首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gold is a nonessential element with a variety of applications in medicine. A few gold(I) compounds are used in the clinics for treatment of rheumatoid arthritis and of discoid lupus. Some novel gold(III) compounds are under evaluation as anticancer agents. It is known that gold compounds generally produce toxic effects on the kidneys and characteristic lesions in the brain. However, information concerning the neurotoxicity of gold derivatives in humans as well as in experimental toxicology is rather scarce. For this reason we tried to shed some further light on this aspect of gold neurotoxicity by chronic treatment of mice with sodium tetrachloroaurate(III) in order to observe possible biophysical and morphological alterations that may occur in the brain. Chronic gold treatment resulted in a markedly decreased expression of metallothioneins and of glial fibrillary acidic protein in astrocytes of different brain areas. To examine its effects on cell membranes, interactions of sodium tetrachloroaurate(III) with molecular models were also evaluated. The models consisted in bilayers built-up of classes of phospholipids located in the outer and inner monolayers of biological membranes. Structural perturbation of cell membrane models was observed only at concentrations 10(5) times higher than those detected in the brains of animals after three months' treatment. These results show that toxic effects on animal brain upon treatment with sodium tetrachloroaurate develop with difficulty and may be observed only at high doses.  相似文献   

2.
The membrane potential of Ehrlich ascites tumor cells and the effects of valinomycin and ouabain upon it have been determined. The membrane potential in control cells was 12.0 mV, inside negative. Neither valinomycin nor ouabain alone affected this value. However, valinomycin and ouabain in combination resulted in a slight hyperpolarization of the membrane. Concomitant determinations of cellular Na+, K+ and Cl- showed that valinomycin induced net losses of K+ and Cl- and a net gain in Na+ when compared to ouabain-inhibited cells. K+ permeability was increased by approximately 30% in the presence of valinomycin. In addition, valinomycin caused a rapid depletion of cellular ATP. Inhibition of Na/K transport by ouabain was without sparing effect on the rate of ATP depletion. Possible mechanisms for the electroneutral increase in K+ permeability induced by valinomycin are discussed.  相似文献   

3.
Crystallographic studies of membrane proteins have been steadily increasing despite their unique physical properties that hinder crystal formation. Co-crystallization with antibody fragments has emerged as a promising solution to obtain diffraction quality crystals. Antibody binding to the target membrane protein can yield a homogenous population of the protein. Interantibody interactions can also provide additional crystal contacts, which are minimized in membrane proteins due to micelle formation around the transmembrane segments. Rapid identification of antibody fragments that can recognize native protein structure makes phage display a valuable method for crystallographic studies of membrane proteins. Methods that speed the reliable characterization of phage display selected antibody fragments are needed to make the technology more generally applicable. In this report, a phage display biopanning procedure is described to identify Fragments antigen binding (Fabs) for membrane proteins. It is also demonstrated that Fabs can be rapidly grouped based on relative affinities using enzyme linked immunosorbent assay (ELISA) and unpurified Fabs. This procedure greatly speeds the prioritization of candidate binders to membrane proteins and will aid in subsequent structure determinations.  相似文献   

4.
The 1TW7 crystal structure of HIV-1 protease shows the flaps placed wider and more open than what is seen in other examples of the semi-open, apo form. It has been proposed that this might be experimental evidence of allosteric control, because crystal packing creates contacts to the "elbow region" of the protease, which may cause deformation of the flaps. Recent dynamics simulations have shown that the conformation seen in 1TW7 relaxes into the typical semi-open conformation in the absence of the crystal contacts, definitively showing that the crystal contacts cause the deformation (Layten et al., J Am Chem Soc 2006;128:13360-13361). However, this does not prove or disprove allosteric modulation at the elbow. In this study, we have conducted additional simulations, supplemented with experimental testing, to further probe the possibility of 1TW7 providing an example of allosteric control of the flap region. We show that the contacts are unstable and do not restrict the conformational sampling of the flaps. The deformation seen in the 1TW7 crystal structure is simply opportunistic crystal packing and not allosteric control.  相似文献   

5.
Crystal structure of peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro)   总被引:1,自引:0,他引:1  
The crystal and molecular structure of the rubidium/picrate complex of the peptide cyclo-(D-val-L-pro-L-val-D-pro)3, called prolinomycin, has been determined by X-ray crystallography and found to be similar to the well known ion-carrier valinomycin. Prolinomycin crystallizes in the triclinic system with two prolinomycin molecules and two each rubidium cations and picrate anions in the unit cell. There are also ordered toluene and chloroform molecules, which are the solvents of crystallization, in the unit cell. The conformation of the two crystallographically independent prolinomycin molecules in the unit cell are very similar. Potential energy calculations show that the cation is bound more strongly in prolinomycin compared to valinomycin. This was also observed in solution (7).  相似文献   

6.
The factors responsible for the binding of Hoechst 33258 with DNA residues have been investigated in this work using the AM1 method. First and foremost, it is found that, although all crystal structure determinations indicate a preference for binding at AT rich sites, the hydrogen bond strength is actually greater for complexes with cytosine and guanine. From this, it has been inferred that other factors such as electrostatic, van der Waals interactions and nonbonded contacts with the walls of the minor groove have a strong role to play in the binding process. The hydrogen bond is found to be stronger for complexation with the thymine O2 than with the adenine N3, in line with experimental observations. Combined QM/MM studies on the drug complexed with the Dickerson-Drew dodecamer reveal that binding induces structural changes in both the ligand as well as DNA. Electron donating substituents at the para position in the phenyl ring of Hoechst 33258 lead to stronger binding with DNA. A correlation with the octanol/water partition coefficients points to the importance of hydrophobic and electrostatic interactions.  相似文献   

7.
We used synchrotron radiation to measure the K-edge absorption spectra of the potassium ion in valinomycin-K+ complexes dissolved in ethanol and methanol. Our motivation is to study the structure of valinomycin around the potassium ion and the effect of solvents. From the extended x-ray absorption fine structure, we found that the mean distance from potassium to its coordination atoms, oxygen, is the same for both solvents, 2.79 +/- 0.02 A, compared with 2.76 A in crystal. The K-edge threshold spectra of the two solutions are almost identical but have a small difference in their relative peak intensities. The coincidence of their corresponding peak positions indicates that the strength of ligand field is about the same in these two samples. This agrees with the known binding energies of potassium ion to valinomycin in solutions. The difference in the relative peak intensities suggests a perturbation of ligand symmetry by solvents.  相似文献   

8.
The mechanisms of the three-dimensional crambin structure alterations in the crystalline environments and in the trajectories of the molecular dynamics simulations in the vacuum and crystal surroundings have been analyzed. In the crystalline state and in the solution the partial regrouping of remote intramolecular packing contacts, involved in the formation and stabilization of the tertiary structure of the crambin molecule, occurs in NMR structures. In the crystalline state it is initiated by the formation of the intermolecular contacts, the conformational influence of its appearance is distributed over the structure. The changes of the conformations and positions of the residues of the loop segments, where the intermolecular contacts of the crystal surroundings are preferably concentrated, are most observable. Under the influence of these contacts the principal change of the regular secondary structure of crambin is taking place: extension of the two-strand β structure to the three-strand structure with the participation of the single last residue N46 of the C-terminal loop. In comparison with the C-terminal loop the more profound changes are observed in the conformation and the atomic positions of the backbone atoms and in the solvent accessibility of the residues of the interhelical loop. In the solution of the ensemble of the 8 NMR structures relative accessibility to the solvent differs more noticeably also in the region of the loop segments and rather markedly in the interhelical loop. In the crambin cryogenic crystal structures the positions of the atoms of the backbone and/or side chain of 14–18 of 46 residues are discretely disordered. The disorganizations of at least 8 of 14 residues occur directly in the regions of the intermolecular contacts and another 5 residues are disordered indirectly through the intramolecular contacts with the residues of the intermolecular contacts. Upon the molecular dynamics simulation in the vacuum surrounding as in the solution of the crystalline structure of crambin the essential changes of the backbone conformation are caused by the intermolecular contacts absence, but partly masked by the structure changes owing to the nonpolar H atoms absence on the simulated structure. The intermolecular contact absence is partly manifested upon the molecular dynamics simulation of the crambin crystal with one protein molecule. Compared to the crystal structure the lengths of the interpeptide hydrogen bonds and other interresidue contacts in an average solution NMR structure are somewhat shorter and accordingly the energy of the interpeptide hydrogen bonds is better. This length shortening can occur at the stage of the refinement of the NMR structures of the crambin and other proteins by its energy minimizations in the vacuum surroundings and not exist in the solution protein structures.  相似文献   

9.
10.
Protein-protein crystal-packing contacts.   总被引:3,自引:1,他引:2       下载免费PDF全文
Protein-protein contacts in monomeric protein crystal structures have been analyzed and compared to the physiological protein-protein contacts in oligomerization. A number of features differentiate the crystal-packing contacts from the natural contacts occurring in multimeric proteins. The area of the protein surface patches involved in packing contacts is generally smaller and its amino acid composition is indistinguishable from that of the protein surface accessible to the solvent. The fraction of protein surface in crystal contacts is very variable and independent of the number of packing contacts. The thermal motion at the crystal packing interface and that of the protein core, even for large packing interfaces, though the tendency is to be closer to that of the core. These results suggest that protein crystallization depends on random protein-protein interactions, which have little in common with physiological protein-protein recognition processes, and that the possibility of engineering macromolecular crystallization to improve crystal quality could be widened.  相似文献   

11.
Dybal J  Ehala S  Kasicka V  Makrlík E 《Biopolymers》2008,89(12):1055-1060
The interactions of valinomycin, macrocyclic depsipeptide antibiotic ionophore, with ammonium cation NH4+ have been investigated. Using quantum mechanical density functional theory (DFT) calculations, the most probable structure of the valinomycin-NH4+ complex species was predicted. In this complex, the ammonium cation is bound partly by three strong hydrogen bonds to three ester carbonyl oxygen atoms of valinomycin and partly by somewhat weaker hydrogen bonds to the remaining three ester carbonyl groups of the valinomycin ligand. The strength of the valinomycin-NH4+ complex was evaluated experimentally by capillary affinity electrophoresis. From the dependence of valinomycin effective electrophoretic mobility on the ammonium ion concentration in the background electrolyte, the apparent binding (association, stability) constant (Kb) of the valinomycin-NH4+ complex in methanol was evaluated as log Kb = 1.52 +/- 0.22.  相似文献   

12.
Ergenekan CE  Tan ML  Ichiye T 《Proteins》2005,61(4):823-828
Molecular dynamics simulations based on a 0.95-A resolution crystal structure of Pyrococcus furiosus have been performed to elucidate the effects of the environment on the structure of rubredoxin, and proteins in general. Three 1-ns simulations are reported here: two crystalline state simulations at 123 and 300 K, and a solution state simulation at 300 K. These simulations show that temperature has a greater impact on the protein structure than the close molecular contacts of the crystal matrix in rubredoxin, although both have an effect on its dynamic properties. These results indicate that differences between NMR solution structures and X-ray crystal structures will be relatively minor if they are done at similar temperatures. In addition, the crystal simulations appears to mimic previous crystallographic experiments on the effects of cryo-temperature on temperature factors, and might provide a useful tool in the structural analysis of protein structures solved at cryo-temperatures.  相似文献   

13.
The crystallographic structure of the plasminogen kringle 4-epsilon-aminocaproic acid (ACA) complex (K4-ACA) has been solved by molecular replacement rotation-translation methods utilizing the refined apo-K4 structure as a search model (Mulichak et al., 1991), and it has been refined to an R value of 0.148 at 2.25-A resolution. The K4-ACA structure consists of two interkringle residues, the kringle along with the ACA ligand, and 106 water molecules. The lysine-binding site has been confirmed to be a relatively open and shallow depression, lined by aromatic rings of Trp62, Phe64, and Trp72, which provide a highly nonpolar environment between doubly charged anionic and cationic centers formed by Asp55/Asp57 and Lys35/Arg71. A zwitterionic ACA ligand molecule is held by hydrogen-bonded ion pair interactions and van der Waals contacts between the charged centers. The lysine-binding site of apo-K4 and K4-ACA have been compared: the rms differences in main-chain and side-chain positions are 0.25 and 0.69 A, respectively, both practically within error of the determinations. The largest deviations in the binding site are due to different crystal packing interactions. Thus, the lysine-binding site appears to be preformed, and lysine binding does not require conformational changes of the host. The results of NMR studies of lysine binding with K4 are correlated with the structure of K4-ACA and agree well.  相似文献   

14.
T4溶菌酶晶体分子堆积的研究   总被引:1,自引:1,他引:0  
以不对称单位中只有一个分子的10种不同晶型的T4溶菌酶晶体为材料,对晶体中的分子堆积进行了研究,结果表明,在溶剂含量较高的晶型中,非极性基团在接触面积中所占的比例略高于溶剂含量较低的晶型,而其极性和带电荷基团在接触面积中所占的比例略低于溶剂含量较低的晶型。溶剂含量较高的晶型多含有晶体学二重轴,二重轴相关的分子间的接触与其他接触相比,含有较少的极性相互作用。这些结果说明溶剂含量的高低可能是由不同结晶  相似文献   

15.
The mammalian cAMP-dependent protein kinases have regulatory (R) subunits that show substantial homology in amino acid sequence with the catabolite gene activator protein (CAP), a cAMP-dependent gene regulatory protein from Escherichia coli. Each R subunit has two in-tandem cAMP binding domains, and the structure of each of these domains has been modeled by analogy with the crystal structure of CAP. Both the type I and II regulatory subunits have been considered, so that four cAMP binding domains have been modeled. The binding of cAMP in general is analogous in all the structures and has been correlated with previous results based on photolabeling and binding of cAMP analogues. The model predicts that the first cAMP binding domain correlates with the previously defined fast dissociation site, which preferentially binds N6-substituted analogues of cAMP. The second domain corresponds to the slow dissociation site, which has a preference for C8-substituted analogues. The model also is consistent with cAMP binding in the syn conformation in both sites. Finally, this model has targeted specific regions that are likely to be involved in interdomain contacts. This includes contacts between the two cAMP binding domains as well as contacts with the amino-terminal region of the R subunit and with the catalytic subunit.  相似文献   

16.
BackgroundIn protein crystals, flexible loops are frequently deformed by crystal contacts, whereas in solution, the large motions result in the poor convergence of such flexible loops in NMR structure determinations. We need an experimental technique to characterize the structural and dynamic properties of intrinsically flexible loops of protein molecules.MethodsWe designed an intended crystal contact-free space (CCFS) in protein crystals, and arranged the flexible loop of interest in the CCFS. The yeast Tim 21 protein was chosen as the model protein, because one of the loops (loop 2) is distorted by crystal contacts in the conventional crystal.ResultsYeast Tim21 was fused to the MBP protein by a rigid α-helical linker. The space created between the two proteins was used as the CCFS. The linker length provides adjustable freedom to arrange loop 2 in the CCFS. We re-determined the NMR structure of yeast Tim21, and conducted MD simulations for comparison. Multidimensional scaling was used to visualize the conformational similarity of loop 2. We found that the crystal contact-free conformation of loop 2 is located close to the center of the ensembles of the loop 2 conformations in the NMR and MD structures.ConclusionsLoop 2 of yeast Tim21 in the CCFS adopts a representative, dominant conformation in solution.General significanceNo single powerful technique is available for the characterization of flexible structures in protein molecules. NMR analyses and MD simulations provide useful, but incomplete information. CCFS crystallography offers a third route to this goal.  相似文献   

17.
The crystal structure of a valinomycin analogue, cyclo[-(D-Val-Hyi-Val-D-Hyi)3-]x(C60H102N6O18) crystallized with dioxane and water molecules, has been solved by X-ray direct methods. The conformation found is analogous to one established for free meso-valinomycin crystallized from other organic solvents. It is characterized by a centrosymmetric bracelet form, stabilized by six intramolecular 4----1 type hydrogen bonds between amide N-H and C = O groups. One water molecule is fixed asymmetrically by hydrogen bonds in the internal negatively charged cavity of the complexon. The meso-valinomycin molecule "bracelets" in the crystal form stacks alternatively with dioxane molecules.  相似文献   

18.
Erythrina cristagalli lectin (ECL) is a galactose-specific legume lectin. Although its biological function in the legume is unknown, ECL exhibits hemagglutinating activity in vitro and is mitogenic for T lymphocytes. In addition, it has been recently shown that ECL forms a novel conjugate when coupled to a catalytically active derivative of the type A neurotoxin from Clostridium botulinum, thus providing a therapeutic potential. ECL is biologically active as a dimer in which each protomer contains a functional carbohydrate-combining site. The crystal structure of native ECL was recently reported in complex with lactose and 2'-fucosyllactose. ECL protomers adopt the legume lectin fold but form non-canonical dimers via the handshake motif as was previously observed for Erythrina corallodendron lectin. Here we report the crystal structures of native and recombinant forms of the lectin in three new crystal forms, both unliganded and in complex with lactose. For the first time, the detailed structure of the glycosylated hexasaccharide for native ECL has been elucidated. The structure also shows that in the crystal lattice the glycosylation site and the carbohydrate binding site are involved in intermolecular contacts through water-mediated interactions.  相似文献   

19.
Cytochrome P450cam catalyzes the stereo and regiospecific hydroxylation of camphor to 5‐exo‐hydroxylcamphor. The two electrons for the oxidation of camphor are provided by putidaredoxin (Pdx), a Fe2S2 containing protein. Two recent crystal structures of the P450cam–Pdx complex, one solved with the aid of covalent cross‐linking and one without, have provided a structural picture of the redox partner interaction. To study the stability of the complex structure and the minor differences between the recent crystal structures, a 100 nanosecond molecular dynamics (MD) simulation of the cross‐linked structure, mutated in silico to wild type and the linker molecule removed, was performed. The complex was stable over the course of the simulation though conformational changes including the movement of the C helix of P450cam further toward Pdx allowed for the formation of a number of new contacts at the complex interface that remained stable throughout the simulation. While several minor crystal contacts were lost in the simulation, all major contacts that had been experimentally studied previously were maintained. The equilibrated MD structure contained a mixture of contacts resembling both the cross‐linked and noncovalent structures and the newly identified interactions. Finally, the reformation of the P450cam Asp251–Arg186 ion pair in the MD simulation mirrors the ion pair observed in the more promiscuous CYP101D1 and suggests that the Asp251–Arg186 ion pair may be important.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号