vector to introduce into S. citri the G fragment of the cytadhesin P1 gene of Mycoplasma pneumoniae and the spiralin gene of Spiroplasma phoeniceum. The recombinant plasmids, pOTPG with the G fragment and pOTPS with the spiralin gene, were stably maintained in spiroplasmal transformants. Expression of the heterologous S. phoeniceum spiralin in S. citri was demonstrated by Western immunoblotting.  相似文献   

10.
Initiation of chromosomal replication in Escherichia coli is dependent on availability of the initiator protein DnaA. We have introduced into E. coli cells plasmids carrying the chromosomal locus datA, which has a high affinity for DnaA. To be able to monitor oriC initiation as a function of datA copy number, we introduced a minichromosome which only replicates from oriC, using a host cell which replicates its chromosome independently of oriC. Our data show that a moderate increase in datA copy number is accompanied by increased DnaA protein synthesis that allows oriC initiation to occur normally, as measured by minichromosome copy number. As datA gene dosage is increased dnaA expression cannot be further derepressed, and the minichromosome copy number is dramatically reduced. Under these conditions the minichromosome was maintained by integration into the chromosome. These findings suggest that the datA locus plays a significant role in regulating oriC initiation, by its capacity to bind DnaA. They also suggest that auto regulation of the dnaA gene is of minor importance in regulation of chromosome initiation.  相似文献   

11.
Nearly all of 62 strains of Salmonella paratyphi B were sensitive to colicin M and phage T5 but resistant to phages T1 and ES18 and to colicin B. All tested S. typhimurium strains were resistant to colicin M and phage T5, and many were sensitive to phage ES18. A rough S. typhimurium LT2 strain given the tonA region of Escherichia coli or S. paratyphi B became sensitive to colicin M and phage T5. We infer that the tonA allele of S. paratyphi B, like that of E. coli, determines an outer membrane protein that adsorbs T5 and colicin M but not phage ES18, whereas the S. typhimurium allele determines a protein able to adsorb only ES18. The partial T1 sensitivity of a rough LT2 strain with a tonA allele from E. coli or S. paratyphi B and also the tonB(+) phentotype of an E. coli B trp-tonB Delta mutant carrying an F' trp of LT2 origin showed that S. typhimurium LT2 has a tonB allele like that of E. coli with respect to determination of sensitivity to colicins and phage T1. Rough S. paratyphi B, although T5 sensitive, remained resistant to T1 even when given F' tonB(+) of E. coli origin. Classes of Salmonella mutants selected as resistant to colicin M included: T5-resistant mutants, probably tonA(-); mutants unchanged except for M resistance, perhaps tolerant; and Exb(+) mutants, producing a colicin inhibitor (presumably enterochelin). Some Exb(+) mutants were resistant to a bacteriocin inactive on E. coli but active on all tested S. paratyphi B and S. typhimurium strains (and on nearly all other tested Salmonella). A survey showed sensitivity to colicin M in several other species of Salmonella.  相似文献   

12.
During initiation of DNA replication of plasmids containing the origin of the Escherichia coli chromosome (oriC), the proteins dnaA, dnaB, and dnaC interact and assemble a complex at oriC. The complex is larger and more asymmetric than that formed by dnaA protein and embraces an extra 50 base pairs at the left side of the minimal oriC sequence. Both dnaA and dnaB proteins have been identified in the complex by electron microscopy and antibody binding; dnaC protein was not detected. HU protein, which stimulates the activity of the initiation reaction, was often present. Entry of dnaB protein required dnaA and dnaC proteins and a supercoiled template. Thus, a complex structure, involving multiple proteins and a large region of DNA, must be formed at the origin to prepare the template for priming and replication.  相似文献   

13.
The Escherichia coli dnaA73, dnaA721, and dnaA71 alleles, which encode A213D, R432L, T435K substitutions, respectively, were originally isolated as extragenic suppressors of a temperature-sensitive dnaX mutant. As the A213D substitution resides in a domain that functions in ATP binding and the R432L and T435K substitutions affect residues that recognize the DnaA box motif, they might be expected to reduce ATP and specific DNA binding, respectively. Therefore, a major objective was to quantify the biochemical defects of the mutant DnaAs to understand how the altered proteins suppress the temperature-sensitive phenotype of a dnaX mutant. A second purpose was to address the paradox that mutant proteins with substitutions of amino acids essential for recognition of the DnaA box motifs within the E. coli replication origin (oriC) may well be inactive in initiation, yet chromosomal dnaA mutants expressing DnaA proteins with the R432L and T435K substitutions are viable at temperatures from 30 to 39 degrees C. We show biochemically that mutant DnaAs carrying R432L and T435K substitutions fail to bind to the DnaA box sequence. The A213D mutant is sevenfold reduced in its affinity for ATP compared to wild-type DnaA, and its affinity for the DnaA box sequence is also reduced. However, the reduced activity of the A213D mutant in oriC plasmid replication appears to arise from a defect in DnaA oligomerization. Although the T435K mutant fails to bind to the DnaA box sequence, other results suggest that DnaA oligomerization stabilizes the binding of the mutant DnaA to oriC to support its partial activity in initiation in vitro. These results support a model that suppression of dnaX occurs by reducing the frequency of initiation to a manageable level for the mutant DnaX so that viability is maintained.  相似文献   

14.
Initiation of chromosomal DNA replication of several Escherichia coli dnaA (Ts) strains is diminished in cell harbouring pBR322 hybrid plasmids carrying both oriC and the adjacent 16kD gene promoter of E. coli K12. This perturbance, resulting in very slow growth, is caused both by the dnaA allele and the E. coli B/r-derived region of the replication origin of these strains. Cloning and DNA sequence analysis of the E. coli B/r replication origin revealed several base differences as compared to the E. coli K12 sequence. The replication origin of temperature sensitive fast growing mutants, originating from a homologous exchange between chromosomal and plasmid DNA sequences were also cloned. Sequence data showed that a single base change within the promoter of the 16kD gene of these dnaA (Ts) strains is able to suppress the inhibition of chromosomal DNA replication by the mentioned pBR322 hybrid plasmids. Our results strongly indicate a role of the 16kD gene promoter in control of initiation of chromosomal DNA replication.  相似文献   

15.
Plasmids carrying the intact Bacillus subtilis dnaA-like gene and two reciprocal hybrids between the B. subtilis and Escherichia coli dnaA genes were constructed. None of the plasmids could transform wild-type E. coli cells unless the cells contained surplus E. coli DnaA protein (DnaAEc). A dnaA (Ts) strain integratively suppressed by the plasmid R1 origin could be transformed by plasmids carrying either the B. subtilis gene (dnaABs) or a hybrid gene containing the amino terminus of the E. coli gene and the carboxyl terminus of the B. subtilis gene (dnaAEc/Bs). In cells with surplus E. coli DnaA protein, expression of the E. coli dnaA gene was derepressed by the B. subtilis DnaA protein and by the hybrid DnaAEc/Bs protein, whereas it was strongly repressed by the reciprocal hybrid protein DnaABs/Ec. The plasmids carrying the different dnaA genes probably all interfere with initiation of chromosome replication in E. coli by decreasing the E. coli DnaA protein concentration to a limiting level. The DnaABs and the DnaAEc/Bs proteins effect this decrease possibly by forming inactive oligomeric proteins, while the DnaABs/Ec protein may decrease dnaAEc gene expression.  相似文献   

16.
Temperature-resistant revertants were isolated from Escherichia coli strains carrying a temperature-sensitive dnaA mutation (initiation of chromosome replication) and either a repressed or a derepressed F-like R factor or a ColV2 factor. Many of the revertants had all the properties of Hfr strains, with a variety of directions and origins of transfer. From one such revertant, episomes carrying the R factor and part of the lac region (R'lac) could be isolated by transduction. This system offers a good selection for Hfr strains produced by integration of various episomes and for the isolation of R' factors.  相似文献   

17.
The dnaA genes of Salmonella typhimurium and Serratia marcescens, which complemented the temperature-sensitive dnaA46 mutation of Escherichia coli, were cloned and sequenced. They were very homologous to the dnaA gene of E. coli. The 63 N-terminal amino acids and the 333 C-terminal amino acids of the corresponding DnaA proteins were identical. The region in between, corresponding to 71 amino acids in E. coli, exhibited a number of changes. This variable region coincided with a nonhomologous region found in the comparison of E. coli dnaA and Bacillus subtilis "dnaA" genes. The regions upstream of the genes were also homologous. The ribosome-binding area, one of the promoters, the DnaA protein-binding site, and many GATC sites (Dam methyltransferase-recognition sequence) were conserved in these three enteric bacteria.  相似文献   

18.
19.
Summary A class of F plasmids, designated Fpoh +, was previously shown to be able to replicate extrachromosomally on Hfr strains by virtue of carrying the specific site or region poh + (permissive on Hfr) of the E. coli chromosome (Hiraga, 1975, 1976a). These plasmids were now found to replicate on E. coli mafA mutants (mafA1 and mafA23) that cannot support vegetative replication of F and some other F-like plasmids. The derivatives of Fpoh + that have lost the poh + site, on the other hand, failed to replicate on mafA mutants. These mutants harboring Fpoh + (but not Poh- derivatives thereof) exhibit abnormal cell division and form elongated cells, presumably due to competition between Fpoh + and the host chromosome for some factor(s) essential for the initiation of DNA replication of the both replicons. It is tentatively concluded that the poh + site is required for F plasmids to replicate on mafA mutants as well as on Hfr strains. In view of the fact that the mechanism of inhibition of autonomous F DNA replication in mafA mutants and in Hfr strains are clearly different, the present data seem to provide strong support to the notion that the poh + region contains the replication origin of the E. coli chromosome.  相似文献   

20.
It is shown here that plasmids containing the replication origin of Escherichia coli (oriC) cannot replicate in an extrachromosomal state in E. coli cells with the polA1hip3 double mutation. This E. coli mutant is deficient in the polymerizing function of DNA polymerase I (Pol I) and is unable to produce functional IHF protein. The inability of the oriC minichromosomes to replicate in the absence of IHF is dependent on the absence of Pol I; cells with the polA+himA- or polA+hip- mutation, which are deficient in the alpha and beta subunits of the IHF heterodimer, respectively, can support replication of the oriC replicons. We propose that IHF-deficient cells utilize an alternative pathway of the DNA replication in which Pol I is required. In vitro DNA binding assays revealed that the IHF binding site resides between the oriC coordinates 110 and 122 and is adjacent to the DnaA "box" 1. Within the area protected by IHF we found at least 1 out of 11 GATC methylation sites present in oriC. The consequences of lack of IHF protein binding to the oriC and the indirect effects of the IHF deficiency on the oriC replication are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号