首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract. Parasitoid host range may proceed from traits affecting host suitability, traits affecting parasitoid foraging behaviour, or both. We tested the hypothesis that encapsulation can be used as a reliable indicator of parasitoid host range in two closely related larval endoparasitoids of Lepidoptera. Cotesia glomerata (L.) (Hymenoptera: Braconidae) is gregarious and a generalist on several species of Pieridae, whereas C. rubecula (Marshall) is solitary and specific to Pieris rapae (L.). We determined the effects of host species ( Pieris brassicae (L.), P. napi (L.) and P. rapae ) (Lepidoptera: Pieridae) and host developmental stage (early first, second and third instar) on encapsulation of parasitoid eggs. Host species and parasitoid species, as well as the resulting interaction between these two factors had significant effects on encapsulation of Cotesia eggs. Encapsulation in Pieris hosts was much lower for C. glomerata (<34%, except for second and third instar of P. rapae ) than for C. rubecula (>32%), even when the latter was parasitizing P. rapae. Encapsulation increased with the age of the larvae, although the only significant difference was for C. glomerata. Overall, P. rapae showed a stronger encapsulation reaction than P. brassicae and P. napi. Encapsulation levels of C. glomerata corresponded well to patterns of female host species and host age preference for oviposition and parasitoid larval performance. In contrast, percentages of encapsulation of C. rubecula were not consistent with host preference and host suitability. We argue that encapsulation alone is unlikely to provide a sufficient explanation for C. glomerata and C. rubecula host range.  相似文献   

2.
Several recent models examining the developmental strategies of parasitoids attacking hosts which continue feeding and growing after parasitism (=koinobiont parasitoids) assume that host quality is a non-linear function of host size at oviposition. We tested this assumption by comparing the growth and development of males of the solitary koinobiont endoparasitoid, Cotesia rubecula, in first (L1) to third (L3) larval instars of its preferred host, Pieris rapae and in a less preferred host, Pieris brassicae. Beginning 3 days after parasitism, hosts were dissected daily, and both host and parasitoid dry mass was determined. Using data on parasitoid dry mass, we measured the mean relative growth rate of C. rubecula, and compared the trajectories of larval growth of the parasitoid during the larval and pupal stages using non-linear equations. Parasitoids generally survived better, completed development faster, and grew larger in earlier than in later instars of both host species, and adult wasps emerging from P. rapae were significantly larger than wasps emerging from all corresponding instars of P. brassicae. During their early larval stages, parasitoids grew most slowly in L1 P. rapae, whereas in all other host classes of both host species growth to pupation proceeded fairly uniformly. The growth of both host species was markedly reduced after parasitism compared with controls, with the development of P. brassicae arrested at an earlier stage, and at a smaller body mass, than P. rapae. Our results suggest that C. rubecula regulates certain biochemical processes more effectively in P. rapae than in P. brassicae, in accordance with its own nutritional and physiological requirements. Furthermore, we propose that, for parasitoids such as C. rubecula, which do not consume all host tissues prior to pupation, that parasitoid size and host quality may vary independently of host size at oviposition and at larval parasitoid egression.  相似文献   

3.
The introduction of a new species can change the characteristics of other species within a community. These changes may affect discontiguous trophic levels via adjacent trophic levels. The invasion of an exotic host species may provide the opportunity to observe the dynamics of changing interspecific interactions among parasitoids belonging to different trophic levels. The exotic large white butterfly Pieris brassicae invaded Hokkaido Island, Japan, and quickly spread throughout the island. Prior to the invasion, the small white butterfly P. rapae was the host of the primary parasitoid Cotesia glomerata, on which both the larval hyperparasitoid Baryscapus galactopus and the pupal hyperparasitoid Trichomalopsis apanteroctena depended. At the time of the invasion, C. glomerata generally laid eggs exclusively in P. rapae. During the five years following the invasion, however, the clutch size of C. glomerata in P. rapae gradually decreased, whereas the clutch size in P. brassicae increased. The field results corresponded well with laboratory experiments showing an increase in the rate of parasitism in P. brassicae. The host expansion of C. glomerata provided the two hyperparasitoids with an opportunity to choose between alternative hosts, that is, C. glomerata within P. brassicae and C. glomerata within P. rapae. Indeed, the pupal hyperparasitoid T. apanteroctena shifted its preference gradually to C. glomerata in P. brassicae, whereas the larval hyperparasitoid B. galactopus maintained a preference for C. glomerata in P. rapae. These changes in host preference may result from differential suitability of the two host types. The larval hyperparasitoid preferred C. glomerata within P. rapae to C. glomerata within P. brassicae, presumably because P. brassicae larvae attacked aggressively, thereby hindering the parasitization, whereas the pupal hyperparasitoid could take advantage of the competition-free resource by shifting its host preference. Consequently, the invasion of P. brassicae has changed the host use of the primary parasitoid C. glomerata and the pupal hyperparasitoid T. apanteroctena within a very short time.  相似文献   

4.
The attack rate of a population of the braconid parasitoid Cotesia glomerata, introduced into the USA over 100 years ago as a parasitoid of Pieris rapae, was compared with that of a native British population, which normally attacks P. brassicae, and with that of a P. rapae specialist, Cotesia rubecula. British C. glomerata attacked P. brassicae at a much higher rate than it attacked P. rapae. In comparison with British C. glomerata, C. rubecula showed a higher attack rate with P. rapae. American C. glomerata attacked P. rapae at a slightly higher rate than did British C. glomerata, but not at as high a rate as that achieved by C. rubecula. The differences in each comparison were statistically significant. The possible causes of the differences between British and American C. glomerata attacking P. rapae are discussed. They may be due to genetic or environmental effects. Egg load did not appear to be a factor limiting the number of hosts parasitized under the conditions of the experiments.  相似文献   

5.
The main objective of this study was to determine the extent to which host acceptance behaviour as related to host species, age, and defensive behaviour might explain the differences in host use that exist between two congeneric and sympatric species of parasitic wasps. Cotesia glomerata (L.) (Hymenoptera: Braconidae) is gregarious and generalist on several species of Pieridae, whereas C. rubecula (Marshall) is solitary and specific to Pieris rapae (L.). Cotesia species differed in their responses to host species (P. brassicae (L.), P. napi (L.) and P. rapae) and developmental stage (early and late 1st, 2nd and 3rd instars). In no-choice tests, host acceptance by C. rubecula was higher for p. rapae and females did not distinguish among the 6 host ages. In contrast, when foraging for P. brassicae and P. napi, C. rubecula females more readily attacked early first instar. Cotesia glomerata showed a higher degree of behavioural plasticity towards acceptance of Pieris host species and host age than did C. rubecula. Cotesia glomerata females parasitized the three Pieris species and showed higher acceptance of first and second instars over third instar. Oviposition success was also influenced by host defensive behaviour. The frequency and the effectiveness of defensive behaviour rose with increasing age of the host, P. brassicae being the most aggressive Pieris species. Furthermore, the mean duration of C. glomerata oviposition was significantly reduced by the defensive reactions of P. brassicae, which would likely affect parasitoid fitness as oviposition time is positively correlated to clutch size in C. glomerata. Acceptance frequencies corresponded well to field reports of Pieris-Cotesia associations and to patterns of parasitoid larval performance, suggesting that the acceptance phase might be used as a reliable indicator of Cotesia host-specificity.  相似文献   

6.
Abstract.  1. Superparasitism occurs in Cotesia glomerata (Hymenoptera: Braconidae), a gregarious endoparasitoid of Pieris spp. (Lepidoptera: Pieridae). The response of P. brassicae larvae to superparasitism and the consequences for the parasitoid were examined in order to elucidate the ecological significance of this behaviour.
2. Field surveys of a Swiss population revealed that C. glomerata brood sizes from P. brassicae larvae ranged from three to 158, and both the female ratio and the body weight of emergent wasps correlated negatively with brood size. In the laboratory, single oviposition on P. brassicae larvae did not produce any brood size larger than 62, but brood size increased with superparasitism.
3. Laboratory experiments demonstrated that both naive and experienced female wasps were willing to attack hosts that had been newly parasitised by themselves or conspecifics. Superparasitism reduced survivorship but increased food consumption and weight growth in P. brassicae larvae. Superparasitism lengthened parasitoid development and prolonged the feeding period of host larvae.
4. Despite a trade-off between maximising brood size and optimising the fitness of individual offspring, two or three ovipositions on P. brassicae larvae resulted in a greater dry female mass than did a single oviposition on the host. Thus, superparasitism might be of adaptive significance under certain circumstances, especially when host density is low and unparasitised hosts are rare in a habitat.  相似文献   

7.
Parasitoid load affects plant fitness in a tritrophic system   总被引:2,自引:0,他引:2  
Plants attacked by herbivorous insects emit volatile compounds that attract predators or parasitoids of the herbivores. Plant fitness increases when these herbivorous insects are parasitized by solitary parasitoids, but whether gregarious koinobiont parasitoids also confer a benefit to plant fitness has been disputed. We investigated the relationship between parasitoid load of the gregarious Cotesia glomerata (L.) (Hymenoptera: Braconidae), food consumption by larvae of their host Pieris brassicae L. (Lepidoptera: Pieridae), and seed production in a host plant, Brassica nigra L. (Brassicaceae), in a greenhouse experiment. Plants damaged by caterpillars containing single parasitoid broods produced a similar amount of seeds as undamaged control plants and produced significantly more seeds than plants with unparasitized caterpillars feeding on them. Increasing the parasitoid load to levels likely resulting from superparasitization, feeding by parasitized caterpillars was significantly negatively correlated with plant seed production. Higher parasitoid brood sizes were negatively correlated with pupal weight of Cotesia glomerata , revealing scramble competition leading to a fitness trade-off for the parasitoid. Our results suggest that in this tritrophic system plant fitness is higher when the gregarious parasitoid deposits a single brood into its herbivorous host. A prediction following from these results is that plants benefit from recruiting parasitoids when superparasitization is prevented. This is supported by our previous results on down-regulation of synomone production when Brassica oleracea was fed on by parasitized caterpillars of P. brassicae . We conclude that variable parasitoid loads in gregarious koinobiont parasitoids largely explain existing controversies about the putative benefit of recruiting these parasitoids for plant reproduction.  相似文献   

8.
Comparison of closely related species can elucidate adaptive differences in species characteristics. The present study compares the effect of experience on the host-finding behaviour of two Cotesia (Hymenoptera: Braconidae) parasitoid species that differ in their degree of specialization. After multiple experiences with host larvae, females of the generalist parasitoid Cotesia glomerata showed a clear preference for volatiles from Pieris brassicae-infested Brussels sprouts leaves over P. rapae-infested Brussels sprouts leaves in two-choice tests (preference learning at herbivore level). A single experience with a host did not lead to such preferences.Experience of adult C. glomerata with different P. brassicae-infested cabbage varieties or nasturtium (Tropaeolum majus L.) led to preferences for the experienced plant-host complex in most cases (preference learning at plant level). No effect of rearing plant (early adult learning) on plant preference was found.In contrast to the generalist C. glomerata, females of the specialist C. rubecula did not show preference learning at the herbivore level. At the plant level, experience with different P. rapae-infested cabbage varieties in no case resulted in a difference in preference between treatments. The results support the hypothesis that learning plays a more important role in searching in generalists than in specialist parasitoids. The behaviour of the generalist C. glomerata was more easily changed by experience than that of the specialist C. rubecula.  相似文献   

9.
The relative suitability of four plants was studied for larvae of Pieris rapae L. and its parasitoid Cotesia rubecula (Marshall). For unparasitized P. rapae, pupal dry weight and egg-pupa growth rate were higher on cabbage, radish and nasturtium than on Indian hedge mustard. Larval developmental rate and size were greatest for C. rubecula when its host was feeding on nasturtium. Wasp survival was not affected by the host insect/plant combination in which the parasitoid developed. These results indicate that the plant on which host larvae feed is an important factor in development of the parasitoid.  相似文献   

10.
This study aimed to evaluate the quality of the aphid Myzus persicae (Sulzer), Lipaphis erysimi (Kaltenbach) and Brevicoryne brassicae (L.) as hosts for the parasitoid Diaeretiella rapae (McIntosh). Parasitization by D. rapae was higher on M. persicae than on L. erysimi and B. brassicae. The time of development of D. rapae from egg to mummy or egg to adult male or female were shorter on M. persicae than on L. erysimi and B. brassicae. Moreover, D. rapae showed no significant differences in the emergence rate, sex ratio and longevity when reared on the three aphid species. Myzus persicae was the largest aphid host, with B. brassicae and L. erysimi being of intermediate and of small size, respectively. Diaeretiella rapae reared on M. persicae was larger than when reared on L. erysimi and B. brassicae, and females of D. rapae were significantly larger than males on M. persicae, but males of D. rapae were larger than females when reared on L. erysimi. No difference in size was detected between males and females in parasitoids reared on B. brassicae. Among the aphid species studied, M. persicae was found to be the most suitable to D. rapae.  相似文献   

11.
Field experiments with foraging parasitoids are essential to validate the conclusions from laboratory studies and to interpret differences in searching and host selection behaviour of parasitoid species. Furthermore, field experiments can indicate whether the parameters measured in the laboratory are relevant to elucidation of the ecological processes under study, such as adaptation or species interactions. In previous extensive laboratory studies we studied plant- and host-searching behaviour, host acceptance, host suitability; host plant preference, and learning of two congeneric parasitoids of Pieris caterpillars: the generalist Cotesia glomerata, which has been reported to attack several Pieridae species, and C. rubecula, a specialist of the small cabbage white Pieris rapae. In the present field study our aim was to verify the importance of these previous laboratory findings for explaining the performance of these two species in the field. We investigated experimentally whether parasitism on three Pieris species varied with parasitoid species and with food plant of the caterpillars. We exposed different types of host plants, infested with different Pieris species, to parasitism by natural populations of Cotesia species, by setting the experimental plants out in Brussels sprouts cabbage fields. Furthermore we made direct observations of parasitoid foraging in the field. In general, the field results confirmed our predictions on the range of host plant and host species used in the field. The two Cotesia species appear to coexist through niche segregation, since C. glomerata was mainly recovered from P. brassicae and C. rubecula from P. rapae. Although C. glomerata is a generalist at the species level, it can be a specialist at the population level under certain ecological circumstances. Our study shows the importance of variation in host plant attraction and host species acceptance in restricting host plant and host diet in the field. Furthermore the results suggest that, at least in the Netherlands, specialisation of C. glomerata on P. brassicae may occur as a result of C. rubecula outcompeting C. glomerata in P. rapae larvae. Received: 8 July 1999 / Accepted: 31 January 2000  相似文献   

12.
Herbivore-induced plant defences influence the behaviour of herbivores as well as that of their natural enemies. Jasmonic acid is one of the key hormones involved in both these direct and indirect induced defences. Jasmonic acid treatment of plants changes the composition of defence chemicals in the plants, induces volatile emission, and increases the production of extrafloral nectar. However, few studies have addressed the potential influence of induced defences on flower nectar chemistry and pollinator behaviour. These have shown that herbivore damage can affect pollination rates and plant fitness. Here, we have investigated the effect of jasmonic acid treatment on floral nectar production and the attraction of pollinators, as well as the effect on the behaviour of an herbivore and its natural enemy. The study system consisted of black mustard plants, Brassica nigra L. (Brassicaceae), pollinators of Brassica nigra (i.e., honeybees and syrphid flies), a specialist herbivore, Pieris rapae L. (Lepidoptera: Pieridae), and a parasitoid wasp that uses Pieris larvae as hosts, Cotesia glomerata L. (Hymenoptera: Braconidae). We show that different trophic levels are differentially affected by jasmonic acid-induced changes. While the herbivore prefers control leaves over jasmonic acid-treated leaves for oviposition, the parasitoid C. glomerata is more attracted to jasmonic acid-treated plants than to control plants. We did not observe differences in pollinator preference, the rates of flower visitation by honeybees and syrphid flies were similar for control and jasmonic acid-treated plants. Plants treated with jasmonic acid secreted less nectar than control plants and the concentrations of glucose and fructose tended to be lower than in nectar from control plants. Jasmonic acid treatment resulted in a lower nectar production than actual feeding damage by P. rapae caterpillars.  相似文献   

13.
Fourteen naturally occurring sugars were individually tested with respect to their effect on Cotesia glomerata longevity. Parasitoids kept with solutions of either sucrose, glucose and fructose lived for >30 days. This constitutes a factor 15 increase in life span in comparison to control individuals kept with water only. Stachyose, mannose, melezitose, melibiose, maltose and erlose increased parasitoid longevity by a factor of 11.2-6.9. Solutions of galactose and trehalose had a marginal, but still significant effect. Lactose and raffinose did not raise parasitoid longevity, while rhamnose actually reduced parasitoid survival. In an additional experiment, the relationship between quantity of sugar consumption and longevity was established for all 14 sugars. To study the effect of an unsuitable sugar in sugar mixtures, a range of glucose:rhamnose mixtures was tested. Even at 20% of the sugar mixture rhamnose suppressed the nutritional benefit of the 80% glucose. The nutritional suitability of the sugars shows a positive correlation with the previously reported gustatory response towards the individual sugars. Patterns of sugar utilization are discussed with respect to hydrolytic enzymes and carbohydrate biochemical characteristics. Our findings for C. glomerata are compared to patterns of sugar utilization reported for other species. The comparison between C. glomerata and its host Pieris brassicae reveals that the parasitoid is capable of utilizing a range of sugars that are unsuitable to its herbivorous host. This specificity opens up opportunities to select food supplements for biological control programs that selectively target the antagonist, without concurrently enhancing herbivore fitness.  相似文献   

14.
ABSTRACT. Specificity and sensitivity of gustatory neurones in response to twenty-two amino acids were studied in larvae of Pieris brassicae L. and Pieris rapae L. (Lepidoptera: Pieridae) using electrophysiological methods. Twelve amino acids stimulated a specific amino acid receptor cell in the lateral styloconic sensillum on the maxillary galea of both species, and a further two evoked single unit responses in the same sensillum of P.brassicae only. Histidine, phenylalanine and tryptophane were the weakest stimulants for P.brassicae , but were among the four best stimulants for P.rapae . In both species, eight amino acids were ineffective. Significant differences in stimulatory effectiveness were found between amino acids. Nutritionally essential amino acids were more effective in both species, as in five other lepidopterous species. Similarities with postulated sites for amino acid recognition in the dipteran Boettcherisca peregrina were found.
Concentration-response (C/R) relations were studied for five amino acids. Significant differences were found in saturated response levels. Parameters characterizing C/R relations were estimated using a logistic model. Comparing C/R parameters with phytochemical data on concentrations of free amino acids in a common host plant, Brassica oleracea L., shows that amino acids are effective stimuli at their natural concentrations. The amino acid chemoreceptor seems able to transmit information about concentration differences of amino acids in the plant tissue.  相似文献   

15.
Cotesia glomerata L. (Hymenoptera: Braconidae) is a parasitoid of early instar larvae of Pieris brassicae L. (Lepidoptera: Pieridae). Late instars of P. brassicae can more often overcome parasitization by hemocytic encapsulation of C. glomerata eggs. Short-term hemocyte responses to parasitization were examined in third and fourth instar larvae of P. brassicae. Total and differential hemocyte counts did not differ between parasitized and unparasitized host larvae. A rapid, but temporary decrease of total hemocyte as well as plasmatocyte numbers was observed immediately after oviposition. Numbers of hemocytes adhering to tissues were shown to be the same in untreated, wounded and parasitized P. brassicae larvae by tracing hemocytes with monoclonal antibodies as markers. The in vitro spreading ability of hemocytes from unparasitized third and fourth instar larvae was lower than that of the last instar's; parasitization, however, had no influence on hemocyte spreading. We therefore suggest that the higher parasitization success of C. glomerata in earlier instars of P. brassicae is mainly due to the low spreading ability of the hemocytes. Abbreviations: ACS – anticoagulant saline; BSA – bovine serum albumin; DABCO – 1,4-diazabicyclo-[2,2,2]-octane; DHC – differential hemocyte count; FITC – fluorescein isothiocyanate; GR – granular cells; LPS – lipopolysaccharide; mAb – monoclonal antibody; OE – oenocytoids; PL – plasmatocytes; PRO – prohemocytes; PS – Pieris saline; PVP – polyvinylpyrrolidone; TBS – tris-buffered saline; THC – total hemocyte count.  相似文献   

16.
Lysibia nana is a solitary, secondary idiobiont hyperparasitoid that attacks newly cocooned pre-pupae and pupae of several closely related gregarious endoparasitoids in the genus Cotesia, including C. glomerata. Prior to oviposition, the female wasp injects paralysing venom into the host, thus preventing further development. Here, host fate, emerging hyperparasitoid mass, and egg-to-adult development time was compared in hosts parasitized at different ages over 24-h intervals. Cocoons of C. glomerata were parasitized by L. nana at 12, 36, 60, 84, and 108 h post-egression from the secondary host, Pieris brassicae. Hyperparasitoid survival exceeded 80% in hosts parasitized within the first 60 h after pupation, but dropped thereafter, with no hyperparasitoids emerging in hosts aged 108 h. The mass of hyperparasitoids was positively correlated with the mass of the host cocoon, and this relationship remained consistent in hosts up to 60 h old. Within each host age cohort, the mass of male and female wasps was not significantly different. Development time in L. nana was uniform in hosts up to 60 h old, but increased significantly in 84-h-old hosts, and male wasps completed their development earlier than female wasps. Regulation of host growth varied with the age of the host at parasitism, with the early growth of older hosts reduced much more dramatically than young hosts. Unlike most parasitoids, pupal hyperparasitoids do not make cocoons but instead pupate within the already prepared cocoon of the host parasitoid. Consequently, for a given mass of cocoon, newly emerged L. nana adults were remarkably similar in size with male and female adults of C. glomerata. This reveals that L. nana is extremely efficient at exploiting its primary parasitoid host.  相似文献   

17.
Abstract:  Several studies have reported that flowering herbs, which grow naturally or are sown adjacent to agricultural fields, may be an important source of nutrients for natural enemies. Many parasitoids readily feed on plant exudates such as floral nectar, which contain different types of sugars that enable the insects to optimize their longevity, mobility and reproductive success. However, leaf tissues of plants grown in the margins of agricultural fields may also provide food for immature stages of insect herbivores, such as caterpillars, that are in turn attacked by parasitoids. Herbivores and their parasitoids may later disperse into the crop, so the nutritional quality of surrounding plants, as this affects herbivore and parasitoid fitness, may also influence the success of biological control programmes, especially later in the season. Here, we compare the suitability of three species of cruciferous plants (Brassicaceae) on the development of Pieris rapae L. (Lep., Pieridae) and its solitary endoparasitoid, Cotesia rubecula Marshall (Hym., Bracondiae). Insects were reared on a feral population of cabbage, Brassica oleracea , on radish Raphanus sativus , which is widely sown in agricultural margins, and on hedge mustard, Sisymbrium officinale , a wild crucifer which often grows in medium to large stands along road verges and field edges. Development time in both the herbivore and parasitoid were extended on R. sativus , compared with the other two species, whereas C. rubecula completed its development most rapidly on B. oleracea . Moreover, adult butterflies and parasitoids were significantly smaller when reared on R. sativus plants. Our results reveal that differences in the quality of plants growing adjacent to agricultural fields can affect the development of key herbivores and their parasitoids. This should be borne in mind when establishing criteria for the selection of floral biodiversity.  相似文献   

18.
The importance of bird predation as a selective pressure on the eggs, larvae and pupae of the cabbage butterflies, Pieris rapae L. and P. brassicae L. has been investigated in a rural garden and an allotment. Birds are the main predators of all stages in a well-tended garden whereas in a field the eggs and young larvae are mainly preyed upon by arthropods. The species of avian predators vary according to the stage of development and species of prey. Consequently the relative survival rate of P. rupae and P. brussicue varies with stage of development. This changing pattern of survival has in turn acted as a selective pressure on their two main braconid parasites. Many aspects of the size, shape, colour and behaviour of the larvae and pupae of both species of Pieris appear to be adaptations to the selective pressures exerted by bird predation.  相似文献   

19.
Abstract. Plasticity in in-flight orientation to odours from the plant-host complex (PHC: plant infested by the host) was investigated in Cotesia rubecula , a specialist larval parasitoid of Pieris rapae which feeds almost exclusively upon cruciferous plants. A wind tunnel was used to study effects of both concentration of volatile emissions and females' experience. A low proportion of naive wasps located weak odourant sources, i.e. either a single cabbage leaf or a leaf with two first stadium P.rapae larvae. This rate could be elevated by increasing the odour concentration or by providing the wasps with either a previous oviposition experience on the PHC or an exposure to the PHC odour. Previous oviposition on washed larvae (diet-fed, starved and then rinsed with distilled water) in an odourless environment had no effect, which suggested that increased sensitivity to the PHC odour resulted from olfactory experience. The number of mature eggs in a female was affected by oviposition on the PHC or washed larvae but not by exposure to the PHC odour. Therefore the number of mature eggs available was not correlated to the observed differences in orientation behaviour. Possible mechanisms of the behavioural changes described are discussed in the light of the host specificities of C.rubecula and P.rapae.  相似文献   

20.
Females of the larval parasitoidCotesia glomerata (L.) use plant-associated cues to locate their lepidopteran host,Pieris rapae L. In this study we investigated the influence of four host plant species,Brassica oleracea var.acephala (‘Vates’ kale),Tropaeolum majus (nasturtium),Lunaria annua (honesty), andCleome spinosa (spider flower), on two components of the host selection process inC. glomerata, namely, attraction and host acceptance. Choice tests in a flight tunnel showed that parasitoids were attracted to some host plant species more than to others in the absence of host larvae.B. oleracea was the most attractive plant species, followed byL. annua, T. majus, andC. spinosa. In previous studies it was shown thatB. oleracea carries highly suitable hosts forC. glomerata and that, in the field, parasitization rates on this plant were the highest. When host larvae were reared on the four host plant species and then transferred to a common substrate (B. oleracea var.capitata, cabbage), plant species that had served as diet for the hosts did not have a significant effect on acceptance for parasitization. Thus, parasitoids were attracted to host plant species differentially, but they did not discriminate among host larvae based on the dietary history of their hosts. ForC. glomerata, it appears that phytochemistry mediates host selection more by influencing parasitoid attraction than it does by affecting host acceptance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号