首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant human erythropoietin (rhEPO) has been purified to apparent homogeneity from a Chinese hamster ovary cell line expressing a cDNA clone of the human gene. NH2-terminal sequencing of the recombinant hormone indicates that the 27-residue leader peptide is correctly and consistently cleaved during secretion of the recombinant protein into conditioned medium, yielding the mature NH2 terminus (Ala-Pro-Pro-Arg...). Analysis of the COOH terminus of rhEPO by peptide mapping and fast atom bombardment mass spectrometry (FABMS) demonstrates that the arginyl residue predicted to be at the COOH terminus (based on confirmation of both genomic and cDNA sequences) is completely missing from the purified protein. The truncated form of the recombinant hormone, designated des-Arg166 rhEPO, displays an in vivo specific activity of greater than 200,000 units/mg protein. Structural characterization of natural human urinary EPO (uEPO) by peptide mapping and FABMS reveals that the urinary hormone is also missing the COOH-terminal Arg166 amino acid residue, a modification that remained undetected until now. There is no evidence of further proteolytic processing at the COOH terminus beyond specific removal of the Arg166 amino acid residue in either rhEPO or uEPO. On the basis of the FABMS data, we propose that the physiologically active form of the hormone circulating in plasma and interacting with target cells in vivo is des-Arg166 EPO.  相似文献   

2.
The 19-amino acid domain Ala111----Pro129 of human erythropoietin was identified as an accessible surface antigen based on the binding of radio-iodinated and of unmodified hormone to antibodies prepared against a synthetic peptide of homologous sequence. The specificity and affinity of this binding was sufficient to provide for the use of anti-peptide antibodies in the preparation of an immunosorbent for the purification of urinary, and of recombinant human erythropoietin. Immobilization of anti-peptide antibodies using agarose activated either with CNBr or with N-hydroxysuccinimido groups largely inactivated binding sites for erythropoietin. In contrast, antibodies crosslinked to N-acetyl-DL-homocysteine agarose through the hetero-bifunctional reagent succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate retained their antigen-binding capacity virtually completely and provided a superior immunosorbent for hormone. Urinary erythropoietin with a specific bioactivity of 100 U/A280 was prepared initially by chromatography on phenyl-Sepharose. Subsequent immunoaffinity chromatography resulted in a 350-fold purification with 46.2% recovery yielding erythropoietin with a specific bioactivity of 35,200 U/A280 (44,300 U/mg). Radioiodination of this purified protein and subsequent SDS-polyacrylamide gel electrophoresis indicated that this preparation contained a single major component (Mr 30,000) which co-migrated in gels with unmodified biologically active hormone. Recombinant erythropoietin, which was prepared by the cloning of the human erythropoietin gene and its expression in COS cells using the SV40-derived vector pSV2, was purified by the same scheme. Chromatography on phenyl-Sepharose of medium derived from transfected cells (400 U/ml, 170 U/A280) provided for a 3.6-fold purification of recombinant hormone with an apparent recovery of 122%. This erythropoietin bound to the anti-peptide antibody gel and was purified to a specific bioactivity of 10,370 U/A280 with 55% recovery. The procedure described here for attaching antibodies to a solid support maximizes their antigen-binding capacity and is generally applicable. The development of an anti-peptide immunosorbant for human erythropoietin provides a valuable means for isolating hormone for use in studies of its receptor and its presently unresolved mechanism of action.  相似文献   

3.
4.
5.
BACKGROUND: Patients with end-stage renal disease (ESRD) are known to have insulin resistance. Treatment with EPO is associated with improvement in insulin sensitivity in uremic patients. The aim of this study was to compare insulin sensitivity and pancreatic B cell function in adult non-diabetic uremic hemodialysis patients treated with or without rHuEPO. SUBJECTS AND METHODS: Three groups of subjects were included to the study: hemodialysis patients treated with rHuEPO [EPO(+) group] or without rHuEPO [EPO(-) group], and healthy controls. Anthropometrical parameters, lipid levels, fasting glucose and insulin levels were measured in all subjects. Homeostasis Model Assessment (HOMA) was used to compare insulin sensitivity. ANOVA, independent t-test, and Pearson correlation were used for statistical analysis. RESULTS: Mean insulin level of control group (20.04 +/- 7.2 pmol/l) was significantly lower than EPO(+) group (p < 0.04) and EPO(-) group (p < 0.0001). HOMA-(%B) levels in the EPO(+) group were significantly lower than in the EPO(-) group (106 +/- 42, 140 +/- 63 respectively, p < 0.02). HOMA-(%B) levels in the control group (66 +/- 17) were significantly lower than in the EPO(+) and EPO(-) group (p < 0.005 and p < 0.0001 respectively). HOMA-(%S) levels in the EPO(+) groups was significantly higher than in the EPO(-) group (91 +/- 40, 56 +/- 26, respectively; p < 0.01). HOMA-(%S) levels of control group (125 +/- 24 ) was significantly higher than EPO(+) and EPO(-) groups (p < 0.02, p < 0.0001 respectively). We found a positive correlation between duration of erythropoietin treatment and insulin sensitivity (r = 0.484, p < 0.002). CONCLUSIONS: Firstly, patients treated with EPO are insulin sensitive compared to patients not treated with EPO. Secondly, duration of erythropoietin treatment is positively correlated with insulin sensitivity in hemodialysis patients.  相似文献   

6.
7.
8.
9.
The erythropoietin (Epo) gene from Cynomolgus monkeys has been isolated from a kidney cDNA library using mixed 20-mer oligodeoxynucleotide probes. The gene encodes a 168 amino acid (aa) mature protein with a calculated Mr of 18,490 and a presumptive signal peptide of 24 aa. The Epo gene, when transfected into Chinese hamster ovary (CHO) cells, produces a glycosylated protein with an apparent Mr of 34,000. The expressed product is biologically active in vivo. The monkey gene exhibits 92% and 94% homology to the human gene at the aa and nucleotide sequence levels, respectively. When compared with the human Epo, monkey Epo has an additional 3-aa residue at the N terminus of the mature protein and a deletion of an internal lysine residue.  相似文献   

10.
Various partially or fully desialylated human erythropoietins were obtained by neuraminidase digestion of the hormone, without non-specific proteolysis and degradation of carbohydrates. Asialoerythropoietin showed a specific activity of 220-IU/mg protein in vivo, although that of the intact erythropoietin was 2.2 x 10(5) IU/mg. A linear relationship was found between the logarithm of the specific activity in vivo and the number of sialic acids. The asialoerythropoietin showed a four-times-higher specific activity in vitro compared with intact erythropoietin using mouse bone marrow cells. It also showed an approximately six-times-higher specific activity in a colony-forming assay for the erythroid colony-forming unit and the erythroid burst-forming unit. Partially or fully de-N-glycosylated erythropoietin derivatives also showed lower in vivo activity but higher in vitro activity than the intact erythropoietin, dependent on the number of sialic acids. To clarify the reason for the enhanced biological activity of asialoerythropoietin in vitro, the binding of intact 125I-erythropoietin or 125I-asialoerythropoietin to cells containing specific receptors for the hormone was analyzed. 125I-asialoerythropoietin bound to spleen cells from anemic mice approximately five times faster than did intact 125I-erythropoietin. The amount of 125I-asialoerythropoietin internalized by target cells, measured in the absence of NaN3, was four times higher than that of intact erythropoietin. These results demonstrate that asialoerythropoietin binds to its receptor faster than the intact form. This may be the main reason for the increased activity of asialoerythropoietin in vitro.  相似文献   

11.
12.
Controversy exists regarding the functional role of N-linked oligosaccharides in the hormone erythropoietin. We have now examined the role of carbohydrates in the hormone's action using quantitative enzymatic deglycosylation. N-deglycosylated hormone exhibited full biological activity and potency in vitro. Denaturing with 6M urea and renaturing revealed that both the native and N-deglycosylated forms recovered full activity as long as the intrachain disulfide bonds remained intact. Therefore, receptor recognition, subsequent biological activity and maintenance of tertiary structure are intrinsic properties of the polypeptide chain of erythropoietin.  相似文献   

13.
14.
用重组人促红细胞生成素(rhEPO)免疫Balb/c小鼠,取其脾细胞在PEC4000作用下与SP2/0小鼠骨髓瘤细胞融合,获得一株能分泌抗rhEPO单抗隆抗体的杂交瘤细胞株2F12,染色体数目大于100条,间接ELISA法测定腹水和细胞培养上清效价,分别为1.6×10^-7和4×10^-4。测定抗体亚类时,则同时显示IgA和IgG1,其轻链为κ链;相对亲和力为5×10%^-12mol/L。单抗2F  相似文献   

15.
Erythropoietin (Epo) is a 166 amino acids protein containing three N-glycosylation sites (Asn-24, Asn-38, and Asn-83) and 1 O- glycosylation site (Ser-126) and involved in the regulation of the level of red blood cells. Today, only one recombinant human Epo (rHuEpo), produced in CHO cell line, is extensively used in therapy to cure severe anemia. The structure of the glycan chains of this rHuEpo slightly differ of those of the urinary human Epo (uHuEpo), considered as the natural Epo molecule. In an attempt to produce a rHuEpo as close as possible to the uHuEpo, Epo gene was expressed in a human lymphoblastoid cell line, named RPMI 1788. In order to fully characterize the Epo-RPMI, structural characterizations of the protein skeleton as well as glycan chains were undergone. As expected, the amino acid sequence of the Epo-RPMI conformed to that of uHuEpo. Surprisingly, the structure of some N-glycan chains, as mainly determined by ESI-MS, revealed some unusual characteristics. Thus, 80% of N-glycans possess a bisecting GlcNAc residue, 25% bear a second fucose residue which is present, in a large part, in a sialyl Le(x)motif, and 13% contain more than three LacNAc repeats (up to five per molecule). Despite these unusual structural characteristics, the data concerning the in vitro and in vivo biological activities were not impaired when compared to Epo-CHO and uHuEpo.  相似文献   

16.
Erythropoietin (EPO) has been known to have cytoprotective effects on several types of tissues, presumably through modulation of apoptosis and inflammation. The effect of EPO on myocardial inflammation, however, has not yet been clarified. We investigated the cardioprotective effects of EPO in rats with experimental autoimmune myocarditis (EAM). Seven-week-old Lewis rats immunized with cardiac myosin were treated either with EPO or vehicle and were examined on day 22. EPO attenuated the functional and histological severity of EAM along with suppression of mRNAs of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 in the hearts as well as a reduction of apoptotic cardiomyocytes. The EPO receptor (EPO-R) was upregulated in the myocardium of EAM compared with that of healthy rats. These results may suggest that EPO ameliorated the progression of EAM by modulating myocardial inflammation and apoptosis.  相似文献   

17.
Background: Oxidative degradation of human recombinant erythropoietin (hrEPO) may occur in manufacturing process or therapeutic applications. This unfavorable alteration may render EPO inefficient or inactive. We investigated the effect of methionine/54 oxidative changes on the amino acid sequences, glycoform distribution and biological activity of hrEPO. Methods: Mass spectrometry was applied to verify the sequence and determine the methionine oxidation level of hrEPO. Isoform distribution was studied by capillary zone electrophoresis method. In vivo normocythemic mice assay was used to assess the biological activity of three different batches (A, B, and C) of the proteins. Results: Nano-LC/ESI/MS/MS data analyses confirmed the amino acid sequences of all samples. The calculated area percent of three isoforms (2–4 of the 8 obtained isoforms) were decreased in samples of C, B, and A with 27.3, 16.7, and 6.8% of oxidation, respectively. Specific activities were estimated as 53671.54, 95826.47, and 112994.93?mg/mL for the samples of A, B, and C, respectively. Conclusion: The observed decrease in hrEPO biological activity, caused by increasing methionine oxidation levels, was rather independent of its amino acid structure and mainly associated with the higher contents of acidic isoforms.  相似文献   

18.
Fourteen patients with uraemic anaemia and having regular haemodialysis were given human recombinant erythropoietin in increasing doses, beginning with 24 U/kg thrice weekly. One patient was dropped from the study because of recurrent thrombosis of vascular access sites. In the other 13 patients, followed up for a mean of 9.1 months (range 8-11), haemoglobin concentrations increased from 62 (SD 8) to 105 (9) g/l. No antierythropoietin antibodies were detected during the study. The correction of anaemia was associated with a tendency to hyperkalaemia and a mild increase of unconjugated bilirubinaemia. In eight previously hypertensive patients antihypertensive treatment had to be reinforced, but in normotensive patients blood pressure did not change. Thrombosis of arteriovenous fistulas occurred in two patients and a cerebral ischaemic lesion in one. Protracted treatment with human recombinant erythropoietin evidently can maintain normal haemoglobin concentrations in uraemic patients over time. Full correction of anaemia, however, may trigger some vascular problems, particularly in hypertensive patients and those with a tendency to thromboembolism.  相似文献   

19.
20.
Summary The therapeutic effects of intravenous recombinant human erythropoietin (r-hEPO) administration on anemia induced by radiation therapy (3 cases), chemotherapy (18 cases) and combined therapies (5 cases) in patients with head and neck malignancies were examined. The effectiveness was evaluated by the changes in the hemoglobin concentration examined before and after the r-hEPO administration. The r-hEPO administration combined with anticancer therapies improved anemia induced by all three treatments. The therapeutic effectiveness of r-hEPO injection was also noted on anemia induced by all of four different chemotherapeutic regimens that have been ordinarily used for head and neck malignancies. Furthermore, the efficacy of the different dose schedules, 3000 IU (12 cases) or 6000 IU (14 cases), three times a week, was compared. Both of the r-hEPO dose schedules were effective for anemia, but the efficacy of 6000 IU was superior to that of 3000 IU. No significant changes were observed in the number of white blood cells and platelets and the results of biochemical examinations after the r-hEPO injection. There were no objective side-effects related to the r-hEPO administration. These results suggest that anemia induced by chemotherapy and/or radiotherapy could be prevented by r-hEPO administration. The addition of r-hEPO to anticancer therapies would make it possible to pursue the planned therapeutic schedules, prevent the decrease of immunity after allogeneic blood transfusion and bring about an improvement in the prognosis of patients with malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号