首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sn-glycerol-3-phosphate acyltransferase from Escherichia coli, an integral membrane protein whose activity is dependent on phospholipids, was purified to near homogeneity (Green, P. R., Merrill, A. H., Jr., and Bell, R. M., (1981) J. Biol. Chem. 256, 11151-11159). Determination of a partial NH2-terminal sequence and the COOH terminus permitted alignment of the polypeptide on the sequenced sn-glycerol-3-phosphate acyltransferase structural gene (Lightner, V. A., Bell, R. M., and Modrich, P. (1983) J. Biol. Chem. 258, 10856-10861). Processing of the sn-glycerol-3-phosphate acyltransferase is apparently limited to the removal of the NH2-terminal formylmethionine. Thirteen of 27 possible cyanogen bromide peptides predicted from the DNA sequence were purified, characterized, and assigned to their location in the primary structure. Three peptides located at positions throughout the sequence were partially sequenced by automated Edman degradation. The partial sequence analysis of the homogeneous sn-glycerol-3-phosphate acyltransferase is fully in accord with the primary structure inferred from the DNA sequence.  相似文献   

2.
Z I Randhawa  S Smith 《Biochemistry》1987,26(5):1365-1373
The complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase (thioesterase II) from rat mammary gland is presented. Most of the sequence was derived by analysis of peptide fragments produced by cleavage at methionyl, glutamyl, lysyl, arginyl, and tryptophanyl residues. A small section of the sequence was deduced from a previously analyzed cDNA clone. The protein consists of 260 residues and has a blocked amino-terminal methionine and calculated Mr of 29,212. The carboxy-terminal sequence, verified by Edman degradation of the carboxy-terminal cyanogen bromide fragment and carboxypeptidase Y digestion of the intact thioesterase II, terminates with a serine residue and lacks three additional residues predicted by the cDNA sequence. The native enzyme contains three cysteine residues but no disulfide bridges. The active site serine residue is located at position 101. The rat mammary gland thioesterase II exhibits approximately 40% homology with a thioesterase from mallard uropygial gland, the sequence of which was recently determined by cDNA analysis [Poulose, A.J., Rogers, L., Cheesbrough, T. M., & Kolattukudy, P. E. (1985) J. Biol. Chem. 260, 15953-15958]. Thus the two enzymes may share similar structural features and a common evolutionary origin. The location of the active site in these thioesterases differs from that of other serine active site esterases; indeed, the enzymes do not exhibit any significant homology with other serine esterases, suggesting that they may constitute a separate new family of serine active site enzymes.  相似文献   

3.
4.
In vitro translation of poly(A)+ RNA from the uropygial glands of mallard ducks (Anas platyrhynchos) generated a 29-kDa protein which cross-reacted with rabbit antibodies prepared against S-acyl fatty acid synthase thioesterase (Kolattukudy, P. E., Rogers, L., and Flurkey, W. (1985) J. Biol. Chem., 260, 10789-10793). A poly(A)+ RNA fraction enriched in this thioesterase mRNA, isolated by sucrose density gradient centrifugation, was used to prepare cDNA which was cloned in Escherichia coli using the plasmid pUC9. Using hybrid-selected translation and colony hybridization, 17 clones were selected which contained the cDNA for S-acyl fatty acid synthase thioesterase. Northern blot analysis showed that the mature mRNA for this thioesterase contained 1350 nucleotides whereas the cloned cDNA inserts contained 1150-1200 base pairs. Five of the 6 clones tested for 5'-sequence had identical sequences, and the three tested for 3'-end showed the same sequence with poly(A) tails. Two clones, pTE1 and pTE3, representing nearly the full length of mRNA, were selected for sequencing. Maxam-Gilbert and Sanger dideoxy chain termination methods were used on the cloned cDNA and on restriction fragments subcloned in M13 in order to determine the complete nucleotide sequence of the cloned cDNA. The nucleotide sequence showed an open reading frame coding for a peptide of 28.8 kDa. Two peptides isolated from the tryptic digest of the thioesterase purified from the gland showed amino acid sequences which matched with two segments of the sequence deduced from the nucleotide sequence. Another segment containing a serine residue showed an amino acid sequence homologous to the active serine-containing segment of the thioesterase domain of fatty acid synthase. Thus, the clones represent cDNA for S-acyl fatty acid synthase thioesterase. The present results constitute the first case of a complete sequence of a thioesterase.  相似文献   

5.
Studies reported from this laboratory have demonstrated that O-glycosidic glycoproteins of salivary, pulmonary, and gastrointestinal origin are acylated by fatty acyltransferase residing in Golgi and microsome-enriched fraction (Slomiany, A., Liau, Y.H., Takagi, A., Laszewicz, W., and Slomiany, B.L. (1984) J. Biol. Chem. 259, 13304-13308). Here we report on the successful purification of this enzyme from rough microsomal membranes of rat gastric mucosa and its identification in a number of diverse tissues and organs, such as heart, liver, pancreas, lung, kidney, salivary glands, and lymphoblasts. The enzymatic activity has been released from the stripped and salt-extracted microsomes with 0.5% Triton X-100 and recovered from 100,000 x g supernatant by affinity chromatography on Cibacron blue F3GA column. The retained fatty acyltransferase protein was selectively displaced from the column with 50 microM palmitoyl-CoA. On nonreducing polyacrylamide gel electrophoresis, the enzymatic activity was associated with a 234-kDa complex, and on sodium dodecyl sulfate polyacrylamide gel electrophoresis, the complex afforded 65- and 67-kDa protein bands. Incubation of microsomes with trypsin prior to enzyme extraction resulted in a 50% inactivation of the fatty acyltransferase and generation of 53- and 55-kDa protein bands, which also had affinity to Cibacron blue F3GA and were displaced from the column together with the active (intact) enzyme. We suggest that the fatty acyltransferase is an integral rough microsomal protein partially exposed to cytosol, which catalyzes the fatty acyl-CoA-protein reaction on the cytosolic site of the rough endoplasmic reticulum and that this enzyme is responsible for processing of the group of protein which are entering rough endoplasmic reticulum-Golgi secretory pathway.  相似文献   

6.
Fatty acid synthase of animal tissue is a multifunctional enzyme comprised of two identical subunits, each containing seven partial activities and a site for the prosthetic group, 4'-phosphopantetheine (acyl carrier protein). We have recently isolated cDNA clones of chicken fatty acid synthase coding for the dehydratase, enoyl reductase, beta-ketoacyl reductase, acyl carrier protein, and thioesterase domains (Chirala, S.S., Kasturi, R., Pazirandeh, M., Stolow, D.T., Huang, W.Y., and Wakil, S.J. (1989) J. Biol. Chem. 264, 3750-3757). To gain insight into the structure and function of the various domains, the portion of the cDNA coding for the acyl carrier protein and thioesterase domains was expressed in Escherichia coli by using an expression vector that utilizes the phage lambda PL promoter. The recombinant protein was efficiently expressed and purified to near homogeneity using anion-exchange and hydroxyapatite chromatography. As expected from the coding capacity of the cDNA expressed, the protein has a molecular weight of 43,000 and reacts with antithioesterase antibodies. The recombinant thioesterase was found to be enzymatically active and has the same substrate specificity and kinetic properties as the native enzyme of the multifunctional synthase. Treatment of the recombinant protein with alpha-chymotrypsin results in the cleavage of the acyl carrier protein and thioesterase domain junction sequence at exactly the same site as with native fatty acid synthase. The amino acid composition of the purified recombinant protein revealed the presence of 0.6 mol of beta-alanine/mol of protein, indicating partial pantothenylation of the recombinant acyl carrier protein domain. These results indicate that the expressed protein has a conformation similar to the native enzyme and that its folding into functionally active domains is independent of the remaining domains of the multifunctional synthase subunit. These conclusions are consistent with the proposal that the multifunctional synthase gene has evolved from fusion of component genes.  相似文献   

7.
Stimulation of secretion in guinea pig parotid gland lobules by either isoproterenol or carbachol is associated with a removal of acyl groups from the acyl-CoA pool and their incorporation into diacylglycerols and triglycerides (S?ling, H. D., Machado-De Domenech, E., Kleineke, J., and Fest, W. (1987) J. Biol. Chem. 262, 16786-16792). This is associated with an increased incorporation of glycerol into diacylglycerol. These changes occur during the first 20-30 s of stimulation. We can show now that these changes are associated with a significant increase in the activities of lysophosphatidate acyltransferase, diacylglycerol kinase, and diacylglycerol acyltransferase which reaches a maximum during the first 60 s after stimulation. In vitro experiments with isolated parotid microsomes, the catalytic subunit of cAMP-dependent or Ca2+/calmodulin-dependent protein kinase, and with purified protein phosphatases indicate that the activation of enzyme activities in intact parotid gland cells results from protein phosphorylation. The two protein kinases seem to activate the three enzymes by phosphorylating the same site(s). Protein kinase C was almost ineffective. Glycerol kinase, glycerolphosphate acyltransferase, phosphatidate phosphohydrolase, CTP:phosphatidate cytidylyltransferase, and phosphatidylinositol synthase remained unchanged in the intact cell as well as during incubation with protein kinases in vitro. Lysophosphatidate acyltransferase, diacylglycerol kinase, and diacylglycerol acyltransferase can be activated by the two protein kinases also in microsomes from guinea pig cerebellum. It seems, therefore, that the regulation leading to rapid changes of enzyme activities during signal transmission in parotid acinar cells could be operative also in other cell types.  相似文献   

8.
This study was designed to address the question: How specific for double bond position and conformation are plant enzymes that act on oleoyl-acyl carrier protein (ACP)? Octadecenoyl-ACPs with cis double bonds at positions [delta]6, [delta]7, [delta]8, [delta]9, [delta]10, [delta]11, or [delta]12 and elaidyl (18:1[delta]9trans)-ACP were synthesized and used to characterize the substrate specificity of the acyl-ACP thioesterase and acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The two enzymes were found to be specific for the [delta]9 position of the double bond. The thioesterase was highly specific for the [delta]9 cis conformation, but the transferase was almost equally active with the cis and the trans isomer of 18:1[delta]9-ACP. In plants such as the Umbelliferae species coriander (Coriandrum sativum L.) that accumulate petroselinic acid (18:1[delta]6cis) in their seed triacylglycerols, a high petroselinoyl-ACP thioesterase activity was found in addition to the oleoyl-ACP thioesterase. The two activities could be separated by anion-exchange chromatography, indicating that the petroselinoyl-ACP thioesterase is represented by a distinct polypeptide.  相似文献   

9.
Steller S  Sokoll A  Wilde C  Bernhard F  Franke P  Vater J 《Biochemistry》2004,43(35):11331-11343
In this paper, the initiation reactions in surfactin biosynthesis by Bacillus subtilis OKB 105 were investigated. Evidence for a specific role of the SrfD protein, the external thioesterase enzyme in surfactin biosynthesis, was obtained for the first time. The action of SrfD was investigated both with the native, but only partially purified, enzyme and the highly purified, His-tagged protein overexpressed in Escherichia coli. Surfactin can be formed by the interaction of the three amino acid activating components of surfactin synthetase SrfA, B and C alone. This process is stimulated by SrfD. In the initiation reactions, the beta-hydroxy fatty acid substrate is transferred from beta-hydroxymyristoyl-coenzyme A to the start enzyme SrfA followed by formation of beta-hydroxymyristoyl-glutamate. The same reactions were also observed with the recombinant L-Glu-activating module of surfactin synthetase. Lipopeptide formation can be initiated by these function units alone, but SrfD efficiently supports and stimulates the formation of initiation products. From these results, we infer that SrfD functions as the thioesterase/acyltransferase enzyme in the initiation process previously postulated by Menkhaus et al. [Menkhaus et al. (1993) J. Biol. Chem. 268, 7678-7684], thus enhancing surfactin formation.  相似文献   

10.
Membrane-bound enzymes involved in oleate metabolism in microsomes from pea (Pisum sativum L.) leaves were solubilised using detergents, such as n-octyl glucoside, Triton X-100, digitonin or cholate. The detergents were found to be inhibitory to oleoyl-CoA thioesterase, oleoyl-CoA:phosphatidylcholine acyltransferase and oleoyl phosphatidylcholine desaturase. Detergent removal by dialysis resulted in the restoration of activity of both the solubilised oleoyl-CoA thioesterase and oleoyl-CoA:phosphatidylcholine acyltransferase. The putative components of the oleoyl phosphatidylcholine desaturase system were also partially solubilised.  相似文献   

11.
In mammalian tissues cardiolipin is rapidly remodeled by monolysocardiolipin acyltransferase subsequent to its de novo biosynthesis (Ma, B. J., Taylor, W. A, Dolinsky, V. W., and Hatch, G. M. (1999) J. Lipid Res. 40, 1837-1845). We report here the purification and characterization of a monolysocardiolipin acyltransferase activity from pig liver mitochondria. Monolysocardiolipin acyltransferase activity was purified over 1000-fold by butanol extraction, hydroxyapatite chromatography, and preparative SDS-PAGE. The purified 74-kDa protein catalyzed acylation of monolysocardiolipin to cardiolipin with [(14)C]linoleoyl coenzyme A. Photoaffinity labeling of the protein with 12-[(4-[(125)I]azidosalicyl)amino]dodecanoyl coenzyme A indicated coenzyme A was bound at its active site and photoaffinity cross-linking of 12-[(4-azidosalicyl)amino]dodecanoyl coenzyme A to the enzyme inhibited enzyme activity. Enzyme activity was optimum at pH 7.0, and the enzyme did not utilize other lysophospholipids as substrate. The purified enzyme was heat-labile and exhibited an isoelectric point of pH 5.4. To determine the enzymes kinetic mechanism the effect of varying concentrations of linoleoyl coenzyme A and monolysocardiolipin on initial velocity were determined. Double-reciprocal plots revealed parallel lines consistent with a ping pong kinetic mechanism. When the enzyme was incubated in the absence of monolysocardiolipin, coenzyme A was produced from linoleoyl coenzyme A at a rate consistent with the formation of an enzyme-linoleate intermediate. The true K(m) value for linoleoyl coenzyme A and true K(m) value for monolysocardiolipin were 100 and 44 microM, respectively. The calculated V(max) was 6802 pmol/min per mg of protein. A polyclonal antibody, raised in rabbits to the purified protein, cross-reacted with the protein in crude pig liver mitochondrial fractions. In liver mitochondria prepared from thyroxine-treated rats, the level of the protein was elevated compared with euthyroid controls indicating that expression of monolysocardiolipin acyltransferase is regulated by thyroid hormone. The study represents the first purification and characterization of a monolysocardiolipin acyltransferase activity from any organism.  相似文献   

12.
A large protein was purified from bovine kidney, using selective extraction with EDTA to solubilize proteins anchored by divalent cation-dependent interactions. An antiserum raised against the purified protein labeled the apical cell surface of the epithelial cells in proximal tubules and the luminal surface of small intestine. Ten peptide sequences, derived from the protein, all matched the recently published sequences for rat (Moestrup, S. K., Kozyraki, R., Kristiansen, M., Kaysen, J. H., Holm Rasmussen, H., Brault, D., Pontillon, F., Goda, F. O., Christensen, E. I., Hammond, T. G., and Verroust, P. J. (1998) J. Biol. Chem. 273, 5235-5242) and human cubilin, a receptor for intrinsic factor-vitamin B12 complexes, identifying the protein as bovine cubilin. In electron microscopy, a three-armed structure was seen, indicating an oligomerization of three identical subunits. This model was supported by the Mr values of about 1,500,000 for the intact protein and 440,000 for its subunits obtained by analytical ultracentrifugation. In a search for a potential assembly domain, we identified a region of heptad repeats in the N-terminal part of the cubilin sequence. Computer-assisted analysis supported the presence of a coiled-coil alpha-helix between amino acids 103 and 132 of the human cubilin sequence and predicted the formation of a triple coiled-coil. We therefore conclude that cubilin forms a noncovalent trimer of identical subunits connected by an N-terminal coiled-coil alpha-helix.  相似文献   

13.
The synthesis of lipids from [U-14C]glycerol 3-phosphate by mitochondrial or microsomal fractions from rat lung was inhibited by ozone. The susceptible reaction was the first acylation of glycerol 3-phosphate. Enzymes unaffected by the ozone exposure included: acyl-CoA thioesterase, acyl-CoA thiokinase, acyl-CoA:acylglycerol 3-phosphate acyltransferase, acyl-CoA:diacylglycerol acyltransferase, and acyl-CoA:acylglycerophosphocholine acyltransferase. The effect of ozone on lipid synthesis is closely comparable to the inhibition by N-ethylmaleimide suggesting that the effect of ozone is the oxidation of enzyme sulfhydryl groups. There was no indication of lipid oxidation caused by ozone and no indication of the production of a stable toxic compound.  相似文献   

14.
Curacin A is a polyketide synthase (PKS)-non-ribosomal peptide synthetase-derived natural product with potent anticancer properties generated by the marine cyanobacterium Lyngbya majuscula. Type I modular PKS assembly lines typically employ a thioesterase (TE) domain to off-load carboxylic acid or macrolactone products from an adjacent acyl carrier protein (ACP) domain. In a striking departure from this scheme the curacin A PKS employs tandem sulfotransferase and TE domains to form a terminal alkene moiety. Sulfotransferase sulfonation of β-hydroxy-acyl-ACP is followed by TE hydrolysis, decarboxylation, and sulfate elimination (Gu, L., Wang, B., Kulkarni, A., Gehret, J. J., Lloyd, K. R., Gerwick, L., Gerwick, W. H., Wipf, P., Håkansson, K., Smith, J. L., and Sherman, D. H. (2009) J. Am. Chem. Soc. 131, 16033–16035). With low sequence identity to other PKS TEs (<15%), the curacin TE represents a new thioesterase subfamily. The 1.7-Å curacin TE crystal structure reveals how the familiar α/β-hydrolase architecture is adapted to specificity for β-sulfated substrates. A Ser-His-Glu catalytic triad is centered in an open active site cleft between the core domain and a lid subdomain. Unlike TEs from other PKSs, the lid is fixed in an open conformation on one side by dimer contacts of a protruding helix and on the other side by an arginine anchor from the lid into the core. Adjacent to the catalytic triad, another arginine residue is positioned to recognize the substrate β-sulfate group. The essential features of the curacin TE are conserved in sequences of five other putative bacterial ACP-ST-TE tridomains. Formation of a sulfate leaving group as a biosynthetic strategy to facilitate acyl chain decarboxylation is of potential value as a route to hydrocarbon biofuels.  相似文献   

15.
The 4-hydroxybenzoyl-CoA (4-HB-CoA) thioesterase from Pseudomonas sp. strain CBS3 catalyzes the final step of the 4-chlorobenzoate degradation pathway, which is the hydrolysis of 4-HB-CoA to coenzyme A (CoA) and 4-hydroxybenzoate (4-HB). In previous work, X-ray structural analysis of the substrate-bound thioesterase provided evidence of the role of an active site Asp17 in nucleophilic catalysis [Thoden, J. B., Holden, H. M., Zhuang, Z., and Dunaway-Mariano, D. (2002) X-ray crystallographic analyses of inhibitor and substrate complexes of wild-type and mutant 4-hydroxybenzoyl-CoA thioesterase. J. Biol. Chem. 277, 27468-27476]. In the study presented here, kinetic techniques were used to test the catalytic mechanism that was suggested by the X-ray structural data. The time course for the multiple-turnover reaction of 50 μM [(14)C]-4-HB-CoA catalyzed by 10 μM thioesterase supported a two-step pathway in which the second step is rate-limiting. Steady-state product inhibition studies revealed that binding of CoA (K(is) = 250 ± 70 μM; K(ii) = 900 ± 300 μM) and 4-HB (K(is) = 1.2 ± 0.2 mM) is weak, suggesting that product release is not rate-limiting. A substantial D(2)O solvent kinetic isotope effect (3.8) on the steady-state k(cat) value (18 s(-1)) provided evidence that a chemical step involving proton transfer is the rate-limiting step. Taken together, the kinetic results support a two-chemical pathway. The microscopic rate constants governing the formation and consumption of the putative aspartyl 17-(4-hydroxybenzoyl)anhydride intermediate were determined by simulation-based fitting of a kinetic model to time courses for the substrate binding reaction (5.0 μM 4-HB-CoA and 0.54 μM thioesterase), single-turnover reaction (5 μM [(14)C]-4-HB-CoA catalyzed by 50 μM thioesterase), steady-state reaction (5.2 μM 4-HB-CoA catalyzed by 0.003 μM thioesterase), and transient-state multiple-turnover reaction (50 μM [(14)C]-4-HB-CoA catalyzed by 10 μM thioesterase). Together with the results obtained from solvent (18)O labeling experiments, the findings are interpreted as evidence of the formation of an aspartyl 17-(4-hydroxybenzoyl)anhydride intermediate that undergoes rate-limiting hydrolytic cleavage at the hydroxybenzoyl carbonyl carbon atom.  相似文献   

16.
Expression of a California bay laurel (Umbellularia californica) 12:0-acyl-carrier protein thioesterase, bay thioesterase (BTE), in developing seeds of oilseed rape (Brassica napus) led to the production of oils containing up to 50% laurate. In these BTE oils, laurate is found almost exclusively at the sn-1 and sn-3 positions of the triacylglycerols (T.A. Voelker, T.R. Hayes, A.C. Cranmer, H.M. Davies [1996] Plant J 9: 229–241). Coexpression of a coconut (Cocos nucifera) 12:0-coenzyme A-preferring lysophosphatitic acid acyltransferase (D.S. Knutzon, K.D. Lardizabal, J.S. Nelsen, J.L. Bleibaum, H.M. Davies, J.G. Metz [1995] Plant Physiol 109: 999–1006) in BTE oilseed rape seeds facilitates efficient laurate deposition at the sn-2 position, resulting in the acccumulation of trilaurin. The introduction of the coconut protein into BTE oilseed rape lines with laurate above 50 mol % further increases total laurate levels.  相似文献   

17.
Cholesterol metabolism has been investigated in a strain of BALB/C mice that carry an autosomal recessive mutation associated with decreased sphingomyelinase and glucocerebrosidase activity and storage of sphingomyelin and glucocerebroside as well as cholesterol in lysosomes (Pentchev, P. G., Gal, A. E., Boothe, A. D., Omodeo-Sale, F., Fouks, J., Neumeyer, B. A., Quirk, J. M., Dawson, G., and Brady, R. O. (1980) Biochim. Biophys. Acta 619, 669-679). When affected animals are placed on a diet high in cholesterol, they develop hepatomegaly associated with an extensive accumulation of unesterified cholesterol in the liver. Cultured skin fibroblasts derived from these mice also manifest a defect in cholesterol esterification although the uptake and intracellular location of exogenous cholesterol is comparable to that of controls. Microsomal fatty acyl-CoA:cholesterol acyltransferase activity was normal or elevated in extracts of tissues from the affected animals. Furthermore, the subcellular distribution and membrane orientation of acyl-CoA:cholesterol acyltransferase appeared normal in microsomal preparations isolated from affected mice. The blockage of esterification of exogenous cholesterol in the presence of normal transferase activity is suggestive of a defect in a component involved in the intracellular disposition of this sterol. The attenuation in tissue levels of sphingomyelinase and glucocerebrosidase and the accumulation of sphingolipids may reflect alterations in lysosomal function resulting from an imbalance of unesterified cholesterol in these organelles.  相似文献   

18.
The regulation of lecithin:cholesterol acyltransferase by changes in phospholipid bilayer fluidity was investigated using pyrene excimer fluorescence to measure fluidity. Fluidity of dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles was decreased by the addition of up to 20% (mol/mol) cholesterol and increased by the addition of up to 10% (mol/mol) lysoDMPC. When both cholesterol and lysoDMPC are present in the bilayer, their individual effects on fluidity are altered. These changes can be explained by complex formation between cholesterol and phospholipid as in the model of Presti et al. (Presti, F.C., Pace, R.J. and Chan, S.I. (1982) Biochemistry 21, 3831-3335). Lecithin:cholesterol acyltransferase activity with these vesicles as substrates was measured to determine whether activity can be modulated by the fluidity changes of the bilayer on which the enzyme acts. When 10% lysoDMPC, a known lecithin:cholesterol acyltransferase inhibitor, is added to the vesicles, inhibition of activity is observed. When 7.5% lysoDMPC is added to vesicles which contain either 5 or 10% cholesterol, lecithin:cholesterol acyltransferase activity increases. This increase in lecithin:cholesterol acyltransferase activity due to vesicle-fluidity increase is sufficient to overcome the decrease in activity due to lecithin:cholesterol acyltransferase inhibition. This is the first report of the ability of lysoDMPC to increase lecithin:cholesterol acyltransferase activity.  相似文献   

19.
We have demonstrated previously that HDL-mediated efflux of plasma membrane cholesterol is independent of specific binding of apolipoproteins to the high density lipoprotein (HDL) receptor in either control or cholesterol-enriched cells (Karlin, J. B., Johnson, W. J., Benedict, C. R., Chacko, G. K., Phillips, M. C., and Rothblat, G. H. (1987) J. Biol. Chem. 262, 12557-12564 and Johnson, W. J., Mahlberg, F. H., Chacko, G. K., Phillips, M. C., and Rothblat, G. H. (1988) J. Biol. Chem. 263, 14099-14106). The present studies were conducted to determine if the process for removal of intracellular (lysosomal) cholesterol is similar to that of membrane cholesterol or if, in contrast, it is selectively regulated by specific apolipoproteins of HDL. For these reasons, we examined the influence of each of the major apolipoproteins of human HDL, apoAI, apoAII, and apoCs on the metabolism of membrane and lysosomal cholesterol in a macrophage foam cell model. We developed an experimental system which allows, for the first time, the simultaneous determination of lysosomal hydrolysis of cholesteryl ester and efflux and esterification of both lysosomal and membrane cholesterol. J774 and elicited mouse peritoneal macrophages were loaded with cholesteryl ester within lysosomes through phagocytosis of sonicated lipid droplets. Membrane and lysosomal pools of cholesterol were differentially radiolabeled. Discoidal complexes of egg phosphatidylcholine and purified apolipoproteins having a similar size and composition were used as cholesterol acceptors. Our results demonstrate that lysosomal hydrolysis of cholesteryl ester is independent of the presence of extracellular acceptors. Lysosomal production of cholesterol stimulates the esterification by acyl-CoA:cholesterol acyltransferase of membrane and lysosomal cholesterol. All the particles tested induce the efflux of both pools of cholesterol at a similar ratio. As efflux is stimulated, esterification by acyl-CoA:cholesterol acyltransferase is reduced. We conclude that none of these apolipoproteins selectively influences the efflux or the esterification of membrane of lysosomal cholesterol. In addition, we observe that particles containing apoAI are the most efficient acceptors, but this effect is not linked to specific binding to the HDL receptor.  相似文献   

20.
Aeromonas hydrophila releases a protein which is a member of the lipase superfamily, similar in reaction mechanism to the important mammalian plasma enzyme lecithin-cholesterol acyltransferase. We have used chemical modification and site-directed mutagenesis of the protein to identify amino acids which may be involved in catalysis. The enzyme was unaffected by phenylmethylsulfonyl fluoride, but it was almost completely inhibited by another serine-reactive compound, diethyl p-nitrophenyl phosphate. A serine selectively modified by this reagent was identified by sequencing the amino-terminal region of the protein. It was located at position 16, in the short consensus sequence shared by the enzyme with other lipases. When this serine was changed to asparagine the product was an enzymatically inert protein which nevertheless retained the surface activity of the wild-type enzyme, suggesting its ability to bind to substrate was not changed. Diethylpyrocarbonate treatment drastically reduced the rate of acyl transfer by the native enzyme, but this did not appear to be due to modification of an essential histidine, since inhibition was not reversed by addition of hydroxylamine. We have shown that only two of the histidines in the enzyme can be involved in catalysis (Hilton, S., McCubbin, W. D., Kay, C.M., and Buckley, J. T. (1990) Biochemistry, 29, 9072-9078). Replacing both of these with asparagines had little or no effect on enzyme activity. These results indicate that, in apparent contrast to other lipases, histidine does not participate in the reaction catalyzed by the microbial enzyme. Since catalysis was not inhibited by sulfhydryl reagents, we conclude that a free cysteine is also not required for activity. This may distinguish the microbial enzyme from the mammalian acyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号