首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We have determined the major sites responsible for isoaspartate formation during in vitro aging of bovine brain calmodulin under mild conditions. Protein L-isoaspartyl methyltransferase (EC 2.1.1.77) was used to quantify isoaspartate by the transfer of methyl-3H from S-adenosyl-L-[methyl-3H]methionine to the isoaspartyl (alpha-carboxyl) side chain. More than 1.2 mol of methyl-acceptor sites per mol of calmodulin accumulated during a 2-week incubation without calcium at pH 7.4, 37 degrees C. Analysis of proteolytic peptides of aged calmodulin revealed that > 95% of the methylation capacity is restricted to residues in the four calcium-binding domains, which are predicted to be highly flexible in the absence of calcium. We estimate that domains III, IV, and II accumulated 0.72, 0.60, and 0.13 mol of isoaspartate per mol of calmodulin, respectively. The Asn-97-Gly-98 sequence (domain III) is the greatest contributor to isoaspartate formation. Other major sites of isoaspartate formation are Asp-131-Gly-132 and Asp-133-Gly-134 in domain IV, and Asn-60-Gly-61 in domain II. Significant isoaspartate formation was also localized to Asp-20, Asp-22, and/or Asp-24 in domain I, to Asp-56 and/or Asp-58 in domain II, and to Asp-93 and/or Asp-95 in domain III. All of these residues are calcium ligands in the highly conserved EF-hand calcium-binding motif. Thus, other EF-hand proteins may also be subject to isoaspartate formation at these ligands. The results support the idea that isoaspartate formation in structured proteins is strongly influenced by both the C-flanking residue and by local flexibility.  相似文献   

2.
Modification of calmodulin by protein carboxyl methyltransferase requires deamidation of one or more labile asparagine residues (Johnson, B.A., Freitag, N. E., and Aswad, D. W. (1985) J. Biol. Chem. 260, 10913-10916). We now show that deamidation results in the generation of two altered forms of calmodulin, designated A and B, which can be separated by electrophoresis under nondenaturing conditions. The A form is characterized by a larger apparent molecular radius, has only 10% the activity of native calmodulin when assayed for its ability to activate a Ca2+/calmodulin-dependent protein kinase from rat brain, and serves as an excellent substrate for the methyltransferase. The B form more closely resembles native calmodulin: it has an apparent molecular radius more like the native, exhibits about 40% the activity of native calmodulin, and is a relatively poor methyl acceptor. Evidence suggests that the A and B forms probably contain isoaspartate (A) and aspartate (B) in place of Asn-60 and/or Asn-97. Incubation of the A form with methyltransferase and S-adenosyl-L-methionine converts about half of the A form to an electrophoretic band indistinguishable from the B form. The activity of this partly converted calmodulin rises to 30-50% that of native calmodulin. These observations imply that the methyltransferase may have a biological role in restoring activity to proteins which contain abnormal isoaspartyl peptide bonds resulting from asparagine deamidation.  相似文献   

3.
The activity of Ca-pump in inside-out oriented vesicles obtained from erythrocyte membranes after their 30 min treatment with EGTA at 20 degrees C (membranes A) and 37 degrees C (membranes B) was investigated. It was shown that in membranes A placed into an incubation medium containing 0.1 mM EGTA (pH 7.4) the overall effect of exogenous calmodulin is due to the increase in the maximal activity of the enzyme, its affinity for Ca2+ being unaffected thereby. In membranes B placed into the same medium (pH 6.75) the activation of the Ca-pump by calmodulin is due to the increased affinity for Ca2+ at a constant maximal activity of the enzyme. The dependencies of the value of the calmodulin-stimulated component of membranes A and the Ca2+-binding capacity of calmodulin measured by the intensity of N-phenyl-1-naphthylamine fluorescence on the concentration of free Ca2+ are coincident. In the case of membranes B, the stimulation of Ca-pump by calmodulin occurs at much lower Ca2+ concentrations than the Ca2+ binding-induced conformational shifts in calmodulin. The experimental results suggest that the affinity of the Ca-pump for Ca2+ may affect calmodulin existing in a Ca2+-independent state. The hydrophobic interactions between the Ca-calmodulin complex and the Ca-ATPase molecule are apparently essential for the regulation of the maximal enzyme activity.  相似文献   

4.
Calmodulin was covalently modified with 10-(1-propionyloxysuccinimide)-2-trifluoromethylphenothiazine++ + to stoichiometries between 0 and 2 mol/mol in the presence of Ca2+. The modified calmodulins, oleic acid, and trypsin were assayed for their ability to activate pea plant NAD kinase, bovine brain 3',5'-cAMP phosphodiesterase, and human erythrocyte Ca2+-ATPase. All modified calmodulins activated both phosphodiesterase and Ca2+-ATPase; at the highest concentration assayed, calmodulin modified with 2 mol of reagent/mol activated phosphodiesterase and Ca2+-ATPase to 53% and 100%, respectively, of the activation obtained with unmodified calmodulin. However, higher concentrations of the modified calmodulins were required to observe the same activation; at least 900-fold and 100-fold higher concentrations were required for the two enzymes, respectively. NAD kinase was not activated by any calmodulin labeled to a stoichiometry greater than 1 mol/mol even when a concentration equal to 17,000 times the apparent dissociation constant of calmodulin for NAD kinase was assayed. Therefore, the modified protein (and not some fraction resistant to labeling) is active toward the mammalian enzymes but inactive toward plant NAD kinase. The different response of the three enzymes to the chemical modification suggests that the enzymes may utilize different binding domains on calmodulin. NAD kinase also was not activated by other known activators of the two mammalian enzymes, namely lipids and limited proteolysis. In parallel experiments using the same agents on each enzyme, NAD kinase was the only enzyme of the three that was not activated by oleic acid and several other lipids or by limited trypsin digestion. These results show that NAD kinase possesses several attributes which would not be predicted by current models of the mechanism of activation of enzymes by calmodulin.  相似文献   

5.
Prolonged incubation of native bovine brain calmodulin with S-adenosyl-L-[methyl-3H]methionine and protein carboxyl methyltransferase results in maximal methylation of only 1-2% of the calmodulin molecules. In contrast, calmodulin which has been subjected to a prior alkaline treatment (0.1 M NH4OH, 37 degrees C for 3 h) can be methylated to a level of 30-50%. This treatment is known to be effective in deamidating certain asparagine residues which lie in unstable sequences, particularly -Asn-Gly- sequences. Bovine brain calmodulin has three such sequences (Watterson, D. M., Sharief, F., and Vanaman, T. C. (1980) J. Biol. Chem. 255, 962-975). The enhancement of methylation by alkaline treatment is substantially reduced if calmodulin is first reacted with bis-(I,I-trifluoroacetoxy)iodobenzene, a reagent which converts the carboxamide group of asparagine and glutamine residues to the corresponding primary amines. Thus, protein carboxyl methyltransferase selectively modifies an abnormal form of calmodulin that is probably deamidated. These findings suggest that protein carboxyl methylation may play a role in the disposition of abnormal proteins which contain atypical, isomerized aspartyl residues arising via spontaneous deamidation of unstable asparagines.  相似文献   

6.
I M Ota  S Clarke 《Biochemistry》1989,28(9):4020-4027
We have previously shown that the D-aspartyl/L-isoaspartyl protein carboxyl methyltransferase recognizes two major sites in affinity-purified preparations of bovine brain calmodulin that arise from spontaneous degradation reactions. These sites are derived from aspartyl residues at positions 2 and 78, which are located in apparently flexible regions of calmodulin. We postulated that this flexibility was an important factor in the nonenzymatic formation and enzymatic recognition of D-aspartyl and/or L-isoaspartyl residues. Because removal of Ca2+ ions from this protein may also lead to increased flexibility in the four Ca2+ binding regions, we have now characterized the sites of methylation that occur when calmodulin is incubated in buffers with or without the calcium chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,-N',N'-tetraacetic acid (EGTA). Calmodulin was treated at pH 7.4 for 13 days at 37 degrees C under these conditions and was then methylated with erythrocyte D-aspartyl/L-isoaspartyl methyltransferase isozyme I and S-adenosyl-L-[methyl-3H]methionine. The 3H-methylated calmodulin product was purified by reverse-phase HPLC and digested with various proteases including trypsin, chymotrypsin, endoproteinase Lys-C, clostripain, and Staphylococcus aureus V8 protease, and the resulting peptides were separated by reverse-phase HPLC. Peptides containing Asp-2 and Asp-78, as well as calcium binding sites II, III, and IV, were found to be associated with radiolabel under these conditions. When calmodulin was incubated under the same conditions in the presence of calcium, methylation at residues in the Ca2+ binding regions was not observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In the presence of Ca2+ and glucose, calmodulin incorporates 2.5 mol of glucose/mol of protein. In the absence of Ca2+, only 1.5 mol of glucose is incorporated per mole of calmodulin. Glycation of calmodulin is associated with variable reductions in its capacity to activate three Ca2+/calmodulin-dependent brain target enzyme systems, including adenylyl cyclase, phosphodiesterase, and protein kinase. In addition, glycated calmodulin exhibits a 54% reduction in its Ca2+ binding capacity. Isolated CNBr cleavage fragments of glycated calmodulin suggest that glycation follows a nonspecific pattern in that each of seven available lysines is susceptible to modification. A limit observed on the extent of glycation appears related to the accompanying increase in negative charge on the protein. Glycation results in minimal structural rearrangements in calmodulin, and the Ca2+-induced increase in alpha-helix content and radius of gyration is the same for glycated and unmodified calmodulin. Since glycated calmodulin's Ca2+ binding capacity is reduced, this implies that the Ca2+-induced conformational changes in calmodulin do not require all four Ca2+ binding sites to be occupied. Examination of the lysine positions in calmodulin suggests that Ca2+ binding to domains II and IV is sufficient to induce these changes. The functional consequences of calmodulin glycation therefore cannot be attributed to inhibition of these conformational changes. An alternative explanation is that the inhibition arises from interference at the target enzyme binding site by bound glucose. While glycation shows minimal structural effects, a large pH dependence is observed for the alpha-helix content of unmodified calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The fluorescence of dansyl immobilized on bovine brain calmodulin is sensitive to Ca2+. This effect is due to Ca2+ attachment to specific Ca2+-binding sites of calmodulin and is maintained within a wide range of pH. The native and dansyl-modified calmodulin preparations exert similar activating effects on Ca-dependent phosphodiesterase of cyclic nucleotides and have practically the same affinity for the enzyme. Using fluorescence measurements of the calmodulin--dansyl conjugate, it was shown that the decrease of pH from 9.0 down to 6.0 gradually decreases the constant of Ca2+ binding to calmodulin from 1.5 . 10(10) M-1 to 1.6 . 10(6) M-1. This decrease of pH does not affect the calmodulin affinity for phosphodiesterase. The activating effect of calmodulin on phosphodiesterase is more pronounced at acidic pH values (6.0-7.0) than at alkaline pH values (8.0-9.0).  相似文献   

9.
The phosphorylation of intact calmodulin and of fragments obtained by trypsin digestion was studied, using a protein kinase partially purified from bovine brain. Brain extracts were made in the presence of the detergent CHAPS (3-[3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate). The protein kinase catalyzed the incorporation of nearly 1 mol of 32P from [gamma-32P]ATP into calmodulin fragment 1-106. Incorporation was exclusively into serine 101. With fragment 78-148, the extent of phosphorylation was somewhat less and 32P appeared mainly in threonine residues. Fragment 1-90 was also a fairly good substrate, but the phosphorylation of intact calmodulin never exceeded 0.01 mol per mol. Little or no phosphorylation was seen with parvalbumin, the brain Ca2+-binding protein (CBP-18) and intestinal calcium-binding protein. The protein kinase had no requirement for cAMP or phospholipids. High levels of Mg2+ (60-70 mM) stimulated phosphorylation of the fragments 20-fold. Millimolar concentrations of Ca2+ were inhibitory. It is suggested that the calmodulin fragments were in a conformation more favorable for phosphorylation than intact soluble calmodulin.  相似文献   

10.
Effect of protein conformation on rate of deamidation: ribonuclease A   总被引:4,自引:0,他引:4  
The effect of the folded conformation of a protein on the rate of deamidation of a specific asparaginyl residue has been determined. Native and unfolded ribonuclease A (RNase A) could be compared under identical conditions, because stable unfolded protein was generated by breaking irreversibly the protein disulfide bonds. Deamidation of the labile Asn-67 residue of RNase A was followed electrophoretically and chromatographically. At 80 degrees C, similar rates of deamidation were observed for the disulfide-bonded form, which is thermally unfolded, and the reduced form. At 37 degrees C and pH 8, however, the rate of deamidation of native RNase A was negligible, and was more than 30-fold slower than that of reduced, unfolded RNase A. This demonstrates that the Asn-67 residue is located in a local conformation in the native protein that greatly inhibits deamidation. This conformation is the beta-turn of residues 66-68.  相似文献   

11.
Using calmodulin covalently labeled with dansyl, the Ca2(+)-dependent interaction of phosphorylase kinase with calmodulin has been studied. It has been shown that at pH 6.8 the (alpha beta gamma delta) protomer of the enzyme binds 2.1 +/- 0.8 mol of calmodulin with Kd = (6.67 +/- 1.77).10(-8) M. The enzyme activation induced by the pH increase up to 8.2 does not affect the enzyme interaction with calmodulin [2.14 +/- 0.58 mol calmodulin per mol of (alpha beta gamma delta)]; Kd = (4.14 +/- 1.22).10(-8) M. However, the enzyme activation during its autocatalytic phosphorylation eliminates this effect practically completely.  相似文献   

12.
In vitro aging at pH 7.4, 37 degrees C causes natural sequence recombinant human growth hormone (rhGH), methionyl rhGH, and human pituitary growth hormone to become substrates for bovine brain protein carboxyl methyltransferase, an enzyme that modifies the "side chain" alpha-carboxyl group present at atypical isoaspartyl linkages. The substrate capacity of rhGH increased at a rate of 1.8 methyl-accepting sites/day/100 molecules of hormone. Reversed-phase high performance liquid chromatography (HPLC) of trypsin digests of aged rhGH revealed two altered peptides not present in digests of control rhGH. These two fragments, which had the amino acid compositions of residues 128-134 (Leu-Glu-Asp-Gly-Ser-Pro-Arg) and 146-158 (Phe-Asp-Thr-Asn-Ser-His-Asn-Asp-Asp-Ala-Leu-Leu-Lys), contained the majority of the induced methylation sites, 22 and 58%, respectively. Isoaspartate can result from deamidation of asparagine or isomerization of aspartate. Isomerization of Asp-130, the only candidate site in 128-134, was corroborated by coelution of the altered fragment with the synthetic isoaspartyl peptide upon reversed-phase HPLC. Evidence is presented that the altered 146-158 fragment is a mixture of two peptides resulting from deamidation of Asn-149 to form 70-80% isoaspartate and 20-30% aspartate at this position. The position of isoaspartate in the altered 146-158 fragment was deduced from mass spectrometry, which indicated a single deamidated asparagine; from methylation stoichiometry, which indicated only one methylation site; and from automated Edman degradation, which showed an absence of asparagine and a low yield of aspartate at position 149. These results show that isoaspartate formation from both aspartate and asparagine is a significant, and possibly the major, source of spontaneous covalent alteration of rhGH and that enzymatic carboxyl methylation provides a powerful tool for assessing this type of modification.  相似文献   

13.
M Milos  J J Schaer  M Comte  J A Cox 《Biochemistry》1986,25(20):6279-6287
Microcalorimetry, pH potentiometry, and direct binding studies by equilibrium dialysis or gel filtration were performed to determine the thermodynamic functions delta Ho, delta Go, and delta So guiding the interactions of Ca2+, Mg2+, and H+ with bovine brain calmodulin. At pH 7.5, Ca2+ and Mg2+ binding are both endothermic with enthalpy changes of 19.5 and 72.8 kJ X (mol of calmodulin)-1, respectively. These enthalpy changes are identical for each of the four ion-binding domains. The affinity constants also are identical with intrinsic values of 10(5) M-1 for Ca2+ and 140 M-1 for Mg2+. Ca2+ and Mg2+ do not compete for the same binding sites: at high concentrations of both ions, a calmodulin-Ca4-Mg4 species is formed with an enthalpy value of 24.4 kJ X mol-1 with respect to calmodulin-Ca4 and -28.8 kJ X mol-1 with respect to calmodulin-Mg4. Moreover, in the presence of high concentrations of Ca2+, the affinity of each of the four ion-binding domains in calmodulin for Mg2+ is decreased by a factor of 4 and vice versa, indicative of negative free-energy coupling between Ca2+ and Mg2+ binding. Protons antagonize Ca2+ and Mg2+ binding in a different manner. Ca2+-H+ antagonism is identical in each of the four Ca2+-binding domains in the pH range 7.5-5.2. Our analyses suggest that three chemical geometries, probably carboxyl-carboxylate interactions, are responsible for this antagonism with ionization constants of 10(6.2) M-1 in the metal-free protein. Mg2+-H+ antagonism also is identical for each of the Mg2+-binding sites but is qualitatively different from Ca2+-H+ antagonism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Calcium binding to complexes of calmodulin and calmodulin binding proteins   总被引:12,自引:0,他引:12  
B B Olwin  D R Storm 《Biochemistry》1985,24(27):8081-8086
The free energy of coupling for binding of Ca2+ and the calmodulin-sensitive phosphodiesterase to calmodulin was determined and compared to coupling energies for two other calmodulin binding proteins, troponin I and myosin light chain kinase. Free energies of coupling were determined by quantitating binding of Ca2+ to calmodulin complexed to calmodulin binding proteins with Quin 2 to monitor free Ca2+ concentrations. The geometric means of the dissociation constants (-Kd) for Ca2+ binding to calmodulin in the presence of equimolar rabbit skeletal muscle troponin I, rabbit skeletal muscle myosin light chain kinase, and bovine heart calmodulin sensitive phosphodiesterase were 2.1, 1.1, and 0.55 microM. The free-energy couplings for the binding of four Ca2+ and these proteins to calmodulin were -4.48, -6.00, and -7.64 kcal, respectively. The Ca2+-independent Kd for binding of the phosphodiesterase to calmodulin was estimated at 80 mM, indicating that complexes between calmodulin and this enzyme would not exist within the cell under low Ca2+ conditions. The large free-energy coupling values reflect the increase in Ca2+ affinity of calmodulin when it is complexed to calmodulin binding proteins and define the apparent positive cooperativity for Ca2+ binding expected for each system. These data suggest that in vitro differences in free-energy coupling for various calmodulin-regulated enzymes may lead to differing Ca2+ sensitivities of the enzymes.  相似文献   

15.
Microcalorimetric titrations of calmodulin with Ca2+ and trifluoperazine (TFP) at various molar ratios have been carried out at 25 degrees C and at pH 7.0. Ca2+ binding to calmodulin produces heat (-delta H) in the presence of TFP, while heat is absorbed in the absence of TFP. The total heat produced by Ca2+ binding to all four sites is increased at increasing TFP-to-calmodulin ratios, attaining a plateau at about 7. These results indicate that at the higher ratios, the enthalpy changes (delta H) associated with Ca2+ binding are affected by TFP molecules bound at both high- and low-affinity sites. In addition, the Ca2+ binding reaction of the calmodulin-TFP complex is driven solely by a favorable enthalpy change of -27 kJ/mol of site; the entropy change (delta S) is -35 J/mol/K. These thermodynamic changes are opposite to those for TFP-free calmodulin and distinctly different from other Ca2+ binding proteins such as skeletal and cardiac troponin C and parvalbumin, where the reaction is driven by favorable changes of entropy as well as enthalpy.  相似文献   

16.
A site-directed mutagenesis study of yeast calmodulin   总被引:2,自引:0,他引:2  
A site-directed mutagenesis study was carried out in order to understand the regulatory mechanism of calmodulin. We started from the yeast (Saccharomyces cerevisiae) calmodulin gene since it has many differences in amino acid sequence and inferior functional properties compared with the vertebrate calmodulin. Recombinant yeast calmodulins were generated in Escherichia coli transformed by constructed expression plasmids. Three recombinant calmodulins were obtained. The first two were YCM61G, in which the Ca2(+)-binding site 2 (the four Ca2(+)-binding EF-hand structures in calmodulin were numbered from the N-terminus) was converted to the same as that in vertebrate calmodulin, and YCM delta 132-148, in which the C-terminal half sequence of site 4 was deleted. These two recombinant calmodulins had the same maximum Ca2+ binding (3 mol/mol) as yeast calmodulin, which indicates that site 4 of yeast calmodulin was the one losing Ca2+ binding capacity. YCM delta 132-148 could not activate target enzymes, whereas its Ca2+ binding profile was similar to those of yeast calmodulin and YCM61G. Therefore, the structure in site 4 which cannot bind Ca2+ is indispensable for the regulatory function of yeast calmodulin. The complete regulatory function of vertebrate calmodulin can be attained by the combination of 4 Ca2+ binding structures. The negative charge cluster in the central alpha-helix region is suggested to stabilize the active conformation of calmodulin, since the third yeast calmodulin mutant, YCM83E, which had the negative charge cluster, increased the maximum activation of myosin light chain kinase.  相似文献   

17.
Cleavage of specific peptide bonds occurs with aging in the alpha A subunit of bovine alpha-crystallin. One of the breaks occurs at residue Asn-101. This same residue undergoes in vivo deamidation, isomerization, and racemization. Deamidation and isomerization are known to occur via succinimide ring formation of labile asparagine residues. Model studies on peptides have shown that imide formation can also lead to peptide bond cleavage (Geiger, T., and Clarke, S. (1987) J. Biol. Chem. 262, 785-794). In that case, both asparagine and aspartic acid amide would be expected as C termini of the truncated polypeptide, and this is indeed the case in the alpha A-(1-101)-chain. This thus represents a first example of nonenzymatic in vivo peptide bond cleavage in an aging protein through the formation of a succinimide intermediate. In addition, we found that in bovine lens no detectable conversion (through the action of protein-carboxyl methyltransferase) of isoaspartyl to normal aspartyl residues occurs in vivo after deamidation of Asn-101.  相似文献   

18.
Calmodulin of the baker's yeast (Saccharomyces cerevisiae) showed a similar affinity for Ca2+ to that of vertebrate calmodulin. The maximum binding number of Ca2+ to yeast calmodulin was, however, 3 mol/mol, which is lower than that of vertebrate calmodulin (4 mol/mol). The same maximum activity of porcine brain phosphodiesterase was attained when 100 times higher concentration of yeast calmodulin than that of vertebrate calmodulin was added. On the other hand, the maximum activation of chicken gizzard myosin light chain kinase was attained with 1,000 times higher concentration of yeast calmodulin than that of vertebrate calmodulin, and the maximum activity with yeast calmodulin was less than 1/5 of that with vertebrate calmodulin. Several amino acid substitutions observed in the yeast calmodulin, particularly at the alpha-helical rod connecting the two globular domains, may affect the interaction mode of various target enzymes with this calmodulin.  相似文献   

19.
G Meissner 《Biochemistry》1986,25(1):244-251
The effect of calmodulin and calmodulin inhibitors on the "Ca2+ release channel" of "heavy" skeletal muscle sarcoplasmic reticulum (SR) vesicles was investigated. SR vesicles were passively loaded with 45Ca2+ in the presence of calmodulin and its inhibitors, followed by measurement of 45Ca2+ release rates by means of a rapid-quench-Millipore filtration method. Calmodulin at a concentration of 2-10 microM reduced 45Ca2+ efflux rates from passively loaded vesicles by a factor of 2-3 in media containing 10(-6)-10(-3) M Ca2+. At 10(-9) M Ca2+, calmodulin was without effect. 45Ca2+ release rates were varied 1000-fold (k1 approximately equal to 0.1-100 s-1) by using 10(-5) M Ca2+ with either Mg2+ or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) in the release medium. In all instances, a similar 2-3-fold reduction in release rates was observed. At 10(-5) M Ca2+, 45Ca2+ release was half-maximally inhibited by about 2 X 10(-7) M calmodulin, and this inhibition was reversible. Heavy SR vesicle fractions contained 0.1-02 micrograms of endogenous calmodulin/mg of vesicle protein. However, the calmodulin inhibitors trifluoperazine, calmidazolium, and compound 48/80 were without significant effect on 45Ca2+ release at concentrations which inhibit calmodulin-mediated reactions in other systems. Studies with actively loaded vesicles also suggested that heavy SR vesicles contain a Ca2+ permeation system that is inhibited by calmodulin.  相似文献   

20.
The 31-residue neuropeptide porcine beta-endorphin was shown to inhibit the Ca2+-dependent calmodulin activation of highly purified bovine brain cyclic nucleotide phosphodiesterase (3',5'-cyclic AMP 5'-nucleotidohydrolase, EC 3.1.4.17). Using a series of deletion peptides, the minimal inhibitory peptide sequence was found to correspond to beta-endorphin residues 14-25, confirming previously reported results for crude enzyme preparations. A correlation was found between the relative inhibitory potency of a particular beta-endorphin deletion peptide and the efficacy of cross-linking that peptide to calmodulin with bis(sulfosuccinimidyl) suberate, strongly implicating peptide binding to calmodulin as the mechanism of the observed inhibition. We found that relatively modest concentrations of chlorpromazine significantly reduced the efficiency of cross-linking beta-endorphin 14-31 to calmodulin. Chlorpromazine-Sepharose affinity chromatography of peptide/calmodulin adducts showed that a significant portion of the cross-linked beta-endorphin 14-31/calmodulin complex (stoichiometry of 1 mol/mol) retained the ability to interact with the immobilized phenothiazine in a Ca2+-dependent and calmodulin-displaceable manner. In contrast, the 2:1 (peptide:protein) product exhibited no affinity for the immobilized phenothiazine. The use of this affinity chromatographic step allowed preparation of homogeneous populations of both 1:1 and 2:1 beta-endorphin 13-31/calmodulin complexes and assessment of their functional characteristics. Equilibrium binding studies with chlorpromazine revealed that the covalent attachment of one peptide molecule to calmodulin perturbed all phases of Ca2+-dependent drug binding, but the adduct still bound significant quantities of chlorpromazine. The 2:1 complex, however, showed little detectable binding of the phenothiazine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号