首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Eichhornia crassipes, commonly known as water hyacinth, is a free-floating perennial aquatic plant native to South America, which has been widely introduced on different continents, including Africa. E. crassipes is abundant in both the Congo (Africa) and Amazon (South America) River catchments. We performed a comparative analysis of the ostracod communities (Crustacea, Ostracoda) in the E. crassipes pleuston in the Amazon (South America) and Congo (Africa) River catchments. We also compared the ostracod communities from the invasive E. crassipes with those associated with stands of the native African macrophyte Vossia cuspidata. We recorded 25 species of ostracods associated with E. crassipes in the Amazon and 40 in the Congo River catchments, distributed over 31 ostracod species in E. crassipes and 27 in V. cuspidata. No South American invasive ostracod species were found in the Congolese pleuston. Diversity and richness of Congolese ostracod communities was higher in the invasive (Eichhornia) than in a native plant (Vossia). The highest diversity and abundance of ostracod communities were recorded in the Congo River. The result of principal coordinates analysis, used to evaluate the (dis)similarity between different catchments, showed significant differences in species composition of the communities. However, a dispersion homogeneity test (PERMDISP) showed no significant differences in the variability of the composition of species of ostracods (beta diversity) within Congo and Amazon River catchments. It appears that local ostracod faunas have adapted to exploit the opportunities presented by the floating invasive Eichhornia, which did not act as “Noah’s Ark” by introducing South American ostracods in the Congo River.  相似文献   

2.
Large river floodplains are convenient model systems to test for variation in animal and plant community structure, as they have a variety of habitats and substrates and are generally dynamic systems through the occurrence of flood pulses with varying intensity. South American floodplain systems furthermore have unique types of substrates, in the form of root systems of floating macrophytes. Here, we investigate the variation in ostracod (small, bivalved crustaceans) communities in relation to substrates and related environmental variables. Sampling was effected in 2004 in the alluvial valley of the upper Paraná River, Brazil, in the wet and dry seasons. Five different substrates, including littoral sediment and four macrophyte species root and leaf systems, in four hydrological systems and a variety of habitat types, were sampled. Fifty-four species of Ostracoda were found. Variation partitioning analysis (RDA) showed that ostracod communities significantly differed between different substrates, mainly between the littoral and plants with small root systems (Eichhornia azurea) on the one hand, and plants with large and complex root systems on the other hand (Eichhornia crassipes and Pistia stratiotes). RDA analyses indicated that the pleuston (biotic communities associated with root systems of floating plants) of E. crassipes comprised more non-swimming species than the pleuston of the smaller roots of P. stratiotes, but species-level Kruskal–Wallis analyses could not detect significant differences between both macrophyte species. Also habitat type and hydrological systems contributed to variation amongst ostracod communities, but less so than the factor substrate. Abiotic factors also contributed to variation, but the ranges of all measured water chemistry variables were narrow. This uniformity in abiotic factors, which might be owing to the occurrence of large flooding events, unites all water bodies, even those that are generally separated.  相似文献   

3.
Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human‐altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral‐dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio‐temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human‐altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change.  相似文献   

4.
Tremadocian–Floian siliciclastic successions in the Argentine Cordillera Oriental are of great interest for the study of early ostracod radiation. Four genera and five species of ostracods have so far been documented in the basin from the Early–Late Tremadocian (Tr2). This contrasts with occurrences from other palaeocontinental areas, where typically only one species is described. Patterns of environmental distribution and ecological approaches of ostracod assemblages were analysed on the basis of richness, Fisher's alpha diversity, relative abundance and occupancy. Ecological patterns remained stable throughout the studied interval, mostly with one genus notably dominant over the others. At the regional scale, dominant taxa occur at a relatively large number of sites, which display high occupancy. The literature data on carbonate successions from the Baltoscandian basin show a similar pattern, with a single taxon dominant over the others in local assemblages and wide regional distribution of these dominants. This ecological pattern would therefore have persisted at least until the Dapingian, independently of the sedimentary regime. Ostracods were already present along the onshore–offshore gradient during the initial stages of radiation, showing a strong preference for deep subtidal settings during Tr2 and then spreading to shallower environments in Tr3 and to deeper ones in the Floian (Fl2–Fl3). A compilation of ostracod diversity data from several regions shows a remarkable increase during the Darriwilian. Based on the regions studied herein, this rise in diversity is decoupled from the environmental expansion of ostracods, as they were already recorded along the onshore–offshore profile early in their history on both siliciclastic and carbonate shelves. The Argentine Cordillera Oriental could be considered as a cradle of diversity, with an important role in the subsequent radiation of the group.  相似文献   

5.
The biogeography and ecological preferences of Neotropical freshwater ostracods are poorly known, and more so the dynamics of populations and habitat selection of species living in pleustonic environments of temporary ponds. In the present survey we analyze the population changes of ostracods living in pleustonic environments of small freshwater bodies on Martín García Island (Río de la Plata, Argentina). Between June 2005 and June 2007, monthly samples of floating vegetation from eight different ponds on the island were collected, and limnological parameters were measured in situ. The results of multivariate logistic regression showed that the presence of ostracods was significantly related to high dissolved oxygen content and high water temperature. In addition, multivariate regression analysis indicated that, when ostracods were present, their total abundance was negatively related to floating vegetation dry weight. Four ostracod species were found: Strandesia bicuspis, Chlamydotheca incisa, Cypridopsis vidua, and Bradleytriebella trispinosa. The seasonal variation in abundances indicated that populations of the most common species, S. bicuspis and C. incisa, were denser during the summer and autumn months. The results of canonical correspondence analysis showed that individuals of S. bicuspis were more abundant at higher temperatures and lower conductivity than C. incisa. Further research is needed to clarify the observed negative correlation between floating vegetation dry weight and ostracod density and the possible differential thermal preference of the two species studied.  相似文献   

6.
Ostracods are important members of the benthos and littoral communities of lake ecosystems. Ostracods respond to hydrochemistry (water chemistry) which is influenced by climatic factors such as water balance, temperature, and chemicals in rainfall runoff from the land. Thus, at local scales, environmental preferences of ostracods and characteristics of lakes are used to infer changes in climate, hydrology, and erosion of lake catchments. This study addresses potential drivers of ostracod community structure and biodiversity at multiple spatial scales using NMS, CART?, and multiple regression models. We identified 23 ostracod species from 12 lake sites. Lake area, maximum depth, spring conductivity, chlorophyll a, pH, dissolved oxygen, sedimentary carbonate, and organic matter all influence ostracod community structure based on our NMS. Based on regression analysis, lake depth, chlorophyll a, and total dissolved solids best explained ostracod richness and abundance. Land uses are also important community structuring elements that varied with scale; locally and regionally agriculture, wetlands, and grasslands were important. Nationally, using regression tree analysis of lakes sites in the North American Non-marine ostracod database (NANODe), row-crop agriculture was the most important predictor of biodiversity. Low agriculture corresponded to low species richness but greater landscape heterogeneity produced sites of high ostracod richness.  相似文献   

7.
Species diversity assessments should consider the dynamic nature of ecological communities, especially in highly seasonal ecosystems. Here we provide a comprehensive framework for analysing seasonal changes in species composition, richness and diversity in two local dung beetle (Coleoptera: Scarabaeoidea: Aphodiidae, Geotrupidae, and Scarabaeidae) communities from Western Tuscany (Italy), in the Mediterranean ecoregion. We test whether, in this highly seasonal region, cumulative annual diversity is an oversimplification of well differentiated seasonal communities. Data were obtained through repeated standardised samples collected regularly over an entire year. We clearly identify different summer and winter communities at each site based on species composition and abundance. Seasonal richness and diversity values are different from the cumulative annual values, as a consequence of beta diversity between seasons, and some dung beetle species are identified as idiosyncratic of each particular season. Both ecological (niche partitioning) and biogeographical factors are suggested as drivers of these temporal variations. Thus, because local inventories of fauna that include records over long time periods actually reflect situations where coexistence and interactions are unlikely to occur, highly seasonal sites must be viewed as having temporally differentiated communities in order to reach feasible and reliable baselines for local diversity assessments.  相似文献   

8.
Seasonal fluctuations in climatic factors are expected to increase in future decades. However, little is known about the response of tropical species communities to seasonal fluctuations in climate and resource availability, particularly across different habitat types. We examined the relationship between spatio‐temporal fluctuations in the abundance of fruits and invertebrates and two avian feeding guilds, i.e. frugivores and insectivores, in forest and farmland habitats in western Kenya. Fruits and invertebrates fluctuated substantially throughout the year, but seasonal fluctuations were asynchronous between the two habitat types. Species richness and total abundance of frugivores and insectivores also fluctuated strongly and were closely related to the abundance of their respective resources. Frugivore species richness fluctuated anti‐cyclical in forest and farmland habitats, suggesting that several frugivorous species tracked fruit resources across habitat boundaries. In contrast, insectivorous bird richness fluctuated synchronously in the two habitat types, suggesting a lack of local‐scale movements across habitat boundaries. We conclude that bird communities strongly respond to seasonal fluctuations in resource availability, but responses differ between feeding guilds. While frugivores seem to respond flexibly to seasonal fluctuations, for instance by tracking fruit resources across habitat boundaries, insectivorous birds appear to be more susceptible to the expected increase in seasonal fluctuations in resource availability.  相似文献   

9.
Long‐term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6–28 years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross‐site comparisons showed that abundance fluctuations were smaller at species‐rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.  相似文献   

10.
Synchrony in small mammal community dynamics across a forested landscape   总被引:1,自引:0,他引:1  
Long‐term studies at local scales indicate that fluctuations in abundance among trophically similar species are often temporally synchronized. Complementary studies on synchrony across larger spatial extents are less common, as are studies that investigate the subsequent impacts on community dynamics across the landscape. We investigate the impact of species population fluctuations on concordance in community dynamics for the small mammal fauna of the White Mountain National Forest, USA. Hierarchical open population models, which account for imperfect detection, were used to model abundance of the most common species at 108 sites over a three year period. Most species displayed individualistic responses of abundance to forest type and physiographic characteristics. However, among species, we found marked synchrony in population fluctuations across years, regardless of landscape affinities or trophic level. Across the region, this population synchrony led to high within‐year concordance of community composition and aggregate properties (e.g. richness and diversity) independent of forest type and low among‐year similarity in communities, even for years with similar species richness. Results suggest that extrinsic factors primarily drive abundance fluctuations and subsequently community dynamics, although local community assembly may be modified by species dispersal abilities and biotic interactions. Concordant community dynamics across space and over time may impact the stability of regional food webs and ecosystem functions.  相似文献   

11.
The current study presents the ostracod communities recovered from 26 shallow waterbodies in southern Kenya, combined with an ecological assessment of habitat characteristics. A total of 37 waterbodies were sampled in 2001 and 2003, ranging from small ephemeral pools to large permanent lakes along broad gradients in altitude (700–2 800 m) and salinity (37–67 200 µS cm?1). Between 0 and 12 species were recorded per site. Lack of ostracods was associated with either hypersaline waters, or the presence of fish in fresh waters. Three of the 32 recovered ostracod taxa, Physocypria sp., Sarscypridopsis cf. elizabethae and Oncocypris mulleri, combined a wide distribution with frequent local dominance. Canonical correspondence analysis on species–environment relationships indicated that littoral vegetation, altitude, surface water temperature and pH best explain the variation in ostracod communities. Presence of fish and water depth also influence species occurrence, with the larger species being more common in shallow waterbodies lacking fish. Based on Chao’s estimator of total regional species richness, this survey recovered about two-thirds (60–68%) of the regional ostracod species pool. Scanning electron micrographs (SEM) of the valve morphology of 14 ostracod taxa are provided, in order to facilitate their application in biodiversity and water-quality assessments and in palaeoenvironmental reconstruction.  相似文献   

12.
Beta diversity can provide insights into the processes that regulate communities subjected to frequent disturbances, such as flood pulses, which control biodiversity in floodplains. However, little is known about which processes structure beta diversity of amphibians in floodplains. Here, we tested the influence of flood pulses on the richness, composition, and beta diversity of amphibians in Amazonian floodplain environments. We also evaluated indicator species for each environment. We established linear transects in three environments: low várzea, high várzea, and macrophyte rafts. Species richness decreased and beta diversity increased according to the susceptibility of habitats to flood pulses. Indicator species differed among environments according to forest succession promoted by the flood pulse. The decrease in species richness between high and low várzea is due to non‐random extinctions. The higher rates of species turnover between várzeas and macrophyte rafts are driven by the colonization of species adapted to open areas. Our results highlight that the maintenance of complex environments is needed to protect biodiversity in floodplains.  相似文献   

13.
The structure and dynamics of fish communities were characterized by richness, abundance, diversity and stability, during high-water and low-water periods. These analyses were performed on data from the flood zone of four streams in the lower Purus River, in the Brazilian Amazon. A total of 188 species of fish were collected, distributed among 29 families and eight orders. The statistical test showed a difference in community diversity between periods. The high-water period showed higher evenness in comparison to the low-water season. The low-water period was marked by high species abundance. A great variation in community composition between the flood and low-water periods was encountered. The adjustments for species abundance models suggested that stochastic events structure the communities. Most of the species showed a temporal variation of abundance indicating low community stability. Changes in the physico-chemical conditions of the water caused by the seasonal hydrological regime may be influencing the structuring of the fish communities.  相似文献   

14.
The study of the pelagic ostracod fauna of the Arctic Ocean based on materials collected by numerous Russian expeditions (1929–1993) and data from the literature showed the extreme poorness of the Arctic pelagic ostracod fauna, its mainly North Atlantic genesis and complete isolation from the Pacific fauna. Maximum ostracod abundance was observed in the epipelagic zone, and the greatest species diversity occurred in the relatively warm deep Atlantic layer throughout the year. To the north, east, and west of Franz Josef Land and Spitsbergen, the number of species and abundance indices of pelagic ostracods were decreased. In superficial water layers of the Central Arctic, maximum ostracod density and biomass were recorded in June and September. The best bioindicator of warm Atlantic water in the Arctic basin is Obtusoecia obtusata; and of cold polar water in the North Atlantic, Boroecia maxima.  相似文献   

15.
To understand the relationship between local (alpha) diversity of ostracods and their distribution, 95 different locations were randomly sampled from southern Kahramanmaraş (Turkey) between 7 June and 31 July, 2010. Total of 46 ostracods were encountered from 68 sites. Four alpha diversity indices (Shannon‐Wiener, Menhinick, Brillouin, Margalef) individually quantified higher species diversity and evenness for three types of habitats (limnocrene springs, ponds, stream). Diversity partitioning analyses revealed a significant and substantial beta‐diversity among the sites. First axis of CCA exhibited about 71% of the correlations between species and environmental variables. Water temperature, having either a negative or positive correlation with individual species, was the most influential factor affecting diversity. Altitude did not significantly affect the numbers of species identified from the elevation ranges of 400–600 m and 800–1000 m. At least nine cosmopolitan species from 56 sites had an important contribution to local diversity. Hence, suitability of aquatic (ecological) conditions and habitat types provide better explanations for ostracod diversity than do other abiotic factors such as altitude, pH and salinity. The results may support the Habitat Diversity Hypothesis but the study needs to be expanded to different regions and cannot be generalized at the moment. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Non-native aquatic macrophytes have invaded different types of ecosystems all over the world. The exotic submersed macrophyte Hydrilla verticillata recently invaded the Paraná basin, Brazil, being recorded by the first time in the natural habitats of this river in 2005. We investigated the effects of this species on ostracod assemblages and compared the abundance, richness, and Shannon–Wiener diversity of ostracod assemblages that colonize the invading species with those that colonize Egeria najas, a native submersed species with similar architecture and physical complexity. Fragments of these two species were left for 28 days in tanks to root and grow and then they were transferred to a floodplain lake where they remained in pairs (one plant of each species; N = 7) during 30 days for colonization by ostracods. A detrented correspondence analysis was used to summarize ostracod assemblage composition. Although there were no significant differences in ostracod abundance, richness and Shannon diversity when analyzed separately, cumulative curves, which permit to eliminate effects of abundance on richness, indicated a significantly higher number of ostracod species on H. verticillata. Assemblage composition was significantly different between both plant species, as shown by the first DCA axis. Our results show that H. verticillata might provide favorable habitats for native ostracod assemblages.  相似文献   

17.
Flood disturbance and water resource availability vary sharply over time and space along arid‐region rivers and can interact in complex fashion to shape diversity patterns. Plant diversity showed spatial patterning along a topogradient from the floodplain of the San Pedro River (Arizona, USA) to the arid upland, but the patterns shifted temporally as the suite of limiting factors changed. During two of three sampling times, spatial diversity patterns were shaped primarily by gradients of water availability, the regional limiting factor. In the summer dry season, microscale diversity (species richness per 1 m2) and mesoscale diversity (cumulative species and functional types in 20, 1‐m2 plots) of herbaceous plants decreased along the topogradient from floodplain to upland, reflecting the greater water availability on the low surfaces. During a summer wet season with moderate rains and flooding, diversity increased in all hydrogeomorphic zones (floodplain, terrace, upland), but the spatial pattern along the topogradient persisted. Following a very wet winter, patterns along the topogradient reversed: scour from large floods limited diversity on the floodplain and competitive exclusion limited the diversity on undisturbed river terrace, while abundant rains allowed for high microscale diversity in the upland. Disturbance and resource availability thus interacted to influence plant species diversity in a fashion consistent with the dynamic‐equilibrium model of species diversity. In contrast to the microscale patterns, mesoscale diversity of species and functional types remained high in the floodplain during all sampling times, with 58% more plant species and 90% more functional types sampled in low floodplain than arid upland for the year as a whole. Species with a wide range of moisture and temperature affinities were present in the floodplain, and seasonal turnover of species was high in this zone. The floodplain zone of a perennial to intermittent‐flow river thus had greater plant diversity than arid Sonoran Desert upland, as measured at temporal scales that capture seasonal variance in resource and disturbance pulses and at spatial scales that capture the environmental heterogeneity of floodplains. Although periodically limited by intense flood disturbance, diversity remains high in the floodplain because of the combination of moderate resource levels (groundwater, seasonal flood water) and persistent effects of flood disturbance (high spatial heterogeneity, absence of competitive exclusion), in concert with the same climatic factors that produce seasonally high diversity in the region (temporally variable pulses of rainfall).  相似文献   

18.
Assembly rules are ecological processes imposed on a regional species bank to establish the structure of communities and define diversity patterns regarding space and time. Here, we investigated the trait distribution of periphytic algae in floodplain lakes that are naturally under contrasting environmental pressures with and without flood pulse action (low and high water phases) and the relationship between functional traits and environmental variables at regional and local scales. We hypothesized that functional clustering will be related to the low water phase in local scale, based on environment filters, and functional overdispersion to the high water phase in regional scale. With respect to traits, we can expect that the flood pulse would favored the prevalence of nanoperiphyton, filamentous forms and loosely attached. For this, we conducted a two-year assessment of the structure and dynamic of periphytic algae communities regarding their functional traits in lakes belonging to two sub-basins in a subtropical floodplain (upper Paraná River floodplain). The samplings occurred during the high water phase in 2010 and 2011 and the low water phase in 2011. The functional diversity values of the communities were quantified and compared with the mean value of communities randomly generated using null models. The relationships between functional traits and environmental variables were examined using RLQ analysis. We have shown that the traits respond to abiotic factors, and they indicated overdispersion in high water phase, and higher functional diversity in most preserved environments with absence of the pulse. The flood pulse favored the prevalence of colonial life form, stalked, entangled and heterotrichous species. This study showed spatial and temporal differences in the limnological characteristics between the lakes caused by hydrological phase and local forces in different sub-basins and the importance mainly of assimilable nutrients in the evaluation of trait–environment relationships. The overdispersion result can be assigned to flood pulse, which promotes a higher probability of dispersion and colonization of new areas for rare species, disturbance and more heterogeneous habitats, allowing opportunities for resource partitioning and regeneration of different species strategies. Moreover, the higher periphytic algae functional diversity in preserved sites emphasizes the importance of understanding ecological patterns linked to environmental degradation, as well as of conservation initiatives, because variation in periphytic algal communities implies in changes in the trophic structure, dynamics and in the functioning of environments.  相似文献   

19.
Community ecologists have struggled to create unified theories across diverse ecosystems, but it has been difficult to acertain whether marine and terrestrial communities differ in the mechanisms responsible for structure and dynamics. One apparent difference between marine and terrestrial ecology is that the influence of regional processes on local populations and communities is better established in the marine literature. We examine three potential explanations: 1) influential early studies emphasized local interactions in terrestrial communities and regional dispersal in marine communities. 2) regional‐scale processes are actually more important in marine than in terrestrial communities. 3) recruitment from a regional species pool is easier to study in marine than terrestrial communities. We conclude that these are interrelated, but that the second and especially the third explanations are more important than the first. We also conclude that in both marine and terrestrial systems, there are ways to improve our understanding of regional influences on local community diversity. In particular, we advocate examining local vs regional diversity relationships at localities within environmentally similar regions that differ in their diversity either because of their sizes or their varying degrees of isolation from a species source.  相似文献   

20.
Understanding the mechanisms that organize biodiversity is central in ecology and conservation. Beta diversity links local (alfa) and regional (gamma) diversity, giving insight into how communities organize spatially. Metacommunity ecology provides the framework to interpret regional and local processes interacting to shape communities. However, the lack of metacommunity studies for large vertebrates may limit the understanding and compromise the preservation of ecosystem functions and services. We aim to understand the mechanisms underlying differences in species composition among vertebrate scavenger communities ? which provide key ecosystem functions, e.g. carrion consumption ? within a metacommunity context. We obtained species richness and abundances at scavenger communities consuming ungulate carcasses monitored through motion‐triggered remote cameras in seven terrestrial ecosystems in Spain. We partitioned beta diversity to decompose incidence‐based (species presence/absence) and abundance‐based dissimilarities into their components (turnover/balanced variation and nestedness/abundance gradient, respectively). We identified the environmental factors explaining the observed patterns. The vertebrate scavenger metacommunity consisted of 3101 individuals from 30 species. Changes in composition among ecosystems were mostly (> 84%) due to species or individual replacement (i.e. turnover or balanced variation). Species or individual loss/gain (i.e. nestedness or abundance gradient) accounted for 13–16% of these changes. Mean carcass weight, elevation and habitat diversity were the main factors explaining species/individual replacement. Our findings suggest that local processes such as species‐sorting through habitat heterogeneity would dominate scavenger metacommunity dynamics together with stochastic forces (i.e. related to carrion unpredictability and scavenging being a widespread strategy among vertebrates). The presence of structured patterns (i.e. nestedness) in beta diversity could reflect a role of deterministic processes: mass‐effects through dispersal and defaunation. Vultures are long‐distance foragers and functionally dominant species, which would connect local assemblages within the metacommunity, supporting scavenger diversity and functions across space. These results highlight the importance of managing vertebrate scavenger assemblages within a metacommunity context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号