首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bakers' yeast is auxotrophic for biotin (vitamin H) and depends on the efficient uptake of this compound from the environment. A mutant strain with strongly reduced biotin uptake and with reduced levels of protein biotinylation was identified. The strain was auxotrophic for long-chain fatty acids, and this auxotrophy could be suppressed with high levels of biotin in the medium. After transformation of this mutant with a yeast genomic library, the unassigned open reading frame YGR065C was identified to complement this mutation. This gene codes for a protein with 593 amino acids and 12 putative transmembrane helices. Northern blot analysis revealed that, in wild-type cells, the corresponding mRNA levels were increased at low biotin concentrations. Likewise, cellular biotin uptake was increased with decreasing biotin availability. Expression of YGR065C under the control of the constitutive ADH1 promoter resulted in very high biotin transport rates across the plasma membrane that were no longer regulated by the biotin concentration in the growth medium. We conclude that YGR065C encodes the first biotin transporter identified for a non-mammalian organism and designate this gene VHT1 for vitamin H transporter 1.  相似文献   

2.
The protein product of the YGR205w gene of Saccharomyces cerevisiae was targeted as part of our yeast structural genomics project. YGR205w codes for a small (290 amino acids) protein with unknown structure and function. The only recognizable sequence feature is the presence of a Walker A motif (P loop) indicating a possible nucleotide binding/converting function. We determined the three-dimensional crystal structure of Se-methionine substituted protein using multiple anomalous diffraction. The structure revealed a well known mononucleotide fold and strong resemblance to the structure of small metabolite phosphorylating enzymes such as pantothenate and phosphoribulo kinase. Biochemical experiments show that YGR205w binds specifically ATP and, less tightly, ADP. The structure also revealed the presence of two bound sulphate ions, occupying opposite niches in a canyon that corresponds to the active site of the protein. One sulphate is bound to the P-loop in a position that corresponds to the position of beta-phosphate in mononucleotide protein ATP complex, suggesting the protein is indeed a kinase. The nature of the phosphate accepting substrate remains to be determined.  相似文献   

3.
Summary The reaction of the intracellular NADpool after irradiation of cells either with UV-C light or with X-rays was studied in four different strains of the yeastS. cerevisiae. We found neither in wildtype strains nor in radiation sensitive mutants remarkable changes in the NADpool within 2 h after irradiation. Preculture of cells in medium enriched with nicotinic acid, a precursor of NAD, influenced the intracellular NAD concentration only to a small extend in all strains, but enhanced the radiation resistance against UV-C significantly in one rad6 mutant strain. The uptake of NAD and NAC by all strains before and after irradiation with UV-C and X-ray was tested also. NAD generally is taken up by the cells to a very low extent before and after irradiation without irradiation-dose dependency. NAC is taken up by all strains before and after irradiation. Only the rad6 mutant exhibited an irradiation-dose dependent NAC-uptake after UV-C irradiation.Abbreviations ADPRT ADPribosyltransferase - NAC nicotinic acid - YEPG yeast extract-peptone-glucose medium  相似文献   

4.
The peroxin Pex23p of the yeast Yarrowia lipolytica exhibits high sequence similarity to the hypothetical proteins Ylr324p, Ygr004p, and Ybr168p encoded by the Saccharomyces cerevisiae genome. Ylr324p, Ygr004p, and Ybr168p are integral to the peroxisomal membrane and act to control peroxisome number and size. Synthesis of Ylr324p and Ybr168p, but not of Ygr004p, is induced during incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. Cells deleted for YLR324w exhibit increased numbers of peroxisomes, whereas cells deleted for YGR004w or YBR168w exhibit enlarged peroxisomes. Ylr324p and Ybr168p cannot functionally substitute for one another or for Ygr004p, whereas Ygr004p shows partial functional redundancy with Ylr324p and Ybr168p. Ylr324p, Ygr004p, and Ybr168p interact within themselves and with Pex28p and Pex29p, which have been shown also to regulate peroxisome size and number. Systematic deletion of genes demonstrated that PEX28 and PEX29 function upstream of YLR324w, YGR004w, and YBR168w in the regulation of peroxisome proliferation. Our data suggest a role for Ylr324p, Ygr004p, and Ybr168p--now designated Pex30p, Pex31p, and Pex32p, respectively--together with Pex28p and Pex29p in controlling peroxisome size and proliferation in Saccharomyces cerevisiae.  相似文献   

5.
NAD(+) is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+) consuming enzymes. NAD(+) biosynthesis is required for two different regimens that extend lifespan in yeast. NAD(+) is synthesized from tryptophan and the three vitamin precursors of NAD(+): nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD(+) precursors increases intracellular NAD(+) levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD(+) metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD(+) metabolism by balancing import and export of NAD(+) precursor vitamins.  相似文献   

6.
7.
8.
NAD(+) is an essential coenzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+)-consuming enzymes. Nicotinamide riboside is a recently discovered eukaryotic NAD(+) precursor converted to NAD(+) via the nicotinamide riboside kinase pathway and by nucleosidase activity and nicotinamide salvage. Nicotinamide riboside supplementation of yeast extends replicative life span on high glucose medium. The molecular basis for nicotinamide riboside uptake was unknown in any eukaryote. Here, we show that deletion of a single gene, YOR071C, abrogates nicotinamide riboside uptake without altering nicotinic acid or nicotinamide import. The gene, which is negatively regulated by Sum1, Hst1, and Rfm1, fully restores nicotinamide riboside import and utilization when resupplied to mutant yeast cells. The encoded polypeptide, Nrt1, is a predicted deca-spanning membrane protein related to the thiamine transporter, which functions as a pH-dependent facilitator with a K(m) for nicotinamide riboside of 22 microm. Nrt1-related molecules are conserved in particular fungi, suggesting a similar basis for nicotinamide riboside uptake.  相似文献   

9.
To characterize the substrate specificity of the putative RNA:pseudouridine (Psi)-synthase encoded by the Saccharomyces cerevisiae open reading frame (ORF) YGR169c, the corresponding gene was deleted in yeast, and the consequences of the deletion on tRNA and small nuclear RNA modification were tested. The resulting DeltaYGR169c strain showed no detectable growth phenotype, and the only difference in Psi formation in stable cellular RNAs was the absence of Psi at position 31 in cytoplasmic and mitochondrial tRNAs. Complementation of the DeltaYGR169c strain by a plasmid bearing the wild-type YGR169c ORF restored Psi(31) formation in tRNA, whereas a point mutation of the enzyme active site (Asp(168)-->Ala) abolished tRNA:Psi(31)-synthase activity. Moreover, recombinant His(6)-tagged Ygr169 protein produced in Escherichia coli was capable of forming Psi(31) in vitro using tRNAs extracted from the DeltaYGR169c yeast cells as substrates. These results demonstrate that the protein encoded by the S. cerevisiae ORF YGR169c is the Psi-synthase responsible for modification of cytoplasmic and mitochondrial tRNAs at position 31. Because this is the sixth RNA:Psi-synthase characterized thus far in yeast, we propose to rename the corresponding gene PUS6 and the expressed protein Pus6p. Finally, the cellular localization of the green fluorescent protein-tagged Pus6p was studied by functional tests and direct fluorescence microscopy.  相似文献   

10.
Summary Growth and metabolism of Penicillium lilacinum were followed over a period of incubation of 18 days on a high sugar-salts medium favourable for fat formation with or without the addition of riboflavin or nicotinic acid to the growth medium. The high sugar content in the culture media helped rapid uptake and vigorous growth. Nicotinic acid and to a less extent riboflavin, enhanced sugar and nitrogen absorption and the rate of building up of cellular material in consequence. Nitrogenous compounds have been released from the mycelial cells into the external media before growth started to decline; the release being earlier and more rapid in the presence of nicotinic acid. It is suggested that the release of nitrogenous compounds in this case is not purely due to autolysis, and that nicotinic acid affected this process by increasing cell permeability. Both riboflavin and nicotinic acid accelerated the accumulation of carbohydrates and fat in the mycelium. Fat formation became active only when the nitrogen content of the culture media dropped to a very low value and the building of nitrogenous compounds almost stopped. The inverse relationship between synthesis of fat and of complicated nitrogenous compounds was quite clear under the present experimental conditions and was not affected by either riboflavin or nicotinic acid.  相似文献   

11.
12.
When washed yeast cells grown under appropriate conditions were suspended in glucose solution there was a sudden release of α-amino nitrogen into the medium. This released material was of low molecular weight, and its composition was closely similar to that of the intracellular free amino acid pool. During the leakage of amino acids, the yeast did not efficiently absorb labeled amino acids added to the test medium, despite the rapid uptake and metabolism of glucose. Uptake of a labeled amino acid and reabsorption of the released α-amino nitrogen occurred almost simultaneously. When these yeast cells were exposed to glucose in the presence of calcium ions, leakage was strongly inhibited. Butanol under the same conditions increased glucose-induced leakage of cell contents. The adenosine triphosphatase activity of intact yeast cells exposed to glucose was greater than that of cells exposed to water. Yeast cells treated with glucose prior to equilibration with sorbose exhibited less ability to retain the sorbose when washed at 0 C than did cells pretreated with water. It was concluded that glucose-induced leakage of amino acids was the result of two factors acting together. These were (i) a change in membrane permeability associated with glucose uptake, and (ii) a temporary shortage of energy for amino acid uptake or retention.  相似文献   

13.
Recently, we discovered that nicotinamide riboside and nicotinic acid riboside are biosynthetic precursors of NAD+, which are utilized through two pathways consisting of distinct enzymes. In addition, we have shown that exogenously supplied nicotinamide riboside is imported into yeast cells by a dedicated transporter, and it extends replicative lifespan on high glucose medium. Here, we show that nicotinamide riboside and nicotinic acid riboside are authentic intracellular metabolites in yeast. Secreted nicotinamide riboside was detected with a biological assay, and intracellular levels of nicotinamide riboside, nicotinic acid riboside, and other NAD+ metabolites were determined by a liquid chromatography-mass spectrometry method. A biochemical genomic screen indicated that three yeast enzymes possess nicotinamide mononucleotide 5′-nucleotidase activity in vitro. Metabolic profiling of knock-out mutants established that Isn1 and Sdt1 are responsible for production of nicotinamide riboside and nicotinic acid riboside in cells. Isn1, initially classified as an IMP-specific 5′-nucleotidase, and Sdt1, initially classified as a pyrimidine 5′-nucleotidase, are additionally responsible for dephosphorylation of pyridine mononucleotides. Sdt1 overexpression is growth-inhibitory to cells in a manner that depends on its active site and correlates with reduced cellular NAD+. Expression of Isn1 protein is positively regulated by the availability of nicotinic acid and glucose. These results reveal unanticipated and highly regulated steps in NAD+ metabolism.  相似文献   

14.
The uptake of nutrients (glucose, glutamine, and N-acetylglucosamine), the intracellular concentrations of metabolites (glucose-6-phosphate, cyclic AMP, amino acids, trehalose, and glycogen) and cell wall composition were studied in Candida albicans. These analyses were carried out with exponential-phase, stationary-phase, and starved yeast cells, and during germ-tube formation. Germ tubes formed during a 3-h incubation of starved yeast cells (0.8 X 10(8) cells/mL) at 37 degrees C during which time the nutrients glucose plus glutamine or N-acetylglucosamine (2.5 mM of each) were completely utilized. Control incubations with these nutrients at 28 degrees C did not form germ tubes. Uptake of N-acetylglucosamine and glutamine was inhibited by cycloheximide which suggests that de novo protein synthesis was required for the induction of these uptake systems. The glucose-6-phosphate content varied from 0.4 nmol/mg dry weight for starved cells to 2-3 nmol/mg dry weight for growing yeast cells and germ tube forming cells. Trehalose content varied from 85 nmol/mg dry weight (growing yeast cells and germ tube forming cells) to 165 nmol/mg weight (stationary-phase cells). The glycogen content decreased during germ-tube formation (from 800 to 600 nmol glucose equivalent/mg dry weight) but increased (to 1000 nmol glucose equivalent/mg dry weight) in the control incubation of yeast cells. Cyclic AMP remained constant throughout germ-tube formation at 4-6 pmol/mg dry weight. The total amino acid pool was similar in exponential, starved, and germ tube forming cells but there were changes in the amounts of individual amino acids. The overall cell wall composition of yeast cells and germ tube forming cells were similar: lipid (2%, w/w); protein (3-6%), and carbohydrate (77-85%). The total carbohydrates were accounted for as the following fractions: alkali-soluble glucan (3-8%), mannan (20-23%), acid-soluble glucan (24-27%), and acid-insoluble glucan (18-26%). The relative amounts of the alkali-soluble and insoluble glucan changed during starvation of yeast cells, reinitiation of yeast-phase growth, and germ-tube formation. Analysis of the insoluble glucan fraction from cells labelled with [14C]glucose during germ-tube formation showed that the chitin content of the cell wall increased from 0.6% to 2.7% (w/w).  相似文献   

15.
Initial rates of sugar uptake (zero-trans rates) are often measured by incubating yeast cells with radiolabeled sugars for 5 to 30 s and determining the radioactivity entering the cells. The yeast cells used are usually harvested from growth medium, washed, suspended in nutrient-free buffer, and stored on ice before they are assayed. With this method, the specific rates of zero-trans lactose uptake by Kluyveromyces lactis or recombinant Saccharomyces cerevisiae strains harvested from lactose fermentations were three- to eightfold lower than the specific rates of lactose consumption during fermentation. No significant extracellular beta-galactosidase activity was detected. The ATP content and adenylate energy charge (EC) of the yeasts were relatively low before the [(14)C]lactose uptake reactions were started. A short (1- to 7-min) preincubation of the yeasts with 10 to 30 mM glucose caused 1.5- to 5-fold increases in the specific rates of lactose uptake. These increases correlated with increases in EC (from 0.6 to 0.9) and ATP (from 4 to 8 micromol x g dry yeast(-1)). Stimulation by glucose affected the transport V(max) values, with smaller increases in K(m) values. Similar observations were made for maltose transport, using a brewer's yeast. These findings suggest that the electrochemical proton potential that drives transport through sugar/H(+) symports is significantly lower in the starved yeast suspensions used for zero-trans assays than in actively metabolizing cells. Zero-trans assays with such starved yeast preparations can produce results that seriously underestimate the capacity of sugar/H(+) symports. A short exposure to glucose allows a closer approach to the sugar/H(+) symport capacity of actively metabolizing cells.  相似文献   

16.
We report here the characterization and the molecular analysis of the two high affinity permeases that mediate the transport of S-adenosylmethionine (AdoMet) and S-methylmethionine (SMM) across the plasma membrane of yeast cells. Mutant cells unable to use AdoMet as a sulfur source were first isolated and demonstrated to lack high affinity AdoMet transport capacities. Functional complementation cloning allowed us to identify the corresponding gene (SAM3), which encodes an integral membrane protein comprising 12 putative membrane spanning regions and belonging to the amino acid permease family. Among amino acid permease members, the closest relative of Sam3p is encoded by the YLL061w open reading frame. Disruption of YLL061w was shown to specifically lead to cells unable to use SMM as a sulfur source. Accordingly, transport assays demonstrated that YLL061w disruption mutation impaired the high affinity SMM permease, and YLL061w was therefore renamed MMP1. Further study of sam3Delta and mmp1Delta mutant cells showed that in addition to high affinity permeases, both sulfonium compounds are transported into yeast cells by low affinity transport systems that appear to be carrier-facilitated diffusion.  相似文献   

17.
SYNOPSIS Previously, we found that a mutant strain of Tetrahymena pyriformis without food vacuoles failed to grow unless the nutrient media were richly supplemented with vitamins and trace metals. Here we show that calcium folinate alone can replace the extra vitamin supplementation. The mutant requires ∼ 90-fold higher concentrations of folinate than the wild-type cells to give similar growth responses in a chemically defined medium. We infer that the food vacuole is an important route of uptake for this vitamin in the wild-type cells. We found no difference between mutant and wild-type cells in their requirements for nicotinic acid, pantothenic acid, riboflavin-monophosphate, and pyridoxal. We infer that an extravacuolar route contributes importantly to uptake of these 4 compounds.  相似文献   

18.
Previously, we found that a mutant strain of Tetrahymena pyriformis without food vacuoles failed to grow unless the nutrient media were richly supplemented with vitamins and trace metals. Here we show that calcium folinate alone can replace the extra vitamin supplementation. The mutant requires approximately 90-fold higher concentration of folinate than the wild-type cells to give similar growth responses in a chemically defined medium. We infer that the food vacuole is an important route of uptake for this vitamin in the wild-type cells. We found no difference between mutant and wild-type cells in their requirements for nicotinic acid, pantothenic acid, riboflavin-monophosphate, and pyridoxal. We infer that an extravacuolar route contributes importantly to uptake of these 4 compounds.  相似文献   

19.
NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other''s NAD supply by providing alternative precursors.  相似文献   

20.
The enzyme nicotinamide mononucleotide (NMN) adenylyltransferase (NMNAT) (EC 2.7.7.1) catalyzes the transfer of the adenylyl moiety of ATP to NMN to form NAD(+). On the basis of a remarkable structural similarity with previously described Saccharomyces cerevisiae NMNAT (yNMNAT-1), the YGR010-encoded protein was identified as a second isoform of yeast NMNAT (yNMNAT-2). The YGR010 gene was isolated, cloned into a T7-based vector, and successfully expressed in Escherichia coli BL21 cells, yielding high level of NMN adenylyltransferase activity. The purification procedure reported in this paper, consisting of two chromatographic steps, allowed the isolation of 3mg of electrophoretically homogeneous yNMNAT-2 from 1 liter of E. coli culture. Under SDS/PAGE, the recombinant protein resulted in a single polypeptide of 46 kDa, in agreement with the molecular mass of the hypothetical protein encoded by YGR010 gene. The N-terminal sequence of the purified recombinant yNMNAT-2 exactly corresponds to the predicted sequence. Molecular and kinetic properties of recombinant yNMNAT-2 are reported and compared with those already known for yNMNAT-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号