首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Recent studies have identified a group of cytokines which appear to be cell-specific regulators of mobility in nonleukocytic mammalian cells. One example is scatter factor (SF), a soluble protein(s) produced by cultured fibroblasts and vascular smooth muscle cells which causes spreading and separation ("scattering") of tight, cohesive colonies of epithelial cells. Studies of SF action have been limited because the degree of scattering is difficult to quantitate and because scattering assays cannot be used to study potential target cells that do not form tight, cohesive colonies. We developed a simple, quantitative assay of SF-stimulated mobility based on migration of target cells off microcarrier beads onto plastic culture surfaces in 24-well plates. We showed that crude and partially purified SF derived from ras-transformed 3T3 cells stimulates migration of both epithelial and vascular endothelial cells but not of producer or nonproducer fibroblasts. Scatter and migration-stimulating activities copurified on cation exchange chromatography; and the degree of stimulation was closely correlated with scattering titer regardless of SF purity. Migration of endothelial cells from beads, while extremely sensitive to SF, was not affected by serum concentration (1 to 10%), various purified growth factors, or fibronectin. Both scattering and migration from beads were blocked by cycloheximide (0.1 microgram/ml) during assay incubation, suggesting that these processes require protein synthesis. The microcarrier bead assay may be a useful quantitative tool to study the biochemical mechanisms of SF-stimulated cell migration.  相似文献   

2.
Scatter factor (SF) (also known as hepatocyte growth factor [HGF]) is a fibroblast-derived cytokine that stimulates motility, proliferation, and morphogenesis of epithelia. SF may play major roles in development, repair, and carcinogenesis. However, the physiologic signals that regulate its production are not well delineated. We found that various human tumor cell lines that do not produce SF secrete factors that stimulate SF production by fibroblasts, suggesting a paracrine mechanism for regulation of SF production. Conditioned medium from these cell lines contained two distinct scatter factor-inducing factor SF-IF activities: a high molecular weight (> 30 kD), heat sensitive activity and a low molecular weight (< 30 kD) heat stable activity. Further studies revealed that SF-producing fibroblasts also secrete factors that stimulate their own SF production. We characterized the < 30-kD SF-IF activity from ras-3T3 (clone D4), a mouse cell line that overproduces both SF and SF-IF. The < 30-kD filtrate from ras-3T3 conditioned medium induced four- to sixfold increases in expression of SF biologic activity, immunoreactive protein, and mRNA by multiple SF- producing fibroblast lines. Ras-3T3 SF-IF activity was stable to boiling, extremes of pH, and reductive alkylation, but was destroyed by proteases. We purified ras-3T3 SF-IF about 10,000-fold from serum-free conditioned medium by a combination of ultrafiltration, cation exchange chromatography, and reverse phase chromatography. The purified protein exhibited electrophoretic mobility of about 12 kD (reduced) and 14 kD (nonreduced) by SDS-PAGE. The identity of the protein was verified by elution of biologic activity from gel slices. Purified SF-IF stimulated SF production in a physiologic concentration range (about 20-400 pM). Its properties and activities were distinct from those of IL-1 and TNF, two known inducers of SF production. We suggest that SF-IF is a physiologic regulator of SF production.  相似文献   

3.
Regulation of motility in bovine brain endothelial cells   总被引:6,自引:0,他引:6  
Scatter factor (SF) is a fibroblast-derived cytokine which stimulates motility of epithelial and vascular endothelial cells. We used a quantitative assay based on migration of cells from microcarrier beads to flat surfaces to study the regulation of motility in bovine brain endothelial cells (BBEC). Peptide growth factors (EGF, ECGF, basic FGF) did not stimulate migration. Tumor promoting phorbol esters (PMA, PDD) markedly stimulated migration, while inactive phorbol esters (4a-PDD, phorbol-13,20-diacetate) did not affect migration. Both SF- and PMA-stimulated migration were inhibited by 1) TGF-beta; 2) protein kinase inhibitors (e.g., staurosporine, K-252a); 3) activators of the adenylate cyclase signaling pathway (e.g., dibutyryl cyclic AMP, theophylline); 4) cycloheximide; and 5) anti-cytoskeleton agents (e.g., cytochalasin B, colcemid). However, PMA and SF pathways were distinguishable: 1) PMA induced additional migration at saturating SF concentrations; 2) the onset of migration-stimulation was immediate for PMA and delayed for SF; and 3) down-modulation of protein kinase C (PKC) ablated PMA but not SF responsiveness. Assessment of PKC by (3H)-phorbol ester (PDBu) binding and by immunoblot showed 1) scatter factor does not cause significant redistribution or down-modulation of PDBu binding or alpha-PKC; and 2) PDBu mediates redistribution and down-modulation of both binding and alpha-PKC. These findings suggest two pathways for BBEC motility: a PKC-dependent pathway and an SF-stimulated/PKC-independent pathway.  相似文献   

4.
Protein factors which regulate cell motility   总被引:11,自引:0,他引:11  
Summary Cell motility (i.e., movement) is an essential component of normal development, inflammation, tissue repair, angiogenesis, and tumor invasion. Various molecules can affect the motility and positioning of mammalian cells, including peptide growth factors, (e.g., EGF, PDGF, TGF-beta), substrate-adhesion molecules (e.g., fibronectin, laminin), cell adhesion molecules (CAMs), and metalloproteinases. Recent studies have demonstrated a group of motility-stimulating proteins which do not appear to fit into any of the above categories. Examples include: 1)scatter factor (SF), a mesenchymal cell-derived protein which causes contiguous sheets of epithelium to separate into individual cells and stimulates the migration of epithelial as well as vascular endothelial cells; 2)autocrine motility factor (AMF), a tumor cell-derived protein which stimulates migration of the producer cells; and 3)migration-stimulating factor (MSF), a protein produced by fetal and cancer patient fibroblasts which stimulates penetration of three-dimensional collagen gels by non-producing adult fibroblasts. SF, AMF, and MSF are soluble and heat labile proteins with Mr of 77, 55, and 70 kd by SDS-PAGE, respectively, and may be members of a new class of cell-specific regulators of motility. Their physiologic functions have not been established, but available data suggest that they may be involved in fetal development and/or tissue repair.  相似文献   

5.
Neovascular responses induced by cultured aortic endothelial cells   总被引:7,自引:0,他引:7  
Neovascularization was studied in the chorioallantoic membrane of the chick embryo after implantation of bovine aortic endothelial and smooth muscle cells, Swiss and BALB/c 3T3 cells and human diploid fibroblasts cultured separately on microcarrier beads. Quantitative analysis of neovascularization indicated a 3 1/2-fold increase in the number of blood vessels responding to endothelial cells while smooth muscle cells induced a twofold increase when compared to the response of beads without cells. Skin fibroblasts and Swiss 3T3 cells did not elicit a comparable response. The marked angiogenic response induced by endothelial cells was characterized by a 137% increase in total vessel length and a 35% increase in average vessel area when compared to controls. Two of the properties required for an angiogenesis factor--stimulation of cellular migration and proliferation--can also be demonstrated using endothelial cell-conditioned medium in cell culture systems. Medium from cultured bovine aortic endothelium stimulates DNA synthesis, proliferation, and migration of smooth muscle cells. In addition, conditioned media from both endothelial cells and smooth muscle cells produced an angiogenic response in the chorioallantoic membrane assay, which was comparable to that produced by intact cells growing on microcarrier beads. Similar responses were not evident with medium conditioned by other cell types. These results indicate the potential importance of endothelial cells and endothelial cell products in regulating blood vessel growth.  相似文献   

6.
Summary We report that culture bovine calf aorta and human adult iliac artery smooth muscle cells release a soluble factor which causes spreading and separation of cells in normally tight, cohesive epithelial colonies, similar to the morphologic changes induced by the fibroblast-derived scatter factor (SF). Smooth muscle-derived SF was heat sensitive, trypsin labile, and nondialyzable, consistent with a protein (or proteins). Its effects on epithelium were not mimicked by a variety of proteolytic enzymes, growth factors, or hormones, and were not blocked by antiproteases or by antibodies to fibronectin and basic fibroblast growth factor. Epithelial cell proliferation was unaffected or only mildly stimulated by partially purified SF at concentrations that produced cell scattering. Both smooth muscle-and MRC5 human embryo fibroblast-derived SFs could be partially purified with similar elution patterns on a number of different chromatographic columns, including DEAE-agarose, heparin-sepharose, Bio-Rex 70, concanavalin A-sepharose, and MonoQ. SF from both sources bound tightly to heparin-sepharose, requiring 1.3 to 1.4M NaCl for elution. The morphologically obvious cell scattering effect was markedly inhibited by soluble heparin at concentrations down to 5 μg/ml, and this inhibition was prevented by protamine. These data suggest that vascular smooth muscle cells produce an epithelial cell scattering factor with properties similar to the fibroblast-produced factor, including a high affinity for heparin. Such factors are potentially important because they may represent a new class of proteins that primarily regulate cell mobility rather than growth and differentiation. Supported by American Cancer Society grant ACS IN-31-28-5, an Argail L. and Anna G. Hull Cancer Research Award, and grants-in-aid from the American Heart Association (#880981) and the American Lung Association of Connecticut. Dr. Goldberg was supported by the LIJ-Harvard Research Consortium and the Finkelstein Foundation.  相似文献   

7.
Human placenta contains an epithelial scatter protein   总被引:3,自引:0,他引:3  
Scatter factor (SF) is a protein produced by cultured fibroblasts which causes epithelia to "scatter" into isolated cells. We found significant scatter activity in vivo in second trimester (but not term) human amniotic fluid and in human placenta. Placental SF was purified 500,000-fold and identified as a protein with Mr 78 kd. Factor scattered Madin-Darby canine kidney and human squamous carcinoma cells at 15 pM. Amino acid sequences from tryptic peptides did not match any known protein. Human placental fibroblasts produced high titers of scatter activity. SF may be involved in development and may enhance carcinoma invasion.  相似文献   

8.
We have purified, cloned and characterized kallistatin, a tissue kallikrein-binding protein (KBP) in humans and rodents. Kallistatin is a unique serine proteinase inhibitor (serpin) with Phe-Phe residues at the P2 and P1 positions. Structural and functional analysis of kallistatin by site-directed mutagenesis and protein engineering indicate that wild-type kallistatin is selective for tissue kallikrein. Kallistatin is expressed and localized in endothelial and smooth muscle cells of blood vessels and has multiple roles in vascular function independent of the tissue kallikrein-kinin system. First, kallistatin induces vasorelaxation of isolated aortic rings and reduces renal perfusion pressure in isolated rat kidneys. Transgenic mice overexpressing rat kallistatin are hypotensive, and adenovirus-mediated gene delivery of human kallistatin attenuates blood pressure rise in spontaneously hypertensive rats. Second, kallistatin stimulates the proliferation and migration of vascular smooth muscle cells in vitro and neointima formation in balloon-injured rat arteries. Third, kallistatin inhibits the proliferation, migration and adhesion of endothelial cells in vitro and angiogenesis in the rat model of hindlimb ischemia. These results demonstrate novel roles of kallistatin in blood pressure regulation and vascular remodeling.  相似文献   

9.
10.
Basic fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) are implicated in vascular remodeling secondary to injury. Both growth factors control vascular endothelial and smooth muscle cell proliferation, migration, and survival through overlapping intracellular signaling pathways. In vascular smooth muscle cells PDGF-BB induces FGF-2 expression. However, the effect of PDGF on the different forms of FGF-2 has not been elucidated. Here, we report that treatment of vascular aortic smooth muscle cells with PDGF-BB rapidly induces expression of 20.5 and 21 kDa, high molecular weight (HMW) FGF-2 that accumulates in the nucleus and nucleolus. Conversely, PDGF treatment has little or no effect on 18 kDa, low-molecular weight FGF-2 expression. PDGF-BB-induced upregulation of HMW FGF-2 expression is controlled by sustained activation of extracellular signal-regulated kinase (ERK)-1/2 and is abolished by actinomycin D. These data describe a novel interaction between PDGF-BB and FGF-2, and indicate that the nuclear forms of FGF-2 may mediate the effect of PDGF activity on vascular smooth muscle cells.  相似文献   

11.
The loss of function of the tumor suppressor gene TSC2 and its protein product tuberin promotes the development of benign lesions by stimulating cell growth, although the role of tuberin in regulating cell migration and metastasis has not been characterized. In addition, the role of phosphatidylinositol 3-kinase (PI 3-kinase), an important signaling event regulating cell migration, in modulating tuberin-deficient cell motility remains unknown. Using a tuberin-deficient rat smooth muscle cell line, ELT3, we demonstrate that platelet-derived growth factor (PDGF) stimulates cell migration by 3.2-fold, whereas vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-alpha, and basic fibroblast growth factor (bFGF) increase migration by 2.1-, 2.1-, and 2.6-fold, respectively. Basal and PDGF-induced migration in tuberin-deficient ELT3, ELT4, and ERC15 cells was not significantly different from that of tuberin-positive transformed rat kidney epithelial 2, airway smooth muscle, and pulmonary arterial vascular smooth muscle cells. Expression of tuberin in tuberin-deficient ELT3 cells also had little effect on cell migration. In parallel experiments, the role of PI 3-kinase activation in ELT3 cell migration was investigated. LY-294002, a PI 3-kinase inhibitor, decreased PDGF-induced migration in a concentration-dependent manner with an IC(50) of approximately 5 microM. LY-294002 also abrogated ELT3 cell migration stimulated by bFGF and TGF-alpha but not by VEGF and phorbol 12-myristate 13-acetate. Furthermore, transient expression of constitutively active PI 3-kinase (p110*) was sufficient to induce ELT3 cell migration. However, the migration induced by p110* was less than that induced by growth factors, suggesting other signaling pathways are also critically important in modulating growth factor-induced cell migration. These data suggest that PI 3-kinase is required for growth factor-induced cell migration and loss of tuberin appears to have little effect on cell migration.  相似文献   

12.
Scatter factor (SF) was first identified as a fibroblast-derived protein which disperses (i.e., "scatters") cohesive colonies of epithelium. SF-like proteins were found in human smooth muscle cell conditioned medium, amniotic fluid, and placental tissue. SFs markedly stimulate migration of epithelial, carcinoma, and vascular endothelial cell types at picomolar concentrations. Hepatocyte growth factors (HGFs) were originally described as platelet- and serum-derived proteins which stimulate hepatocyte DNA synthesis. Partial amino acid sequence data for mouse and human SFs indicate significant homology with HGFs. We used biological, biochemical, and immunological assays to evaluate and compare the activities, properties, and mechanisms of action of mouse SF, human SF (fibroblast or placenta derived), and recombinant human HGF (hrHGF). We report the following findings: (a) mouse SF exhibits species-related differences in biological activities relative to the human factors; (b) human SF and hrHGF show significant overlap in biological activities (i.e., hrHGF stimulates motility of multiple normal and carcinoma cell types, whereas human SF stimulates DNA synthesis in several normal cell types); (c) the three factors contain common antigenic determinants; and (d) all three proteins stimulate rapid phosphorylation of tyrosine residues on the c-met protooncogene protein product (the putative receptor for HGF) and on another protein with Mr 110,000. A few biological and immunological differences between human SFs and hrHGF were observed. These may reflect minor variations in amino acid sequence or posttranslational modification related to the sources of the factors. Taken as a whole, our findings suggest that by structural, functional, immunological, and mechanistic criteria, human SF and human HGF are essentially identical.  相似文献   

13.
Basic fibroblast growth factor (bFGF) is a known mitogen for vascular smooth muscle cells and has been implicated as having a role in a number of proliferative vascular disorders. Binding of bFGF to heparin or heparan sulfate has been demonstrated to both stimulate and inhibit growth factor activity. The activity, towards bFGF, of heparan sulfate proteoglycans present within the vascular system is likely related to the chemical characteristics of the glycosaminoglycan as well as the structure and pericellular location of the intact proteoglycans. We have previously shown that endothelial conditioned medium inhibits both bFGF binding to vascular smooth muscle cells and bFGF stimulated cell proliferation in vitro. In the present study, we have isolated proteoglycans from endothelial cell conditioned medium and demonstrated that they are responsible for the bFGF inhibitory activity. We further separated endothelial secreted proteoglycans into two fractions, PG-A and PG-B. The larger sized fraction (PG-A) had greater inhibitory activity than did PG-B for both bFGF binding and bFGF stimulation of vascular smooth muscle cell proliferation. The increased relative activity of PG-A was attributed, in part, to larger heparan sulfate chains which were more potent inhibitors of bFGF binding than the smaller heparan sulfate chains on PG-B. Both proteoglycan fractions contained perlecan-like core proteins; however, PG-A contained an additional core protein (approximately 190 kDa) that was not observed in PG-B. Both proteoglycan fractions bound bFGF directly, and PG-A bound a significantly greater relative amount of bFGF than did PG-B. Thus the ability of endothelial heparan sulfate proteoglycans to bind bFGF and prevent its association with vascular smooth muscle cells appears essential for inhibition of bFGF-induced mitogenesis. The production of potent bFGF inhibitory heparan sulfate proteoglycans by endothelial cells might contribute to the maintenance of vascular homeostasis. J. Cell. Physiol. 172:209–220, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
We have purified a cell growth factor from a human lung cancer cell line, T3M-30, which was established in a protein-free chemically defined medium. The factor, designated carcinoma-derived growth factor (CD-GF), stimulated proliferation of a variety of cells, including human leukemia cells, HL-60, and melanoma cells, SK-28. Half-maximum stimulation by the purified CD-GF was achieved at a concentration of 40 ng/ml. In the purified CD-GF, two major protein bands of 24 kDa and 22 kDa were identified on a SDS polyacrylamide gel. The partial amino acid sequences of the 24 kDa protein were determined from two peptide fragments obtained by V8 protease treatment. The partial sequences were identical to those of heavy chain of human ferritin. The activity of the purified CD-GF was coprecipitated completely with a monoclonal antibody to heavy chain of ferritin. Ferritin has been considered to inhibit cell growth. However, human heart ferritin was capable of stimulating the growth of HL-60 cells. These results suggest that CD-GF is related to feritin and ferritin is a growth factor of HL-60 leukemia cells. © 1994 Wiley-Liss, Inc.  相似文献   

15.
We address the mechanisms underlying generation of skeletal muscle, smooth muscle, and endothelium from epithelial progenitors in the dermomyotome. Lineage analysis shows that of all epithelial domains, the lateral region is the most prolific producer of smooth muscle and endothelium. Importantly, individual labeled lateral somitic cells give rise to only endothelial or mural cells (not both), and endothelial and mural cell differentiation is driven by distinct signaling systems. Notch activity is necessary for smooth muscle production while inhibiting striated muscle differentiation, yet it does not affect initial development of endothelial cells. On the other hand, bone morphogenetic protein signaling is required for endothelial cell differentiation and/or migration but inhibits striated muscle differentiation and fails to impact smooth muscle cell production. Hence, although different mechanisms are responsible for smooth muscle and endothelium generation, the choice to become smooth versus striated muscle depends on a single signaling system. Altogether, these findings underscore the spatial and temporal complexity of lineage diversification in an apparently homogeneous epithelium.  相似文献   

16.
Insulin-like growth factor-I (IGF-I) secretion by the vascular endothelium has been proposed to play a role in the regulation of vascular smooth muscle cell proliferation. Because vascular smooth muscle cells are adjacent to the abluminal surface of the endothelium, we tested the hypothesis that secretion of IGF-I by endothelial cells is polarized. Porcine aortic endothelial cells were cultured on permeable membranes and IGF-I measured by radioimmunoassay. Basal secretion exceeded apical secretion by a ratio of 2.3 ± 0.2:1.0 (P < 0.05). We also identified 35 kDa IGF-I binding protein activity that is preferentially secreted on the basal surface of endothelial cells. We conclude that both IGF-I and IGF-I binding protein activity secretion by endothelial cells is polarized towards the basal surface of the endothelium. A polarized secretion mechanism for IGF-I may be of importance in the normal growth and differentiation of the vasculature as well as in the development of vascular pathology. © 1993 Wiley-Liss, Inc.  相似文献   

17.
18.
Summary Cultured endothelial cells have been used in the past as a source of endothelium-derived relaxing factor (EDRF) and of prostacyclin (PGI2). Although cell cultures are essential for observation of prolonged exposure to media or when there is delayed response, they are time consuming and sterile conditions are essential. In the present study, we report that endothelial cells, freshly harvested from bovine aortas, readily attached themselves to cytodex-3 microcarrier beads and released an endothelium-derived relaxing factor (EDRF), prostacyclin (PGI2) and increased the amount of cyclic GMP in vascular smooth muscle. Attachment to microcarrier beads was essential since it increased the surface area and the number of attached cells and permited collection of cell free filtrates because of the formation of dense networks of cells and beads. As a result superfusion of cells and beads on the filter did not dislodge bound cells which remain on the filter. Conditioned filtrates from freshly harvested endothelial cells attached to microcarrier beads caused marked relaxation of endothelium-deprived bovine pulmonary artery strips. The degree of relaxation depended on the number of cells; maximal relaxation occurred with 50 million cells at ED50 of 14 million. High values of cyclic GMP were found in vascular smooth muscle exposed to conditioned filtrate. The calcium ionophore A23187 further increased the amount of cyclic GMP. Large amounts of PGI2 were released by freshly harvested endothelial cells particularly after stimulation with the calcium ionophore. In contrast, endothelin production by freshly harvested cells attached to microcarrier beads was barely detectable after 30 min incubation and was beyond the limit of detection by bioassay procedures. Freshly harvested endothelial cells attached to microcarrier beads appear to be a useful adjunct to tissue cultures under specific experimental conditions.Abbreviations EDRF Endothelium-Derived Relaxing Factor - PGI2 Prostacyclin - K-H Krebs-Henseleit solution - cyclic GMP cyclic Guanosine Monophosphate - fmoles femtomoles - IB Ibuprofen  相似文献   

19.
PURPOSE OF REVIEW: Sphingosine 1-phosphate is a novel lipid mediator which exerts various actions on endothelial cells and vascular smooth muscle cells. In this review, we discuss the latest findings about the molecule in vascular biology. RECENT FINDINGS: It has been demonstrated that most sphingosine 1-phosphate-induced actions are mediated by the Edg-family of its receptors. Sphingosine 1-phosphate stimulates the migration and proliferation of endothelial cells and is cytoprotective towards them. The involvement of phosphoinositide 3-kinase and nitric oxide in sphingosine 1-phosphate downstream signaling in endothelial cells was recently reported, as was the enhancement of endothelial barrier integrity induced by the molecule. Sphingosine 1-phosphate inhibits migration of vascular smooth muscle cells and this inhibition was reported to be mediated by inhibition of Rac. Sphingosine 1-phosphate is concentrated in the lipoprotein fraction in plasma, and high-density lipoprotein exerted endothelial cytoprotection through its component of this molecule. SUMMARY: Sphingosine 1-phosphate might play a critical role in the development of atherosclerosis.  相似文献   

20.
Smooth muscle cell migration and proliferation contribute to neointimal hyperplasia and vascular stenosis after endothelial denudation. Previous studies revealed that apolipoprotein E (apoE) is an effective inhibitor of platelet-derived growth factor-directed smooth muscle cell migration and proliferation and that the anti-migratory function is mediated via apoE binding to low density lipoprotein receptor-related protein-1 (LRP-1). This study was undertaken to identify the intracellular pathway by which apoE binding to LRP-1 results in inhibition of smooth muscle cell migration. The results showed that apoE increased intracellular cAMP levels 3-fold after 5 min, and the increase was sustained for more than 1 h. As a consequence, apoE also increased protein kinase A (PKA) activity in smooth muscle cells. Importantly, suppression of PKA activity with a cell-permeable peptide inhibitor of PKA abolished the inhibitory effect of apoE on smooth muscle cell migration. These results indicated that apoE inhibition of smooth muscle cell migration is mediated via the activation of cAMP-dependent PKA. Additional experiments revealed that apoE also inhibited fibroblasts migration toward platelet-derived growth factor by a similar mechanism of cAMP-dependent PKA activation. It is noteworthy that apoE failed to increase cAMP levels or inhibit migration of LRP-1-negative mouse embryonic fibroblasts and LRP-1-deficient smooth muscle cells. Taken together, these findings established the mechanism by which apoE inhibits cell migration, i.e. via cAMP-dependent protein kinase A activation as a consequence of its binding to LRP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号