首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were undertaken to define the role of two calcium-associated enzyme systems in modulating transmitter-stimulated production of cyclic nucleotides in rat brain. Cyclic AMP (cAMP) accumulation was examined in cerebral cortical slices using a prelabeling technique. The enhancement of isoproterenol-stimulated cAMP production by alpha-adrenergic and gamma-aminobutyric acid-B (GABAB) agonists was reduced by exposing the tissue to EGTA, a chelator of divalent cations, or quinacrine, a nonselective inhibitor of phospholipase A2. Likewise, chronic (2 weeks) administration of corticosterone decreased the alpha-adrenergic and GABAB receptor modulation of second messenger production. Neither cyclooxygenase nor lipoxygenase inhibitors selectively influenced the facilitating response of alpha-adrenergic and GABAB agonists. Other experiments revealed that although norepinephrine and 6-fluoronorepinephrine stimulated inositol phosphate (IP) production in cerebral cortical slices with potencies equal to those displayed in the cyclic nucleotide assay, selective alpha 1-adrenergic agonists were less efficacious on IP formation and were without effect in the cAMP assay. Conversely, a selective alpha 2-adrenergic receptor agonist facilitated the cAMP response to a beta-adrenergic agonist without affecting IP formation. The rank orders of potency of a series of alpha-adrenergic antagonists suggest that IP accumulation is mediated solely by alpha 1-adrenergic receptors, whereas the augmentation of cAMP accumulation is regulated by a mixed population of alpha-adrenergic sites. The results suggest that the alpha-adrenergic and GABAB receptor-mediated enhancement of isoproterenol-stimulated cAMP formation appears to be more closely associated with phospholipase A2 than phospholipase C and may be mediated by arachidonate or some other fatty acid.  相似文献   

2.
alpha-Adrenergic stimulation of the rat pineal gland is known to stimulate phosphatidylinositol turnover and to potentiate the induction of serotonin N-acetyltransferase (SNAT) activity evoked by submaximal beta-adrenergic stimulation. In some (other) systems tumor-promoting phorbol esters are known to mimic physiologic stimulation and to enhance specifically the activity of protein kinase C. Here it is shown that phorbol esters specifically mimic the potentiating effect of alpha-adrenergic stimulation on SNAT activity in the rat pineal. These effects contribute to the argument for a role for phosphatidylinositol turnover and protein kinase C in mediating alpha-adrenergic stimulation.  相似文献   

3.
Abstract: Epinephrine (Epi) mediates various physiological effects via α2A-adrenergic receptors (α2A-ARs). Studies in mice with a point mutation in the gene for α2A-AR have shown that these receptors are responsible for the centrally mediated depressor effects of α2-AR agonists. These studies underscore the importance of understanding the basic cellular mechanisms involved in the expression of α2A-ARs, of which little is known. We use astroglia cultured from the hypothalamus and brainstem of adult Sprague-Dawley rats as a model system in which to study factors that regulate α2A-AR expression. These cells contain α2-ARs, which are predominately of the α2A-AR subtype. Our studies have shown that Epi causes a dose- and time-dependent decrease in steady-state levels of α2A-AR mRNA and number of α2A-ARs, effects that are mediated via α1- and β-adrenergic receptors (α1-ARs and β-ARs). These effects of Epi on α2A-AR mRNA and α2A-AR number are mimicked by activation of protein kinase C or increases in cellular cyclic AMP, which are intracellular messengers activated by α1-ARs and β-ARs, respectively. Taken together, these results indicate that expression of α2A-ARs is regulated in a heterologous manner by Epi, via α1-AR- and β-AR-mediated intracellular pathways.  相似文献   

4.
5.
Abstract: Testosterone 5α-reductase, the enzyme that converts testosterone to 5α-dihydrotestosterone, is present in the spinal cord of Xenopus laevis. In adult males the enzymatic activity is optimal at pH 7.4 and 27°C; the apparent Km is 2.0 × 10−5 m and the V max is 10.0 pmol/mg protein/h. Enzymatic activity was assayed in segments of the spinal cord in each of four groups: control untreated males, females, castrated males, and sexually active clasping males. Striking differences in both the amount of dihydrotestosterone produced with time and in the pattern of its distribution were seen in spinal cords of clasping males compared with those of the other groups. The differences are greatest in the basal medulla and rostral segments of the spinal cord. Neurons in these segments innervate the muscles primarily involved in clasping.  相似文献   

6.
Traumatic injury of the spinal cord leads to a series of pathological events that result in tissue necrosis and paralysis. Among the earliest biochemical reactions are hydrolysis of fatty acids from membrane phospholipids, production of biologically active eicosanoids, and peroxidation of lipids. This study examines the effect of agents purported to improve recovery following spinal cord trauma, methylprednisolone sodium succinate (MPSS) and the combination of alpha-tocopherol and selenium (Se), on the posttraumatic alterations of membrane lipid metabolism. Pretreatment with either MPSS or alpha-tocopherol and Se reduced the trauma-induced release of total FFA including arachidonate in the injured spinal cord tissue. In addition, these agents decreased the postinjury levels of prostanoids. Pretreatment with either MPSS or alpha-tocopherol and Se also completely prevented the trauma-induced loss of cholesterol while inhibiting the increase of a cholesterol peroxidation product, 25-hydroxycholesterol. These data suggest that: perturbation of membrane lipid metabolism may contribute to the tissue necrosis and functional deficit of spinal cord injury and MPSS or the combination of alpha-tocopherol and Se may protect injured spinal cord tissue, at least in part, by limiting these posttraumatic membrane lipid changes.  相似文献   

7.
Changes in β-Adrenergic Receptor Subtypes in Alzheimer-Type Dementia   总被引:3,自引:3,他引:0  
Using ligand binding techniques, we studied beta-adrenergic receptor subtypes in brains obtained at autopsy from seven histologically normal controls and seven histopathologically verified cases with Alzheimer-type dementia (ATD). Inhibition of [3H]dihydroalprenolol [( 3H]DHA) binding by the selective beta 1 antagonist, metoprolol, results in nonlinear Hofstee plots, suggesting the presence of the two receptor subtypes in the human brain. The calculated ratios of beta 1/beta 2-adrenergic receptors in control brains are as follows: frontal cortex, 49:51; temporal cortex, 31:69; hippocampus, 66:34; thalamus, 23:77; putamen, 70:30; caudate, 48:52; nucleus basalis of Meynert (NbM), 43:57; cerebellar hemisphere, 25:75. Compared with the controls, total concentrations of beta-adrenergic receptors were significantly reduced only in the thalamus of the ATD brains. beta 1-Adrenergic receptor concentrations were significantly reduced in the hippocampus and increased in the NbM and cerebellar hemisphere, whereas beta 2-adrenergic receptor concentrations were significantly reduced in the thalamus, NbM, and cerebellar hemisphere and increased in the hippocampus and putamen of the ATD brains. These results suggest that beta 1- and beta 2-adrenergic receptors are present in the human brain and that there are significant changes in both receptor subtypes in selected brain regions in patients with ATD.  相似文献   

8.
Abstract: In primary cultures of cerebellar granule cells, glutamate, aspartate, and N -methyl-d-aspartate (NMDA) induced a dose-dependent release of [3H]arachidonic acid ([3H]AA) which was selective for these agonists and was inhibited by NMDA receptor antagonists. The agonist-induced [3H]AA release was reduced by quinacrine at concentrations that inhibited phospholipase A2 (PLA2) but affected neither the activity of phospholipase C (PLC) nor the hydrolysis of phosphoinositides induced by glutamate or quisqualate. Thus, the increased formation of AA was due to the receptor-mediated activation of PLA2 rather than to the action of PLC followed by diacylglycerol lipase. The receptor-mediated [3H]AA release was dependent on the presence of extracellular Ca2+ and was mimicked by the Ca2+ ionophore ionomycin. Pretreatment of granule cells with either pertussis or cholera toxin failed to inhibit the receptor-mediated [3H]AA release. Hence, in cerebellar granule cells, the stimulation of NMDA-sensitive glutamate receptors leads to the activation of PLA2 that is mediated by Ca2+ ions entering through the cationic channels functioning as effectors of NMDA receptors. A coupling through a toxin-sensitive GTP-binding protein can be excluded.  相似文献   

9.
Abstract: σ receptors have been identified in many brain areas and are especially abundant in those regions known to be involved in control of movement. σ receptors have been located autoradiographically in the granule cell layer of cerebellum in adult rat brain. In the current study, we identified σ receptors in rat neonatal granule cells in culture using radioligand binding. The tritium labeled form of the putative σ antagonist haloperidol bound with high affinity to membranes prepared from these cells, and ligands selective for σ receptors competed well against [3H]haloperidol binding. The excitatory amino acid N -methyl- d -aspartate and the direct phospholipase A2 activator melittin stimulated the release of [3H]arachidonic acid from cerebellar granule cells. The N -methyl- d -aspartate-stimulated, but not the melittin-stimulated, release was inhibited in a concentration-dependent manner by the σ-selective agonist (+)-pentazocine. In addition, the novel σ1 agonist BD737 inhibited N -methyl- d -aspartate-stimulated release. Pentazocine inhibition was almost completely reversed by the σ antagonists NPC-16377 and opipramol. A 1 µ M concentration of the phencyclidine receptor-selective ligand MK-801 inhibited ∼65% of N -methyl- d -aspartate-stimulated release. These results suggest that σ receptors may play a role in modulating arachidonic acid release in cerebellar granule cells.  相似文献   

10.
Synaptoneurosomes obtained from the cortex of rat brain prelabeled with [14C]arachidonic acid [( 14C]AA) were used as a source of substrate and enzyme in studies on the regulation of AA release. A significant amount of AA is liberated in the presence of 2 mM EGTA, independently of Ca2+, primarily from phosphatidic acid and polyphosphoinositides (poly-PI). Quinacrine, an inhibitor of phospholipase A2 (PLA2), suppressed AA release by about 60% and neomycin, a putative inhibitor of phospholipase C (PLC), reduced AA release by about 30%. An additive effect was exhibited when both inhibitors were given together. Ca2+ activated AA release. The level of Ca2+ present in the synaptoneurosomal preparation (endogenous level) and 5 microM CaCl2 enhance AA liberation by approximately 25%, whereas 2 mM CaCl2 resulted in a 50% increase in AA release relative to EGTA. The source for Ca(2+)-dependent AA release is predominantly phosphatidylinositol (PI); however, a small pool may also be liberated from neutral lipids. Carbachol, an agonist of the cholinergic receptor, stimulated Ca(2+)-dependent AA release by about 17%. Bradykinin enhanced the effect of carbachol by about 10-15%. This agonist-mediated AA release occurs specifically from phosphoinositides (PI + poly-PI). Quinacrine almost completely suppresses calcium-and carbachol-mediated AA release. Neomycin inhibits this process by about 30% and totally suppresses the effect of bradykinin. Our results indicate that both phospholipases PLA2 and PLC with subsequent action of DAG lipase are responsible for Ca(2+)-independent AA release. Ca(2+)-dependent and carbachol-mediated AA liberation occurs mainly as the result of PLA2 action. A small pool of AA is probably also released by PLC, which seems to be exclusively responsible for the effect of bradykinin.  相似文献   

11.
The effects of arachidonic acid on glutamate and gamma-aminobutyric acid (GABA) uptake were studied in primary cultures of astrocytes and neurons prepared from rat cerebral cortex. The uptake rates of glutamate and GABA in astrocytic cultures were 10.4 nmol/mg protein/min and 0.125 nmol/mg protein/min, respectively. The uptake rates of glutamate and GABA in neuronal cultures were 3.37 nmol/mg protein/min and 1.53 nmol/mg protein/min. Arachidonic acid inhibited glutamate uptake in both astrocytes and neurons. The inhibitory effect was observed within 10 min of incubation with arachidonic acid and reached approximately 80% within 120 min in both types of culture. The arachidonic acid effect was not only time-dependent, but also dose-related. Arachidonic acid, at concentrations of 0.015 and 0.03 mumol/mg protein, significantly inhibited glutamate uptake in neurons, whereas 20 times higher concentrations were required for astrocytes. The effects of arachidonic acid were not as deleterious on GABA uptake as on glutamate uptake in both astrocytes and neurons. In astrocytes, GABA uptake was not affected by any of the doses of arachidonic acid studied (0.015-0.6 mumol/mg protein). In neuronal cultures, GABA uptake was inhibited, but not to the same degree observed with glutamate uptake. Lower doses of arachidonic acid (0.03 and 0.015 mumol/mg protein) did not affect neuronal GABA uptake. Other polyunsaturated fatty acids, such as docosahexaenoic acid, affected amino acid uptake in a manner similar to arachidonic acid in both astrocytes and neurons. However, saturated fatty acids, such as palmitic acid, exerted no such effect. The significance of the arachidonic acid-induced inhibition of neurotransmitter uptake in cultured brain cells in various pathological states is discussed.  相似文献   

12.
The properties of muscimol, beta-carboline (BC), and benzodiazepine (BZD) binding to crude synaptic membranes were studied in the spinal cord and cerebellum of rats. In cerebellar membranes, the density of high-affinity [3H]muscimol and [3H]6,7-dimethoxy-4-ethyl-beta-carboline ([3H]BCCM) binding sites is almost identical to that of [3H]flunitrazepam ([3H]FLU) or [3H]flumazenil (Ro 15-1788; ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a] [1-4]benzodiazepine-3-carboxylate). In contrast to the cerebellum, the number of muscimol and BC binding sites in rat spinal cord is approximately 20-25% of the number of FLU or flumazenil binding sites. Moreover, in spinal cord membranes, BC recognition site ligands displace [3H]-flumazenil bound to those sites, with low affinity and a Hill slope significantly less than 1; the potency of the different BCs in displacing [3H]flumazenil is 20-50-fold lower in the spinal cord than in the cerebellum. [3H]Flumazenil is not displaced from spinal cord membranes by the peripheral BZD ligand Ro 5-4864 (4'-chlorodiazepam), whereas it is displaced with low affinity and a Hill slope of less than 1 (nH = 0.4) by CL 218,872 (3-methyl-6-(3-trifluoromethylphenyl)-1,2,4-triazolol[4,3-b] pyridazine). These data suggest that a large number of BZD binding sites in spinal cord (approximately 80%) are of the central-type, BZD2 subclass, whereas the BZD binding sites in cerebellum are predominantly of the central-type, BZD1 subclass.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The alpha-adrenergic agonists phenylephrine and methoxamine, at concentrations that have little effect on pineal N-acetyltransferase activity, markedly enhance stimulation of this enzyme by vasoactive intestinal polypeptide (VIP). This augmentation can be blocked by the alpha 1-adrenergic antagonists phenoxybenzamine and prazosin and, at 10 but not 1 microM, by the alpha 2-antagonist yohimbine. The time course for VIP stimulation is not altered by concomitant alpha-adrenergic stimulation. Augmented activity does not require concomitant alpha-adrenergic stimulation, but alpha-adrenergic agonists must be present for augmentation to be maintained. Phorbol 12,13-diacetate or -dibutyrate but not 4 alpha-phorbol can substitute for phenylephrine, a finding suggesting that protein kinase C is involved in the augmentation. These results are, in general, analogous to alpha-adrenergic magnification of N-acetyltransferase induction by beta-adrenergic agonists.  相似文献   

14.
Abstract: The presynaptic regulation of amino acid release from nerve terminals was investigated using synaptosomes prepared from the rat spinal cord. The basal releases of endogenous glutamate (Glu), aspartate (Asp), and γ-amino-butyric acid (GABA) were 34.6, 21.5, and 10.0 pmol/min/mg of protein, respectively. Exposure to a depolarizing concentration of KCl (30 m M ) evoked 2.7-, 1.5-, and 2.9-fold increases in Glu, Asp, and GABA release, respectively. Clonidine reduced the K+-evoked overflow of Glu to 56% of the control overflow with a potency (IC50) of 17 n M , but it did not affect K+-evoked overflow of Asp, GABA, and their basal releases. Similarly, noradrenaline inhibited the K+-evoked overflow of Glu, although phenylephrine and isoproterenol showed no effect. The inhibitory effect of clonidine was counteracted by α2-adrenoceptor antagonists, rauwolscine, yohimbine, and idazoxan, regardless of the imidazoline structures. Because Glu is considered a neurotransmitter of primary afferents that transmit both nociceptive and nonnociceptive stimuli in the spinal cord, these data suggest that part of Glu release may be regulated by the noradrenergic system through α2 adrenoceptors localized on the primary afferent terminals.  相似文献   

15.
Abstract: Nerve growth factor (NGF) increases arachidonic acid (AA) release by PC12 pheochromocytoma cells. To explore the role of protein kinase C (PKC) in this action of NGF, PKC was down-regulated by long-term treatment of the cells with phorbol 12-myristate 13-acetate (PMA). Such prolonged exposure to PMA (1 µ M ) resulted in the inhibition of NGF-induced AA release. Moreover, pretreatment of PC12 cells with the protein kinase inhibitor staurosporine or with calphostin C, a specific inhibitor of PKC, also blocks the increase of AA release induced by NGF. These data, as well as that PMA alone can induce AA release in PC12 cells, suggest that PKC is necessary for NGF-induced AA release. Immunoblot analysis of whole cell lysates by using antibodies against various PKC isoforms revealed that our PC12 cells contained PKCs α, δ, ε, and ζ. PMA down-regulation depleted PKCs α, δ, and ε, and partially depleted ζ. To see which isoform was involved in NGF-induced AA release, an isoform-specific PKC inhibitor was used. GO 6976, a compound that inhibits PKCs α and β specifically, blocked NGF-induced AA release. In addition, thymeleatoxin, a specific activator of PKCs α, β, and γ, induced AA release from PC12 cells in amounts comparable with those seen with NGF. Taken together, these data suggest that PKC α plays a role in NGF-induced AA release.  相似文献   

16.
Exposure to high hydrostatic pressure produces neurological changes referred to as the high-pressure nervous syndrome (HPNS). Manifestations of HPNS include tremor, EEG changes, and convulsions. These symptoms suggest an alteration in synaptic transmission, particularly with inhibitory neural pathways. Because spinal cord transmission has been implicated in HPNS, this study investigated inhibitory neurotransmitter function in the cord at high pressure. Guinea pig spinal cord synaptosome preparations were used to study the effect of compression to 67.7 atmospheres absolute on [3H]glycine and [3H]gamma-aminobutyric acid ([3H]GABA) release. Pressure was found to exert a significant suppressive effect on the depolarization-induced calcium-dependent release of glycine and GABA by these spinal cord presynaptic nerve terminals. This study suggests that decreased tonic inhibitory regulation at the level of the spinal cord contributes to the hyperexcitability observed in animals with compression to high pressure.  相似文献   

17.
Solubilization and Characterization of Rat Brain α2-Adrenergic Receptor   总被引:1,自引:4,他引:1  
alpha 2-Adrenergic receptors labelled by [3H]-clonidine (alpha 2-agonist) can be solubilized from the rat brain in a form sensitive to guanine nucleotides with a zwitterionic detergent, 3-[3-(cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS). About 40% of the original [3H]CLO binding sites in the membranes were solubilized with 6 mM CHAPS. Separation of the soluble [3H]CLO-bound complex was performed by the vacuum filtration method using polyethylenimine-treated GF/B filters. Solubilized [3H]CLO binding sites retained the same pharmacological characteristics of membrane-bound alpha 2-adrenergic receptors. Scatchard plots of [3H]CLO binding to solubilized alpha 2-receptors were curvilinear, indicating the existence of the two distinct binding components. Solubilized receptors were eluted as a single peak from Bio-Gel A-1.5 m column with a Stokes radius of 6.6 nm. The isoelectric point was 5.6-5.8. Regulations of the receptor binding by guanine nucleotides, monovalent cations, and sulfhydryl-reactive agents were maintained intact in the soluble state, whereas those by divalent cations were lost. The apparent retention of receptors and guanine nucleotide binding regulatory component(s) in the soluble state may allow a investigation of the regulation mechanisms of the brain alpha 2-adrenergic receptor system at the molecular level.  相似文献   

18.
Norepinephrine (NE)-stimulated 3H-inositol phosphate (3H-InsP) formation in primary glial cell cultures is thought to be due to alpha 1-adrenergic receptor activation. Surprisingly, the alpha 1-selective agonists phenylephrine and methoxamine showed only 12-21% of the intrinsic activity of NE in activating this response. Although the alpha 2-selective agonist UK 14,304 was itself inactive, inclusion of UK 14,304 increased the response to the alpha 1-selective agonists by about threefold. This increase was concentration-dependent and occurred at all time points examined. 6-Fluoro-NE and alpha-methyl-NE mimicked the effect of NE in glial cultures, although with lower potencies. However, several partial agonists were ineffective in activating this response, in both the presence and absence of UK 14,304. Synergistic interactions were not observed for alpha 1-mediated responses in slices of rat cerebral cortex, either for formation of 3H-InsPs or potentiation of isoproterenol- or adenosine-stimulated cyclic AMP accumulation. Both UK 14,304 and phenylephrine inhibited NE-stimulated 3H-InsP formation in concentrations similar to those necessary to activate this response directly. These results suggest that NE activates 3H-InsP formation in primary glial cultures by synergistic actions on both alpha 1- and alpha 2-adrenergic receptors. The agonists UK 14,304 and phenylephrine also can act to inhibit the response to NE competitively.  相似文献   

19.
The contribution of dopamine (DA) afferents to the regulation of beta-adrenergic receptor sensitivity (isoproterenol-stimulated adenylate cyclase activity) in the rat prefrontal cortex was investigated by comparing the effects of lesions affecting either both DA and noradrenaline (NA) or NA fibers alone. Bilateral 6-hydroxydopamine (6-OHDA) lesions made in the ventral tegmental area destroyed ascending DA and to a variable extent ascending NA fibers innervating the prefrontal cortex. Two opposite effects were observed depending on the extent of cortical NA denervation: (a) When NA denervation was complete (less than 4% of controls), a marked increase in the isoproterenol-sensitive adenylate cyclase activity (+78%) was found. The amplitude of this denervation supersensitivity was similar to that occurring following complete and selective destruction of NA innervation induced by bilateral 6-OHDA injections made into the pedunculus cerebellaris superior. (b) When 6-OHDA injections into the ventral tegmental area led to a partial destruction of cortical NA afferents (10-40% of control values), a hyposensitivity of the isoproterenol-induced adenylate cyclase activity (-30%) was observed. This effect contrasted with the moderate supersensitivity seen in rats with partial, but selective, destruction of NA innervation (pedunculus cerebellaris superior lesions). The hyposensitivity of beta-adrenergic receptors obtained in rats with partial lesions of cortical NA fibers, but devoid of cortical DA innervation, suggests that DA neurons may regulate, under certain conditions, the denervation supersensitivity of beta-adrenergic receptors.  相似文献   

20.
The binding of the triazolopyridazine CL 218,872 to central benzodiazepine receptors identified with [3H]Ro 15-1788 was studied in extensively washed homogenates of rat spinal cord and cerebral cortex. CL 218,872 displacement curves were shallow in both spinal cord (nH = 0.67) and cortex (nH = 0.54), suggesting the presence of type 1 and type 2 benzodiazepine receptors in both tissues. CL 218,872 had lower affinity in spinal cord (IC50 = 825 nM) than cortex (IC50 = 152 nM), possibly reflecting the presence of fewer type 1 sites in the cord. Activating gamma-aminobutyric acid (GABA) receptors with 10 microM muscimol resulted in a two- to threefold increase in CL 218,872 affinity in both tissues without changes in the displacement curve slope. This indicates that GABA enhances CL 218,872 affinity for both type 1 and type 2 sites in both spinal cord and cerebral cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号