首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The evolutionary relationship of muscle and nonmuscle actin isoforms in deuterostomia was studied by the isolation and characterization of two actin genes from the cephalochordate Branchiostoma lanceolatum and two from the hemichordate Saccoglossus kowalevskii The Branchiostoma genes specify a muscle and a nonmuscle actin type, respectively. Together with earlier results on muscle actins from vertebrates and urochordates, a N-terminal sequence signature is defined for chordate muscle actins. These diagnostic amino acid residues separate the chordates from the echinoderms and other metazoa. Although the two Saccoglossus actins characterized so far lack the diagnostic residues, in line with the presumptive phylogenetic position of hemichordates outside the chordates, a definitive conclusion can only be expected once the full complement of actin genes of Saccoglossus is established. Comparison of the intron patterns of the various deuterostomic actin genes shows that intron 330-3, which is present in all vertebrate genes, is conspicuously absent from nonvertebrate genes. The possible origin of this intron is discussed. Received: 4 July 1997 / Accepted: 29 August 1997  相似文献   

2.
Phylogenetic hypotheses of muscle actin evolution are significantly different when a sea urchin is used as a representative echinoderm than when a sea star is used. While sea urchin muscle actins support an echinoderm–chordate sister relationship, sea star sequences suggest that echinoderm muscle actins are convergent with chordate muscle actins. Our results suggest that gene conversion in the sea star muscle actin may be responsible for these discordant results. Received: 19 July 1999 / Accepted: 1 October 1999  相似文献   

3.
Multiple copies of a given ribosomal RNA gene family undergo concerted evolution such that sequences of all gene copies are virtually identical within a species although they diverge normally between species. In eukaryotes, gene conversion and unequal crossing over are the proposed mechanisms for concerted evolution of tandemly repeated sequences, whereas dispersed genes are homogenized by gene conversion. However, the homogenization mechanisms for multiple-copy, normally dispersed, prokaryotic rRNA genes are not well understood. Here we compared the sequences of multiple paralogous rRNA genes within a genome in 12 prokaryotic organisms that have multiple copies of the rRNA genes. Within a genome, putative sequence conversion tracts were found throughout the entire length of each individual rRNA genes and their immediate flanks. Individual conversion events convert only a short sequence tract, and the conversion partners can be any paralogous genes within the genome. Interestingly, the genic sequences undergo much slower divergence than their flanking sequences. Moreover, genomic context and operon organization do not affect rRNA gene homogenization. Thus, gene conversion underlies concerted evolution of bacterial rRNA genes, which normally occurs within genic sequences, and homogenization of flanking regions may result from co-conversion with the genic sequence. Received: 31 March 2000 / Accepted: 15 June 2000  相似文献   

4.
Tandemly duplicated actin genes have been isolated from a Helicoverpa armigera genomic library. Sequence comparisons with actin genes from other species suggest they encode cytoplasmic actins, being most closely related to the Bombyx mori A3 actin gene. The duplicated H. armigera actin genes, termed A3a and A3b, share 98.3% nucleotide sequence identity over their entire putative coding region. Analysis of the distribution of nucleotide differences shows the first 763 bp are identical between the two coding regions, with the 18 nucleotide changes occurring in the remaining 366 bp. This observation suggests a gene conversion event has taken place between the duplicated H. armigera A3a and A3b actin genes. Translation of the open-reading frames indicates the products of these genes are identical, apart from a single amino acid difference at codon 273. Polymerase chain reaction and northern blot analysis have shown both H. armigera A3a and A3b genes are expressed during pupal development and in the brain of newly eclosed adults. A region 5′ of the H. armigera A3a actin gene start codon has been identified which contains regulatory sequences commonly found in the promoter region of actin genes, including TATA, CAAT, and CArG motifs. Received: 10 January 1996 / Accepted: 12 March 1996  相似文献   

5.
Five cDNAs (pDidact2–pDidact6), representing different actin genes, were isolated from a Diphyllobothrium dendriticum cDNA library, and the DNA as well as the putative amino acid sequences were determined. The corresponding Didact2 and Didact4 genes code for peptides 376 amino acids long, with molecular weights 41,772 and 41,744 Da, respectively, while the deduced Didact3 protein is 377 amino acids long and weighs 41,912 Da. The pDidact5 and -6 cDNAs lack nucleotides corresponding to three to six amino acids at the amino-terminus. Two of the five cDNAs contain the conventional AATAAA as the putative polyadenylation signal, one has the common variant ATTAAA, whereas the hexanucleotide AATAGA is found 15 and 18 nucleotides, respectively, upstream of the poly(A) site in two of the cDNAs. Phylogenetic studies including 102 actin protein sequences revealed that there are at least four different types of cestode actins. In this study three of these types were found to be expressed in the adult D. dendriticum tapeworm. Structurally the cestode actin groupings differ from each other to an extent seen only among the metazoan actins between the vertebrate muscle and cytoplasmic isoforms. In the phylogenetic trees constructed, cestode actins were seen to map to two different regions, one on the border of the metazoan actins and the other within this group. It is, however, difficult to say whether the cestode actins branched off early in the metazoan evolution or if this position in the phylogenetic tree only reflects upon differences in evolutionary rate. Received: 19 June 1996 / Accepted: 20 August 1996  相似文献   

6.
The sequences of the entire blue opsin gene in the squirrel monkey (Saimiri boliviensis) and the five introns of the human blue opsin gene were obtained. Intron 3 of these genes contains an Alu sequence and intron 4 contains a partial mer13 sequence. A comparison of the squirrel monkey opsin sequence with published mammalian opsin sequences shows that features believed to be functionally critical are all conserved. However, the blue opsin has evolved twice as fast as rhodopsin and is only as conservative as the β globin, which has evolved at the average rate of mammalian proteins. Interestingly, the interhelical loops are, on average, actually more conservative than the transmembrane α helical regions. The introns of the blue opsin gene have evolved at the average rate of introns in primate genes. Received: 5 August 1996 / Accepted: 2 October 1996  相似文献   

7.
8.
There is an 8/13 sequence match between actin and flagellin in their N-terminal regions. Received: 2 January 2001 / Accepted: 4 June 2001  相似文献   

9.
A molecular phylogenetic analysis of elongation factor Tu (EF-Tu) proteins from plastids was performed in an attempt to identify the origin of chlorarachniophyte plastids, which are considered to have evolved from the endosymbiont of a photosynthetic eukaryote. Partial sequences of the genes for plastid EF-Tu proteins (1,080–1,089 bp) were determined for three algae that contain chlorophyll b, namely, Gymnochlora stellata (Chlorarachniophyceae), Bryopsis maxima (Ulvophyceae), and Pyramimonas disomata (Prasinophyceae). The deduced amino acid sequences were used to construct phylogenetic trees of the plastid and bacterial EF-Tu proteins by the maximum likelihood, the maximum parsimony, and the neighbor joining methods. The trees obtained in the present analysis suggest that all plastids that contain chlorophyll b are monophyletic and that the chlorarachniophyte plastids are closely related to those of the Ulvophyceae. The phylogenetic trees also suggest that euglenophyte plastids are closely related to prasinophycean plastids. The results indicate that the chlorarachniophyte plastids evolved from a green algal endosymbiont that was closely related to the Ulvophyceae and that at least two secondary endosymbiotic events have occurred in the lineage of algae with plastids that contain chlorophyll b. Received: 10 March 1997 / Accepted: 28 July 1997  相似文献   

10.
The mammalian defensin molecule is a short, highly cationic peptide cytotoxic to both microbial and mammalian cells which is cleaved from a precursor including a signal peptide and a highly anionic propiece. A phylogenetic analysis of 28 complete sequences from five mammalian species (mouse, rat, guinea pig, rabbit, and human) showed species-specific clusters of sequences, indicating that the genes duplicated after divergence of these species. Comparison of rates of synonymous and nonsynonymous nucleotide substitution suggested that gene duplication has often been followed by a period in which diversification of the mature defensins at the amino acid level has been selectively favored. In some comparisons, it appeared that amino acid differences in this region have appeared in a nonrandom fashion so as to change the pattern of residue charges. Because it has been hypothesized that the negative charge in the propiece serves to balance the positive charge in the mature defensin and thus to prevent cytotoxicity prior to cleavage, we used a maximum likelihood method of reconstructing ancestral states in order to test whether this balance has been maintained over evolutionary time in spite of rapid diversification of the mature defensin at the amino acid level. Reconstructed ancestral sequences always maintained a charge balance between mature defensin and propiece, and changes in the net positive charge of the mature defensin were balanced by corresponding changes in the propiece. The results support the hypothesis that, in the evolution of these proteins, amino acid changes have occurred in a coordinated fashion so as to preserve an adaptive phenotype. Received: 23 October 1996 / Accepted: 7 January 1997  相似文献   

11.
While globin genes ctt-2β and ctt-9.1 in Chironomus thummi thummi each have a single intron, all of the other insect globin genes reported so far are intronless. We analyzed four globin genes linked to the two intron-bearing genes in C. th. thummi. Three have a single intron at the same position as ctt-2β and ctt-9.1; the fourth is intronless and lies between intron bearing genes. Finally, in addition to its intron, one gene (ctt-13RT) was recently interrupted by retrotransposition. Phylogenetic analyses show that the six genes in C. th. thummi share common ancestry with five globin genes in the distantly related species C. tentans, and that a 5-gene ancestral cluster predates the divergence of the two species. One gene in the ancestral cluster gave rise to ctn-ORFB in C. tentans, and duplicated in C. th. thummi to create ctt-11 and ctt-12. From parsimonious calculations of evolutionary distances since speciation, ctt-11, ctt-12, and ctn-ORFB evolved rapidly, while ctn-ORFE in C. tentans evolved slowly compared to other globin genes in the clusters. While these four globins are under selective pressure, we suggest that most chironomid globin genes were not selected for their unique function. Instead, we propose that high gene copy number itself was selected because conditions favored organisms that could synthesize more hemoglobin. High gene copy number selection to produce more of a useful product may be the basis of forming multigene families, all of whose members initially accumulate neutral substitutions while retaining essential function. Maintenance of a large family of globin genes not only ensured high levels of hemoglobin production, but may have facilitated the extensive divergence of chironomids into as many as 5000 species. Received: 31 December 1996 / Accepted: 16 May 1997  相似文献   

12.
Drosophila ananassae is known to produce numerous alpha-amylase variants. We have cloned seven different Amy genes in an African strain homozygous for the AMY1,2,3,4 electrophoretic pattern. These genes are organized as two main clusters: the first one contains three intronless copies on the 2L chromosome arm, two of which are tandemly arranged. The other cluster, on the 3L arm, contains two intron-bearing copies. The amylase variants AMY1 and AMY2 have been assigned to the intronless cluster, and AMY3 and AMY4 to the second one. The divergence of coding sequences between clusters is moderate (6.1% in amino acids), but the flanking regions are very different, which could explain their differential regulation. Within each cluster, coding and noncoding regions are conserved. Two very divergent genes were also cloned, both on chromosome 3L, but very distant from each other and from the other genes. One is the Amyrel homologous (41% divergent), the second one, Amyc1 (21.6% divergent) is unknown outside the D. ananassae subgroup. These two genes have unknown functions. Received: 30 May 2000 / Accepted: 17 July 2000  相似文献   

13.
The polymeric ubiquitin (poly-u) genes are composed of tandem 228-bp repeats with no spacer sequences between individual monomer units. Ubiquitin is one of the most conserved proteins known to date, and the individual units within a number of poly-u genes are significantly more similar to each other than would be expected if each unit evolved independently. It has been proposed that the rather striking similarity among poly-u monomers in some lineages is caused by a series of homogenization events. Here we report the sequences of the polyubiquitin-C (Ubc) genes in two mouse strains. Analysis of these sequences, as well as those of the previously reported Chinese hamster and rat poly-u genes, supports the assertion that the homogenization of the ubiquitin-C gene in rodents is due to unequal crossing-over events. The sequence divergence of noncoding DNA was used to estimate the frequency of unequal crossing-over events (6.3 × 10−5 events per generation) in the Ubc gene, as well as to provide evidence of apparent selection in the poly-u gene.  相似文献   

14.
In studies of molecular evolution, the assumption that protein evolution is reversible has often been made, but rarely tested. Here we use a large set of orthologous murid protein coding sequences to perform a simple test of reversibility, and find no evidence to reject the assumption of reversibility in protein evolution. Received: 10 October 2000 / Accepted: 18 January 2001  相似文献   

15.
The unicellular protozoan parasite, Crithidia luciliae, responded to osmotic swelling by undergoing a regulatory volume decrease. This process was accompanied by the efflux of amino acids (predominantly alanine, proline and glycine). The relative loss of the electroneutral amino acids proline, valine, alanine and glycine was greater than that for the anionic amino acid, glutamate; there was negligible loss of the cationic amino acids, lysine, arginine and ornithine. The characteristics of amino acid release were investigated using a radiolabeled form of the nonmetabolized alanine analogue α-aminoisobutyrate. α-Aminoisobutyrate efflux was activated within a few seconds of a reduction of the osmolality, and inactivated rapidly (again within a few seconds) on restoration of isotonicity. The initial rate of efflux of α-aminoisobutyrate from cells in hypotonic medium was unaffected by the extracellular amino acid concentration. Hypotonically activated α-aminoisobutyrate efflux (as well as the associated regulatory volume decrease) was inhibited by the sulfhydryl reagent N-ethylmaleimide but was not inhibited by a range of anion transport blockers. As in the efflux experiments, unidirectional influx rates for α-aminoisobutyrate increased markedly following reduction of the osmolality, consistent with the swelling-activated amino acid release mechanism allowing the flux of solutes in both directions. Hypotonically activated α-aminoisobutyrate influx showed no tendency to saturate up to an extracellular concentration of 50 mm. The functional characteristics of the amino acid release mechanism are those of a channel, with a preference for electroneutral and anionic amino acids over cationic amino acids. However, the pharmacology of the system differs from that of the anion-selective channels that are thought to mediate the volume-regulatory efflux of organic osmolytes from vertebrate cells. Received: 13 May 1996/Revised: 9 July 1996  相似文献   

16.
Sequences from the tuf gene coding for the elongation factor EF-Tu were amplified and sequenced from the genomic DNA of Pirellula marina and Isosphaera pallida, two species of bacteria within the order Planctomycetales. A near-complete (1140-bp) sequence was obtained from Pi. marina and a partial (759-bp) sequence was obtained for I. pallida. Alignment of the deduced Pi. marina EF-Tu amino acid sequence against reference sequences demonstrated the presence of a unique 11-amino acid sequence motif not present in any other division of the domain Bacteria. Pi. marina shared the highest percentage amino acid sequence identity with I. pallida but showed only a low percentage identity with other members of the domain Bacteria. This is consistent with the concept of the planctomycetes as a unique division of the Bacteria. Neither primary sequence comparison of EF-Tu nor phylogenetic analysis supports any close relationship between planctomycetes and the chlamydiae, which has previously been postulated on the basis of 16S rRNA. Phylogenetic analysis of aligned EF-Tu amino acid sequences performed using distance, maximum-parsimony, and maximum-likelihood approaches yielded contradictory results with respect to the position of planctomycetes relative to other bacteria. It is hypothesized that long-branch attraction effects due to unequal evolutionary rates and mutational saturation effects may account for some of the contradictions. Received: 21 August 2000 / Accepted: 8 January 2001  相似文献   

17.
Previous studies have shown that pituitary growth hormone displays an episodic pattern of evolution, with a slow underlying evolutionary rate and occasional sustained bursts of rapid change. The present study establishes that pituitary prolactin shows a similar pattern. During much of tetrapod evolution the sequence of prolactin has been strongly conserved, showing a slow basal rate of change (approx 0.27 × 109 substitutions/amino acid site/year). This rate has increased substantially (∼12- to 38-fold) on at least four occasions during eutherian evolution, during the evolution of primates, artiodactyls, rodents, and elephants. That these increases are real and not a consequence of inadvertant comparison of paralogous genes is shown (for at least the first three groups) by the fact that they are confined to mature protein coding sequence and not apparent in sequences coding for signal peptides or when synonymous substitutions are examined. Sequences of teleost prolactins differ markedly from those of tetrapods and lungfish, but during the course of teleost evolution the rate of change of prolactin has been less variable than that of growth hormone. It is concluded that the evolutionary pattern seen for prolactin shows long periods of near-stasis interrupted by occasional bursts of rapid change, resembling the pattern seen for growth hormone in general but not in detail. The most likely basis for these bursts appears to be adaptive evolution though the biological changes involved are relatively small. Received: 31 August 1999 / Accepted: 9 February 2000  相似文献   

18.
Molecular genetics studies often infer the occurrence of gene conversion events based on simple sequence similarity observations that do not include any statistical analyses. I show that the statistical significance of two previously proposed gene conversion events can easily be tested and point out that a variety of methods are available to perform gene conversion analyses. Received: 6 June 2001 / Accepted: 22 June 2001  相似文献   

19.
The extracellular hemoglobins of cladocerans derive from the aggregation of 12 two-domain globin subunits that are apparently encoded by four genes. This study establishes that at least some of these genes occur as a tandem array in both Daphnia magna and Daphnia exilis. The genes share a uniform structure; a bridge intron separates two globin domains which each include three exons and two introns. Introns are small, averaging just 77 bp, but a longer sequence (2.2–3.2 kb) separates adjacent globin genes. A survey of structural diversity in globin genes from other daphniids revealed three independent cases of intron loss, but exon lengths were identical, excepting a 3-bp insertion in exon 5 of Simocephalus. Heterogeneity in the extent of nucleotide divergence was marked among exons, largely as a result of the pronounced diversification of the terminal exon. This variation reflected, in part, varying exposure to concerted evolution. Conversion events were frequent in exons 1–4 but were absent from exons 5 and 6. Because of this difference, the results of phylogenetic analyses were strongly affected by the sequences employed in this construction. Phylogenies based on total nucleotide divergence in exons 1–4 revealed affinities among all genes isolated from a single species, reflecting the impact of gene conversion events. In contrast, phylogenies based on total nucleotide divergence in exons 5 and 6 revealed affinities among orthologous genes from different taxa. Received: 8 March 1999 / Accepted: 14 July 1999  相似文献   

20.
Highly expressed plastid genes display codon adaptation, which is defined as a bias toward a set of codons which are complementary to abundant tRNAs. This type of adaptation is similar to what is observed in highly expressed Escherichia coli genes and is probably the result of selection to increase translation efficiency. In the current work, the codon adaptation of plastid genes is studied with regard to three specific features that have been observed in E. coli and which may influence translation efficiency. These features are (1) a relatively low codon adaptation at the 5′ end of highly expressed genes, (2) an influence of neighboring codons on codon usage at a particular site (codon context), and (3) a correlation between the level of codon adaptation of a gene and its amino acid content. All three features are found in plastid genes. First, highly expressed plastid genes have a noticeable decrease in codon adaptation over the first 10–20 codons. Second, for the twofold degenerate NNY codon groups, highly expressed genes have an overall bias toward the NNC codon, but this is not observed when the 3′ neighboring base is a G. At these sites highly expressed genes are biased toward NNT instead of NNC. Third, plastid genes that have higher codon adaptations also tend to have an increased usage of amino acids with a high G + C content at the first two codon positions and GNN codons in particular. The correlation between codon adaptation and amino acid content exists separately for both cytosolic and membrane proteins and is not related to any obvious functional property. It is suggested that at certain sites selection discriminates between nonsynonymous codons based on translational, not functional, differences, with the result that the amino acid sequence of highly expressed proteins is partially influenced by selection for increased translation efficiency. Received: 21 July 1999 / Accepted: 5 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号