首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagic and proteasomal degradation constitute the major cellular proteolysis pathways. Their physiological and pathophysiological adaptation and perturbation modulates the relative abundance of apoptosis-transducing proteins and thereby can positively or negatively adjust cell death susceptibility. In addition to balancing protein expression amounts, components of the autophagic and proteasomal degradation machineries directly interact with and co-regulate apoptosis signal transduction. The influence of autophagic and proteasomal activity on apoptosis susceptibility is now rapidly gaining more attention as a significant modulator of cell death signalling in the context of human health and disease. Here we present a concise and critical overview of the latest knowledge on the molecular interplay between apoptosis signalling, autophagy and proteasomal protein degradation. We highlight that these three pathways constitute an intricate signalling triangle that can govern and modulate cell fate decisions between death and survival. Owing to rapid research progress in recent years, it is now possible to provide detailed insight into the mechanisms of pathway crosstalk, common signalling nodes and the role of multi-functional proteins in co-regulating both protein degradation and cell death.  相似文献   

2.
C9orf72 hexanucleotide repeat expansion (HRE) is the major genetic cause underpinning frontotemporal lobar degeneration (FLTD) and amyotrophic lateral sclerosis (ALS). C9orf72 HRE-associated pathogenesis involves both loss-of-function, through reduced C9orf72 levels, and gain-of-function mechanisms, including formation of RNA foci and generation of dipeptide repeat (DPR) proteins. In addition, dysfunctional protein degradation pathways, i.e. autophagy and ubiquitin-proteasome system (UPS), are suggested. Our aim was to study the gain-of-function mechanisms in the context of the function of protein degradation pathways as well as the regulation of the DPR proteins through these pathways. To this end, we expressed the pathological HRE in neuronal N2a cells and mouse primary cortical neurons. Protein degradation pathways were modulated to induce or block autophagy or to inhibit UPS. In addition, proteasomal activity was assessed. The C9orf72 HRE-expressing N2a cells and neurons were confirmed to produce RNA foci and DPR proteins, predominantly the Poly-GP proteins. However, the presence of these pathological hallmarks did not result in alterations in autophagy or proteasomal activity in either of the studied cell types. In N2a cells, Poly-GP proteins appeared in soluble forms and Lactacystin-mediated UPS inhibition increased their levels, indicating proteasomal regulation. Similar effects were not observed in cortical neurons, where the Poly-GP proteins formed also higher molecular weight forms. These results suggest a cell type-specific morphology and regulation of the DPR proteins. Further studies in other model systems may shed additional light onto the effects of the C9orf72 HRE on cellular protein degradation pathways and the regulation of the DPR protein levels.  相似文献   

3.
Caspases - controlling intracellular signals by protease zymogen activation   总被引:13,自引:0,他引:13  
Animal development and homeostasis is a balance between cell proliferation and cell death. Physiologic, and sometimes pathologic, cell death - apoptosis - is driven by activation of a family of proteases known as the caspases, present in almost all nucleated animal cells. The enzymatic properties of these proteases are governed by a dominant specificity for substrates containing Asp, and by the use of a Cys side chain for catalyzing peptide bond cleavage. The primary specificity for Asp turns out to be very rare among proteases, and currently the only other known mammalian proteases with the same primary specificity is the physiological caspase activator granzyme B. Like most other proteases, the caspases are synthesized as inactive zymogens whose activation requires limited proteolysis or binding to co-factors. To transmit the apoptotic execution signal, caspase zymogens are sequentially activated through either an intrinsic or an extrinsic pathway. The activation of caspases at the apex of each pathway, the initiators, occurs by recruitment to specific adapter molecules through homophilic interaction domains, and the activated initiators directly process the executioner caspases to their catalytically active forms. In the present communication we review the different mechanisms underlying the selective activation of the caspases.  相似文献   

4.
Apoptosis inducing factor (AIF) is a mediator of caspase-independent cell death that is also necessary for mitochondrial energy production. How these seemingly opposite cellular functions of AIF are controlled is poorly understood. X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of caspases that also regulates several caspase-independent signaling pathways. The RING domain of XIAP possesses E3 ubiquitin ligase activity, though the importance of this function to signal regulation remains incompletely defined. XIAP binds and ubiquitinates AIF, and in this study, we determined the functional consequences of XIAP-mediated AIF ubiquitination. Unlike canonical ubiquitination, XIAP-dependent AIF ubiquitination did not lead to proteasomal degradation of AIF. Experiments using ubiquitin mutants demonstrated that the XIAP-dependent ubiquitin linkage was not formed through the commonly used lysine 48, suggesting a noncanonical ubiquitin linkage is employed. Further studies demonstrated that only lysine 255 of AIF was a target of XIAP-dependent ubiquitination. Using recombinant AIF, we determined that mutating lysine 255 of AIF interferes with the ability of AIF not only to bind DNA but also to degrade chromatin in vitro. These data indicate that XIAP regulates the death-inducing activity of AIF through nondegradative ubiquitination, further defining the role of XIAP in controlling AIF and caspase-independent cell death pathways.  相似文献   

5.
Apoptosis and necrosis are critical parameters of pancreatitis, the mechanisms of which remain unknown. Many characteristics of pancreatitis can be studied in vitro in pancreatic acini treated with high doses of cholecystokinin (CCK). We show here that CCK stimulates apoptosis and death signaling pathways in rat pancreatic acinar cells, including caspase activation, cytochrome c release, and mitochondrial depolarization. The mitochondrial dysfunction is mediated by upstream caspases (possibly caspase-8) and, in turn, leads to activation of caspase-3. CCK causes mitochondrial alterations through both permeability transition pore-dependent (cytochrome c release) and permeability transition pore-independent (mitochondrial depolarization) mechanisms. Caspase activation and mitochondrial alterations also occur in untreated pancreatic acinar cells; however, the underlying mechanisms are different. In particular, caspases protect untreated acinar cells from mitochondrial damage. We found that caspases not only mediate apoptosis but also regulate other parameters of CCK-induced acinar cell injury that are characteristic of pancreatitis; in particular, caspases negatively regulate necrosis and trypsin activation in acinar cells. The results suggest that the observed signaling pathways regulate parenchymal cell injury and death in CCK-induced pancreatitis. Protection against necrosis and trypsin activation by caspases can explain why the severity of pancreatitis in experimental models correlates inversely with the extent of apoptosis.  相似文献   

6.
microRNAs and death receptors   总被引:1,自引:0,他引:1  
Death receptors induce apoptosis through either the Type I or II pathway. In Type I cells, the initiator caspase-8 directly activates effector caspases such as caspase-3, whereas in Type II cells, the death signal is amplified through mitochondria thereby activating effector caspases causing cell death. Recently, there have been advances in elucidating the early events in the CD95 signaling pathways and how post-translational modifications regulate CD95 signaling. This review will focus on recent insights into the mechanisms of the two different types of CD95 signaling pathways, and will introduce miRNAs as regulators of death receptor signaling.  相似文献   

7.
Physiological cell death is a key mechanism that ensures appropriate development and maintenance of tissues and organs in multicellular organisms. Most structures in the vertebrate embryo exhibit defined areas of cell death at precise stages of development. In this regard the areas of interdigital cell death during limb development provide a paradigmatic model of massive cell death with an evident morphogenetic role in digit morphogenesis. Physiological cell death has been proposed to occur by apoptosis, cellular phenomena genetically controlled to orchestrate cell suicide following two main pathways, cytochrome C liberation from the mitochondria or activation of death receptors. Such pathways converge in the activation of cysteine proteases known as caspases, which execute the cell death program, leading to typical morphologic changes within the cell, termed apoptosis. According to these findings it would be expected that caspases loss of function experiments could cause inhibition of interdigital cell death promoting syndactyly phenotypes. A syndactyly phenotype is characterized by absence of digit freeing during development that, when caused by absence of interdigital cell death, is accompanied by the persistence of an interdigital membrane. However this situation has not been reported in any of the KO mice or chicken loss of function experiments ever performed. Moreover histological analysis of dying cells within the interdigit reveals the synchronic occurrence of different types of cell death. All these findings are indicative of caspase alternative and/or complementary mechanisms responsible for physiological interdigital cell death. Characterization of alternative cell death pathways is required to explain vertebrate morphogenesis. Today there is great interest in cell death via autophagy, which could substitute or act synergistically to the apoptotic pathway. Here we discuss what is known about physiological cell death in the developing interdigital tissue of vertebrate embryos, paying special attention to the avian species.  相似文献   

8.
Berry DL  Baehrecke EH 《Cell》2007,131(6):1137-1148
Autophagy is a catabolic process that is negatively regulated by growth and has been implicated in cell death. We find that autophagy is induced following growth arrest and precedes developmental autophagic cell death of Drosophila salivary glands. Maintaining growth by expression of either activated Ras or positive regulators of the class I phosphoinositide 3-kinase (PI3K) pathway inhibits autophagy and blocks salivary gland cell degradation. Developmental degradation of salivary glands is also inhibited in autophagy gene (atg) mutants. Caspases are active in PI3K-expressing and atg mutant salivary glands, and combined inhibition of both autophagy and caspases increases suppression of gland degradation. Further, induction of autophagy is sufficient to induce premature cell death in a caspase-independent manner. Our results provide in vivo evidence that growth arrest, autophagy, and atg genes are required for physiological autophagic cell death and that multiple degradation pathways cooperate in the efficient clearance of cells during development.  相似文献   

9.
Hu X 《Cytokine》2003,21(6):286-294
Following binding its death receptor on the plasma membrane, tumor necrosis factor (TNF) induces the receptor trimerization and recruits a number of death domain-containing molecules to form the receptor complex. The complex promotes activation of downstream caspase cascade and induces degradation of IkappaBalpha. Caspases are activated using mechanisms of oligomeration and 'self-controlled proteolysis'. According to their structures and functions, apoptosis related caspases can be divided into upstream and downstream caspases. In general, upstream caspases cleave and activate downstream caspases by proteolysis of the Asp-X site. Activated caspases then cleaved target substrates. To date, more than 70 proteins have been identified to be substrates of caspases in mammalian cells. Caspases can alter the function of their target proteins by destroying structural components of the cytoskeleton and nuclear scaffold or by removing their regulatory domains. Activation of NF-kappaB is dependent on the degradation of IkappaBalpha. IkappaB kinase (IKK) phosphorylates IkappaBalpha at the residues 32 and 36 followed by polyubiquitination at lysine 21 and 22 and subsequent degradation of the molecules by 26S proteasome. There is extensive crosstalk between the apoptotic and NF-kappaB signaling pathways that emanate from TNF-R1. On the one hand, activation of NF-kappaB can inactivate caspases; on the other hand, activated caspases can inhibit the activation of NF-kappaB. Both processes involve in proteolysis. This crosstalk may be important for maintaining the balance between the two pathways and for determining whether a cell should live or die.  相似文献   

10.
Caspases are well known for their role in the execution of apoptotic programs, in which they cleave specific target proteins, leading to the elimination of cells, and for their role in cytokine maturation. In this study, we identified a novel substrate, which, through cleavage by caspases, can regulate Drosophila neural precursor development. Shaggy (Sgg)46 protein, an isoform encoded by the sgg gene and essential for the negative regulation of Wingless signaling, is cleaved by the Dark-dependent caspase. This cleavage converts it to an active kinase, which contributes to the formation of neural precursor (sensory organ precursor (SOP)) cells. Our evidence suggests that caspase regulation of the wingless pathway is not associated with apoptotic cell death. These results imply a novel role for caspases in modulating cell signaling pathways through substrate cleavage in neural precursor development.  相似文献   

11.
Molecular studies of the physiological cell death process have focused attention on the role of effector caspases as critical common elements of the lethal mechanism. Diverse death signals act afferently via distinct signaling pathways to activate these resident proenzyme molecules post-translationally. Whether this molecular convergence represents the mechanistic point of irreversible commitment to cell death has not been established. That a number of caspase substrates are proteins that serve important roles in cellular homeostasis has led to the view that the acquisition of this activity must be the determinative step in cell death. Observations that caspases serve in a regulatory role to catalyze the appearance of new activities involved in orderly cellular dissolution challenge this model of death as a simple process of proteolytic destruction. We found previously that caspase-dependent nuclear cyclin dependent kinase 2 (Cdk2) activity appears to be necessary for cell death. Employing direct cytofluorimetric analyses of intracellular caspase activity and colony forming assays, we now show that transient blockade of caspase-dependent Cdk2 activity confers long-lived sparing from death on cells otherwise triggered to die and fully replete with caspase activity. These data demonstrate that caspases, while necessary for apoptosis, are not sufficient to exert lethality. Caspase activation per se does not represent an irreversible point of commitment to physiological cell death.  相似文献   

12.
Caspase activation and apoptotic volume decrease are fundamental features of programmed cell death; however, the relationship between these components is not well understood. Here we provide biochemical and genetic evidence for the differential involvement of initiator caspases in the apoptotic volume decrease during both intrinsic and extrinsic activation of apoptosis. Apoptosis induction in Jurkat T lymphocytes by Fas receptor engagement (intrinsic) or ultraviolet (UV)-C radiation (extrinsic) triggered the loss of cell volume, which was restricted to cells with diminished intracellular K(+) ions. These characteristics kinetically coincided with the proteolytic processing and activation of both initiator and effector caspases. Although the polycaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone completely inhibited the Fas-mediated apoptotic volume decrease and K(+) efflux, it was much less effective in preventing these processes during UV-induced cell death under conditions whereby caspase activities and DNA degradation were blocked. To define the roles of specific initiator caspases, we utilized Jurkat cells genetically deficient in caspase-8 or stably transfected with a dominant-negative mutant of caspase-9. The results show that the activation of caspase-8, but not caspase-9, is necessary for Fas-induced apoptosis. Conversely, caspase-9, but not caspase-8, is important for UV-mediated shrunken morphology and apoptosis progression. Together, these findings indicate that cell shrinkage and K(+) efflux during apoptosis are tightly coupled, but are differentially regulated by either caspase-8 or caspase-9 depending on specific pathways of cell death.  相似文献   

13.
Cytotoxic T lymphocyte and natural killer cell-initiated cell death is one of the primary mechanisms used by higher organisms to eliminate viruses and transformed cells. In this context, target cell death is rapid and efficient and initiated via two main pathways, involving either the ligation of death receptors or through the granule-exocytosis pathway. The granule-exocytosis pathway has attracted much attention over the past 10 years and consequently, a mechanism for granule-dependent killing has become reasonably well established. In the granule-dependent pathway, several proteolytic enzymes called granzymes are delivered to the target cell, promoting the activation of a family of death-inducing proteases called caspases. If caspases are inhibited by viral proteins or are inactivated through mutation, granzyme-mediated proteolysis of other cellular substrates ensures the timely death of infected or transformed cells. Here, we examine the findings that have shaped our current understanding of the mechanics of granule-dependent killing and discuss recent insights that have clarified some long-standing discrepancies in the granzyme literature.  相似文献   

14.
Serine protease inhibitors N-alpha-tosyl-L-lysinyl-chloromethylketone (TLCK) and N-tosyl-L-phenylalaninyl-chloromethylketone (TPCK) exhibit multiple effects on cell death pathways in mammalian cells. Thus, they are able to induce apoptosis by itself or promote cell death induced by other cytotoxic stimuli [King et al., 2004; Murn et al., 2004]. On the other hand, TLCK and TPCK were reported to prevent apoptosis by inhibiting the processing of caspases in response to some cell death inducing stimuli [Stefanis et al., 1997; Jones et al., 1998]. We observed that the pretreatment of HL-60 cells with TLCK or TPCK diminished caspases 3 and -7 (DEVDase) and caspase-6 (VEIDase) activity in response to various cell death inducing stimuli such as staurosporine (STS), etoposide (ETP), or N6-(2-isopentenyl)adenosine. In addition, TLCK but not TPCK inhibited collapse of mitochondrial transmembrane potential Delta Psi m (delta psi) in dying HL-60 cells. Such effects used to be considered as protective, however, the protection was only presumable since neither TLCK nor TPCK actually prevented cells from death. Our results further indicated that serine protease inhibitors TLCK and particularly TPCK acted as efficient direct inhibitors of mature caspases. Indeed, experiments with human recombinant caspases provided unequivocal evidence that TLCK and TPCK are very potent but non-specific inhibitors of activated caspases, namely caspases 3, -6, and -7. Interestingly, TPCK exhibited similar efficiency towards human recombinant caspases to that found for panspecific caspase inhibitor Boc-D-CMK. Such properties of TLCK and TPCK, previously considered as specific inhibitors of serine proteases, might offer novel consistent explanation for several protective or protective-like effects on apoptotic cells.  相似文献   

15.
Mitochondrial reactive oxygen species in cell death signaling   总被引:49,自引:0,他引:49  
Fleury C  Mignotte B  Vayssière JL 《Biochimie》2002,84(2-3):131-141
During apoptosis, mitochondrial membrane permeability (MMP) increases and the release into the cytosol of pro-apoptotic factors (procaspases, caspase activators and caspase-independent factors such as apoptosis-inducing factor (AIF)) leads to the apoptotic phenotype. Apart from this pivotal role of mitochondria during the execution phase of apoptosis (documented in other reviews of this issue), it appears that reactive oxygen species (ROS) produced by the mitochondria can be involved in cell death. These toxic compounds are normally detoxified by the cells, failing which oxidative stress occurs. However, ROS are not only dangerous molecules for the cell, but they also display a physiological role, as mediators in signal transduction pathways. ROS participate in early and late steps of the regulation of apoptosis, according to different possible molecular mechanisms. In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and Bcl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state. Furthermore, the fact that active forms of cell death in yeast and plants also involve ROS suggests the existence of an ancestral redox-sensitive death signaling pathway that has been independent of caspases and Bcl-2.  相似文献   

16.
It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.  相似文献   

17.
Mitochondria-dependent apoptosis and cellular pH regulation   总被引:6,自引:0,他引:6  
Mitochondria play a critical role in apoptosis induction in response to myriad stimuli. These organelles release proteins into the cytosol which trigger caspase activation or perform other functions relevant to apoptosis, including cytochrome c (cyt-c), caspases, AIF, and SMAC (Diablo). The mechanisms by which these proteins escape from mitochondria remain enigmatic. Moreover, it is unclear whether release of these proteins versus disturbances in core mitochondrial functions represents the cell death commitment mechanism. In this regard, suppression of apoptosis using broad-spectrum caspase inhibitory compounds has been reported in many circumstances to prevent the morphological and biochemical manifestations of apoptosis, and yet not protect cells from death and not preserve clonigenic survival. Thus, while mitochondrial damage can be coupled to caspase activation pathways, cell death commitment often occurs upstream of caspase activation when mitochondria-dependent cell death pathways are invoked. Here, we review evidence implicating dysregulation of cellular pH as a component of the cell death mechanism involving mitochondria. Cell Death and Differentiation (2000) 7, 1155 - 1165  相似文献   

18.
Caspase-independent cell death   总被引:19,自引:0,他引:19  
Caspase activation has been frequently viewed as synonymous with apoptotic cell death; however, caspases can also contribute to processes that do not culminate in cell demise. Moreover, inhibition of caspases can have cytoprotective effects. In a number of different models, caspase inhibition does not maintain cellular viability and instead shifts the morphology of death from apoptosis to nonapoptotic pathways. Here, we explore the contribution of caspases to cell death, either as upstream signals or as downstream effectors contributing to apoptotic morphology, as well as alternative strategies for cell death inhibition. Such alternative strategies may either target catabolic hydrolases or be aimed at preventing mitochondrial membrane permeabilization and its upstream triggers.  相似文献   

19.
Apoptosis effector mechanisms: A requiem performed in different keys   总被引:2,自引:0,他引:2  
Apoptosis is the regulated form of cell death utilized by metazoans to remove unneeded, damaged, or potentially deleterious cells. Certain manifestations of apoptosis may be associated with the proteolytic activity of caspases. These changes are often held as hallmarks of apoptosis in dying cells. Consequently, many regard caspases as the central effectors or executioners of apoptosis. However, this “caspase-centric” paradigm of apoptotic cell death does not appear to be as universal as once believed. In fact, during apoptosis the efficacy of caspases may be highly dependent on the cytotoxic stimulus as well as genetic and epigenetic factors. An ever-increasing number of studies strongly suggest that there are effectors in addition to caspases, which are important in generating apoptotic signatures in dying cells. These seemingly caspase-independent effectors may represent evolutionarily redundant or failsafe mechanisms for apoptotic cell elimination. In this review, we will discuss the molecular regulation of caspases and various caspase-independent effectors of apoptosis, describe the potential context and/or limitations of these mechanisms, and explore why the understanding of these processes may have relevance in cancer where treatment is believed to engage apoptosis to destroy tumor cells.  相似文献   

20.
The autophagosomal-lysosomal compartment in programmed cell death   总被引:19,自引:0,他引:19  
In the last decade a tremendous progress has been achieved in understanding the control of apoptosis by survival and death factors as well as the molecular mechanisms of preparation and execution of the cell's suicide. However, accumulating evidence suggests that programmed cell death (PCD) is not confined to apoptosis but that cells use different pathways for active self-destruction as reflected by different morphology: condensation prominent, type I or apoptosis; autophagy prominent, type II; etc. Autophagic PCD appears to be a phylogenetically old phenomenon, it may occur in physiological and disease states. Recently, distinct biochemical and molecular features have been be assigned to this type of PCD. However, autophagic and apoptotic PCD should not be considered as mutually exclusive phenomena. Rather, they appear to reflect a high degree of flexibility in a cell's response to changes of environmental conditions, both physiological or pathological. Furthermore, recent data suggest that diverse or relatively unspecific signals such as photodamage or lysosomotropic agents may be mediated by lysosomal cysteine proteases (cathepsins) to caspases and thus, apoptosis. The present paper reviews morphological, functional and biochemical/molecular data suggesting the participation of the autophagosomal-lysosomal compartment in programmed cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号