首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Double-stranded DNA bacteriophages and their eukaryotic virus counterparts have 12-fold head-tail connector assemblages embedded at a unique capsid vertex. This vertex is the site of assembly of the DNA packaging motor, and the connector has a central channel through which viral DNA passes during genome packaging and subsequent host infection. Crystal structures of connectors from different phages reveal either disordered residues or structured loops that project into the connector channel. Given the proximity to the translocating DNA substrate, these loops have been proposed to play a role in DNA packaging. Previous models have proposed structural motions in either the packaging ATPase or the connector channel loops as the driving force that translocates the DNA into the prohead. Here, we mutate the channel loops of the Bacillus subtilis bacteriophage φ29 connector and show that these loops have no active role in translocation of DNA. Instead, they appear to have an essential function near the end of packaging, acting to retain the packaged DNA in the head in preparation for motor detachment and subsequent tail assembly and virion completion.  相似文献   

2.
BACKGROUND: Head-tail connectors are viral substructures that are very important in the viral morphogenetic cycle, having roles in the formation of the precursor capsid (prohead), DNA packaging, tail binding to the mature head and in the infection process. Structural information on the connector would, therefore, help us to understand how this structure is related to a multiplicity of functions. RESULTS: Recombinant bacteriophage phi29 connectors have been crystallized in two-dimensional aggregates. An average projection image and a three-dimensional map have been obtained at 8 A and 10 A resolution, respectively, from untilted and tilted images of vitrified specimens of the two-dimensional crystals. The average projection image reveals a central mass surrounding a channel with 12 appendages protruding from the central mass. The three-dimensional map reveals a wide domain surrounded by 12 appendages that interact with the prohead vertex, and a narrow domain that interacts with the bacteriophage tail. At the junction of the two domains, 12 smaller appendages are visualized. A channel runs along the axis of the connector structure and is sufficiently wide to allow a double-stranded DNA molecule to pass through. CONCLUSIONS: The propeller-like structure of the phi29 connector strengthens the notion of the connector rotating during DNA packaging. The groove formed by the two lanes of large and small appendages may act as a rail to prevent the liberation of the connector from the prohead vertex during rotation.  相似文献   

3.
The connector protein, also known as the portal protein, located at the portal vertex in the Phi29 bacteriophage has been found to play a key role in the genome DNA packaging motor. There is a disordered region, composed of 12 sets of 18-residue loops N229–N246, that has been assumed to serve as a “clamp” to retain the DNA within the pressurized capsid when DNA is fully packaged. However, the process remains undefined about how the clamping of DNA occurs and what signal is used to engage the channel loops to clamp the DNA near the end of DNA packaging. In this study, we use the planar lipid bilayer (PLB) membrane technique to study the connector with its loops cleaved. The channel properties are compared with those of the connector with corresponding wild-type loops at different membrane potentials. On the basis of the hypothesis of the Donnan effects in the flashing Brownian ratchet model, we associate the PLB experimental results with the outcomes from the relevant biochemical experiments on the proheads containing the connectors without the loops, which enables us to provide a clear picture about how the DNA clamping occurs. A mathematical relationship between the Donnan potential and the DNA packaging density is established, demonstrating that they are both in essence the same signal that is received and transmitted by the connector to dictate DNA clamping and the termination of DNA packaging. At the end of the study, the PLB technique is proposed as a viral research tool, and its potential use to study the functions of specific domains in a portal protein of the tailed bacteriophages is highlighted.  相似文献   

4.
Xiao F  Moll WD  Guo S  Guo P 《Nucleic acids research》2005,33(8):2640-2649
During assembly, bacterial virus phi29 utilizes a motor to insert genomic DNA into a preformed protein shell called the procapsid. The motor contains one twelve-subunit connector with a 3.6 nm central channel for DNA transportation, six viral-encoded RNA (packaging RNA or pRNA) and a protein, gp16, with unknown stoichiometry. Recent DNA-packaging models proposed that the 5-fold procapsid vertexes and 12-fold connector (or the hexameric pRNA ring) represented a symmetry mismatch enabling production of a force to drive a rotation motor to translocate and compress DNA. There was a discrepancy regarding the location of the foothold for the pRNA. One model [C. Chen and P. Guo (1997) J. Virol., 71, 3864–3871] suggested that the foothold for pRNA was the connector and that the pRNA–connector complex was part of the rotor. However, one other model suggested that the foothold for pRNA was the 5-fold vertex of the capsid protein and that pRNA was the stator. To elucidate the mechanism of phi29 DNA packaging, it is critical to confirm whether pRNA binds to the 5-fold vertex of the capsid protein or to the 12-fold symmetrical connector. Here, we used both purified connector and purified procapsid for binding studies with in vitro transcribed pRNA. Specific binding of pRNA to the connector in the procapsid was found by photoaffinity crosslinking. Removal of the N-terminal 14 amino acids of the gp10 protein by proteolytic cleavage resulted in undetectable binding of pRNA to either the connector or the procapsid, as investigated by agarose gel electrophoresis, SDS–PAGE, sucrose gradient sedimentation and N-terminal peptide sequencing. It is therefore concluded that pRNA bound to the 12-fold symmetrical connector to form a pRNA–connector complex and that the foothold for pRNA is the connector but not the capsid protein.  相似文献   

5.
The bacteriophage phi29 generates large forces to compact its double-stranded DNA genome into a protein capsid by means of a portal motor complex. Several mechanical models for the generation of these high forces by the motor complex predict coupling of DNA translocation to rotation of the head-tail connector dodecamer. Putative connector rotation is investigated here by combining the methods of single-molecule force spectroscopy with polarization-sensitive single-molecule fluorescence. In our experiment, we observe motor function in several packaging complexes in parallel using video microscopy of bead position in a magnetic trap. At the same time, we follow the orientation of single fluorophores attached to the portal motor connector. From our data, we can exclude connector rotation with greater than 99% probability and therefore answer a long-standing mechanistic question.  相似文献   

6.
《Biophysical journal》2020,118(9):2103-2116
Molecular motors that translocate DNA are ubiquitous in nature. During morphogenesis of double-stranded DNA bacteriophages, a molecular motor drives the viral genome inside a protein capsid. Several models have been proposed for the three-dimensional geometry of the packaged genome, but very little is known of the signature of the molecular packaging motor. For instance, biophysical experiments show that in some systems, DNA rotates during the packaging reaction, but most current biophysical models fail to incorporate this property. Furthermore, studies including rotation mechanisms have reached contradictory conclusions. In this study, we compare the geometrical signatures imposed by different possible mechanisms for the packaging motors: rotation, revolution, and rotation with revolution. We used a previously proposed kinetic Monte Carlo model of the motor, combined with Brownian dynamics simulations of DNA to simulate deterministic and stochastic motor models. We find that rotation is necessary for the accumulation of DNA writhe and for the chiral organization of the genome. We observe that although in the initial steps of the packaging reaction, the torsional strain of the genome is released by rotation of the molecule, in the later stages, it is released by the accumulation of writhe. We suggest that the molecular motor plays a key role in determining the final structure of the encapsidated genome in bacteriophages.  相似文献   

7.
K Garver  P Guo 《RNA (New York, N.Y.)》1997,3(9):1068-1079
Bacteriophage phi29 utilizes a viral-encoded 120-base RNA (pRNA) to accomplish dsDNA packaging into a preformed procapsid. Six pRNAs bind to the procapsid and work sequentially. The pRNA contains two functional domains, one for binding to the DNA translocating connector, and the other for interacting with another component of the DNA packaging machinery during DNA translocation. By UV crosslinking, the pRNA was found to bind to the connector specifically and not to the capsid or scaffolding proteins. When purified connectors were incubated with pRNA, rosette-like connector oligomers were observed. These oligomers were found to contain pRNA. A series of deletion mutants of the pRNA were constructed and their ability to perform various tasks involved in phi29 assembly were assayed. The minimum sizes of the pRNA needed for the following activities have been determined: (1) specific binding to procapsid or to connectors; (2) connector or procapsid binding with full efficiency compared with wild-type pRNA; and (3) genomic DNA packaging. In summary, bases 37-91 (55 nt) comprised the minimum sequence required for specific connector binding, although with lower efficiency; bases 6-113 (105 nt with the additional deletion of two nonessential bases, C109 and A106) comprised the minimum sequence required for full connector binding activity; and bases 1-117 comprised the minimum sequence needed for full DNA packaging activity. These data indicate clearly that the helical region composed of bases 1-6 and 113-117 plays a crucial role in DNA translocation, but is dispensable for connector binding. A model for the role of the pRNA in DNA packaging was also presented.  相似文献   

8.
The bacteriophage ϕ29 generates large forces to compact its double-stranded DNA genome into a protein capsid by means of a portal motor complex. Several mechanical models for the generation of these high forces by the motor complex predict coupling of DNA translocation to rotation of the head-tail connector dodecamer. Putative connector rotation is investigated here by combining the methods of single-molecule force spectroscopy with polarization-sensitive single-molecule fluorescence. In our experiment, we observe motor function in several packaging complexes in parallel using video microscopy of bead position in a magnetic trap. At the same time, we follow the orientation of single fluorophores attached to the portal motor connector. From our data, we can exclude connector rotation with greater than 99% probability and therefore answer a long-standing mechanistic question.  相似文献   

9.
The bacteriophage ϕ29 generates large forces to compact its double-stranded DNA genome into a protein capsid by means of a portal motor complex. Several mechanical models for the generation of these high forces by the motor complex predict coupling of DNA translocation to rotation of the head-tail connector dodecamer. Putative connector rotation is investigated here by combining the methods of single-molecule force spectroscopy with polarization-sensitive single-molecule fluorescence. In our experiment, we observe motor function in several packaging complexes in parallel using video microscopy of bead position in a magnetic trap. At the same time, we follow the orientation of single fluorophores attached to the portal motor connector. From our data, we can exclude connector rotation with greater than 99% probability and therefore answer a long-standing mechanistic question.  相似文献   

10.
The developmental pathways for a variety of eukaryotic and prokaryotic double-stranded DNA viruses include packaging of viral DNA into a preformed procapsid structure, catalyzed by terminase enzymes and fueled by ATP hydrolysis. In most instances, a capsid expansion process accompanies DNA packaging, which significantly increases the volume of the capsid to accommodate the full-length viral genome. “Decoration” proteins add to the surface of the expanded capsid lattice, and the terminase motors tightly package DNA, generating up to ∼ 20 atm of internal capsid pressure. Herein we describe biochemical studies on genome packaging using bacteriophage λ as a model system. Kinetic analysis suggests that the packaging motor possesses at least four ATPase catalytic sites that act cooperatively to effect DNA translocation, and that the motor is highly processive. While not required for DNA translocation into the capsid, the phage λ capsid decoration protein gpD is essential for the packaging of the penultimate 8-10 kb (15-20%) of the viral genome; virtually no DNA is packaged in the absence of gpD when large DNA substrates are used, most likely due to a loss of capsid structural integrity. Finally, we show that ATP hydrolysis is required to retain the genome in a packaged state subsequent to condensation within the capsid. Presumably, the packaging motor continues to “idle” at the genome end and to maintain a positive pressure towards the packaged state. Surprisingly, ADP, guanosine triphosphate, and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) similarly stabilize the packaged viral genome despite the fact that they fail to support genome packaging. In contrast, the poorly hydrolyzed ATP analog ATP-γS only partially stabilizes the nucleocapsid, and a DNA is released in “quantized” steps. We interpret the ensemble of data to indicate that (i) the viral procapsid possesses a degree of plasticity that is required to accommodate the packaging of large DNA substrates; (ii) the gpD decoration protein is required to stabilize the fully expanded capsid; and (iii) nucleotides regulate high-affinity DNA binding interactions that are required to maintain DNA in the packaged state.  相似文献   

11.
The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg2+. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference.  相似文献   

12.
Unraveling the structure and assembly of the DNA packaging ATPases of the tailed double-stranded DNA bacteriophages is integral to understanding the mechanism of DNA translocation. Here, the bacteriophage phi29 packaging ATPase gene product 16 (gp16) was overexpressed in soluble form in Bacillus subtilis (pSAC), purified to near homogeneity, and assembled to the phi29 precursor capsid (prohead) to produce a packaging motor intermediate that was fully active in in vitro DNA packaging. The formation of higher oligomers of the gp16 from monomers was concentration dependent and was characterized by analytical ultracentrifugation, gel filtration, and electron microscopy. The binding of multiple copies of gp16 to the prohead was dependent on the presence of an oligomer of 174- or 120-base prohead RNA (pRNA) fixed to the head-tail connector at the unique portal vertex of the prohead. The use of mutant pRNAs demonstrated that gp16 bound specifically to the A-helix of pRNA, and ribonuclease footprinting of gp16 on pRNA showed that gp16 protected the CC residues of the CCA bulge (residues 18-20) of the A-helix. The binding of gp16 to the prohead/pRNA to constitute the complete and active packaging motor was confirmed by cryo-electron microscopy three-dimensional reconstruction of the prohead/pRNA/gp16 complex. The complex was capable of supercoiling DNA-gp3 as observed previously for gp16 alone; therefore, the binding of gp16 to the prohead, rather than first to DNA-gp3, represents an alternative packaging motor assembly pathway.  相似文献   

13.
Cryo-electron microscopy (cryo-EM) studies of the bacteriophage phi29 DNA packaging motor have delineated the relative positions and molecular boundaries of the 12-fold symmetric head-tail connector, the 5-fold symmetric prohead RNA (pRNA), the ATPase that provides the energy for packaging, and the procapsid. Reconstructions, assuming 5-fold symmetry, were determined for proheads with 174-base, 120-base, and 71-base pRNA; proheads lacking pRNA; proheads with ATPase bound; and proheads in which the packaging motor was missing the connector. These structures are consistent with pRNA and ATPase forming a pentameric motor component around the unique vertex of proheads. They suggest an assembly pathway for the packaging motor and a mechanism for DNA translocation into empty proheads.  相似文献   

14.
The DNA packaging motor of the bacteriophage ?29, comprising head-tail connector, ATPase, and pRNA, transports the viral DNA inside the procapsid against pressure differences of up to ∼60 atm during replication. Several models for the DNA packaging mechanism have been proposed, which attribute different roles to the connector, and require specific mechanical properties of the connector. To characterize these properties at the atomic level, and to understand how the connector withstands this large pressure, we have carried out molecular dynamics simulations of the whole connector both in equilibrium and under mechanical stress. The simulations revealed a quite heterogeneous distribution of stiff and soft regions, resembling that of typical composite materials that are also optimized to resist mechanical stress. In particular, the conserved middle α-helical region is found to be remarkably stiff, similar only to structural proteins forming viral shell, silk, or collagen. In contrast, large parts of the peripheral interface to the ?29 procapsid turned out to be rather soft. Force probe and umbrella sampling simulations showed that large connector deformations are remarkably reversible, and served to calculate the free energies required for these deformations. In particular, for an untwisting deformation by 12°, as postulated by the untwist-twist model, more than four times’ larger energy is required than is available from hydrolysis of one ATP molecule. Combined with previous experiments, this result is incompatible with the untwist-twist model. In contrast, our simulations support the recently proposed one-way revolution model and suggest in structural terms how the connector blocks DNA leakage. In particular, conserved loops at the rim of the central channel, which are in direct contact with the DNA, are found to be rather flexible and tightly anchored to the rigid central region. These findings suggest a check-valve mechanism, with the flexible loops obstructing the channel by interacting with the viral DNA.  相似文献   

15.
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles.  相似文献   

16.
The DNA packaging motor of the bacteriophage ϕ29, comprising head-tail connector, ATPase, and pRNA, transports the viral DNA inside the procapsid against pressure differences of up to ∼60 atm during replication. Several models for the DNA packaging mechanism have been proposed, which attribute different roles to the connector, and require specific mechanical properties of the connector. To characterize these properties at the atomic level, and to understand how the connector withstands this large pressure, we have carried out molecular dynamics simulations of the whole connector both in equilibrium and under mechanical stress. The simulations revealed a quite heterogeneous distribution of stiff and soft regions, resembling that of typical composite materials that are also optimized to resist mechanical stress. In particular, the conserved middle α-helical region is found to be remarkably stiff, similar only to structural proteins forming viral shell, silk, or collagen. In contrast, large parts of the peripheral interface to the ϕ29 procapsid turned out to be rather soft. Force probe and umbrella sampling simulations showed that large connector deformations are remarkably reversible, and served to calculate the free energies required for these deformations. In particular, for an untwisting deformation by 12°, as postulated by the untwist-twist model, more than four times’ larger energy is required than is available from hydrolysis of one ATP molecule. Combined with previous experiments, this result is incompatible with the untwist-twist model. In contrast, our simulations support the recently proposed one-way revolution model and suggest in structural terms how the connector blocks DNA leakage. In particular, conserved loops at the rim of the central channel, which are in direct contact with the DNA, are found to be rather flexible and tightly anchored to the rigid central region. These findings suggest a check-valve mechanism, with the flexible loops obstructing the channel by interacting with the viral DNA.  相似文献   

17.
Terminases are enzymes common to complex double-stranded DNA viruses and are required for packaging of viral DNA into a protective capsid. Bacteriophage lambda terminase holoenzyme is a hetero-oligomer composed of the A and Nu1 lambda gene products; however, the self-association properties of the holoenzyme have not been investigated systematically. Here, we report the results of sedimentation velocity, sedimentation equilibrium, and gel-filtration experiments studying the self-association properties of the holoenzyme. We find that purified, recombinant lambda terminase forms a homogeneous, heterotrimeric structure, consisting of one gpA molecule associated with two gpNu1 molecules (114.2 kDa). We further show that lambda terminase adopts a heterogeneous mixture of higher-order structures, with an average molecular mass of 528(+/-34) kDa. Both the heterotrimer and the higher-order species possess site-specific cos cleavage activity, as well as DNA packaging activity; however, the heterotrimer is dependent upon Escherichia coli integration host factor (IHF) for these activities. Furthermore, the ATPase activity of the higher-order species is approximately 1000-fold greater than that of the heterotrimer. These data suggest that IHF bending of the duplex at the cos site in viral DNA promotes the assembly of the heterotrimer into a biologically active, higher-order packaging motor. We propose that a single, higher-order hetero-oligomer of gpA and gpNu1 functions throughout lambda development.  相似文献   

18.
Many cells and double-stranded DNA (dsDNA) viruses contain an AAA+ ATPase that assembles into oligomers, often hexamers, with a central channel. The dsDNA packaging motor of bacteriophage phi29 also contains an ATPase to translocate dsDNA through a dodecameric channel. The motor ATPase has been investigated substantially in the context of the entire procapsid. Here, we report the sequential action between the ATPase and additional motor components. It is suggested that the contact of ATPase to ATP resulted in its conformational change to a higher binding affinity toward dsDNA. It was found that ATP hydrolysis led to the departure of dsDNA from the ATPase/dsDNA complex, an action that is speculated to push dsDNA to pass the connector channel. Our results suggest that dsDNA packaging goes through a combined effort of both the gp16 ATPase for pushing and the channel as a one-way valve to control the dsDNA translocation direction. Many packaging models have previously been proposed, and the packaging mechanism has been contingent upon the number of nucleotides packaged per ATP relative to the 10.5 bp per helical turn for B-type dsDNA. Both 2 and 2.5 bp per ATP have been used to argue for four, five or six discrete steps of dsDNA translocation. Combination of the two distinct roles of gp16 and connector renews the perception of previous dsDNA packaging energy calculations and provides insight into the discrepancy between 2 and 2.5 bp per ATP.  相似文献   

19.
耿佳  郭培宣 《生命科学》2011,(11):1114-1129
生命系统包含了具有不同功能的纳米机器和高度有序的大分子结构。所有的双链线性DNA病毒使用由ATP驱动的纳米分子马达将其基因包装在蛋白质外壳内。噬菌体phi29 DNA包装马达的核心组成部分连接器已被成功嵌入到脂双层中,极为稳定且可用于离子和DNA转运的精确测量。它在包装DNA时具有单向通行的阀门机制,同时其关闭和打开可由人工控制。这对于详细研究分子马达的操作机制及未来医药应用中DNA的包装、测序、采样和投递都具有重要意义。  相似文献   

20.
BACKGROUND: The dsDNA bacteriophage PRD1 has a membrane inside its icosahedral capsid. While its large size (66 MDa) hinders the study of the complete virion at atomic resolution, a 1.65-A crystallographic structure of its major coat protein, P3, is available. Cryo-electron microscopy (cryo-EM) and three-dimensional reconstruction have shown the capsid at 20-28 A resolution. Striking architectural similarities between PRD1 and the mammalian adenovirus indicate a common ancestor. RESULTS: The P3 atomic structure has been fitted into improved cryo-EM reconstructions for three types of PRD1 particles: the wild-type virion, a packaging mutant without DNA, and a P3-shell lacking the membrane and the vertices. Establishing the absolute EM scale was crucial for an accurate match. The resulting "quasi-atomic" models of the capsid define the residues involved in the major P3 interactions, within the quasi-equivalent interfaces and with the membrane, and show how these are altered upon DNA packaging. CONCLUSIONS: The new cryo-EM reconstructions reveal the structure of the PRD1 vertex and the concentric packing of DNA. The capsid is essentially unchanged upon DNA packaging, with alterations limited to those P3 residues involved in membrane contacts. These are restricted to a few of the N termini along the icosahedral edges in the empty particle; DNA packaging leads to a 4-fold increase in the number of contacts, including almost all copies of the N terminus and the loop between the two beta barrels. Analysis of the P3 residues in each quasi-equivalent interface suggests two sites for minor proteins in the capsid edges, analogous to those in adenovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号