首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the structural genes for triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase activity in the mouse, selected after mutagen treatment, were used to estimate the map distance between the two loci. It is shown that Tpi-1 and Gapd are closely linked on chromosome 6, with a recombination frequency of 0.1 +/- 0.1%.  相似文献   

2.
Human mast cells and basophils that express the high-affinity immunoglobulin E (IgE) receptor, Fc epsilon receptor 1 (Fc epsilon RI), have key roles in allergic diseases. Fc epsilon RI cross-linking stimulates the release of allergic mediators. Mast cells and basophils co-express Fc gamma RIIb, a low affinity receptor containing an immunoreceptor tyrosine-based inhibitory motif and whose co-aggregation with Fc epsilon RI can block Fc epsilon RI-mediated reactivity. Here we designed, expressed and tested the human basophil and mast-cell inhibitory function of a novel chimeric fusion protein, whose structure is gamma Hinge-CH gamma 2-CH gamma 3-15aa linker-CH epsilon 2-CH epsilon 3-CH epsilon 4. This Fc gamma Fc epsilon fusion protein was expressed as the predicted 140-kappa D dimer that reacted with anti-human epsilon- and gamma-chain specific antibodies. Fc gamma Fc epsilon bound to both human Fc epsilon RI and Fc gamma RII. It also showed dose- and time-dependent inhibition of antigen-driven IgE-mediated histamine release from fresh human basophils sensitized with IgE directed against NIP (4-hydroxy-3-iodo-5-nitrophenylacetyl). This was associated with altered Syk signaling. The fusion protein also showed increased inhibition of human anti-NP (4-hydroxy-3-nitrophenylacetyl) and anti-dansyl IgE-mediated passive cutaneous anaphylaxis in transgenic mice expressing human Fc epsilon RI alpha. Our results show that this chimeric protein is able to form complexes with both Fc epsilon RI and Fc gamma RII, and inhibit mast-cell and basophil function. This approach, using a Fc gamma Fc epsilon fusion protein to co-aggregate Fc epsilon RI with a receptor containing an immunoreceptor tyrosine-based inhibition motif, has therapeutic potential in IgE- and Fc epsilon RI-mediated diseases.  相似文献   

3.
Phospholipase Cgamma2 (PLCgamma2) plays a critical role in the functions of the B cell receptor in B cells and of the FcRgamma chain-containing collagen receptor in platelets. Here we report that PLCgamma2 is also expressed in mast cells and monocytes/macrophages and is activated by cross-linking of Fc(epsilon)R and Fc(gamma)R. Although PLCgamma2-deficient mice have normal development and numbers of mast cells and monocytes/macrophages, we demonstrate that PLCgamma2 is essential for specific functions of Fc(epsilon)R and Fc(gamma)R. While PLCgamma2-deficient mast cells have normal mitogen-activated protein kinase activation and cytokine production at mRNA levels, the mutant cells have impaired Fc(epsilon)R-mediated Ca(2+) flux and inositol 1,4,5-trisphosphate production, degranulation, and cytokine secretion. As a physiological consequence of the effect of PLCgamma2 deficiency, the mutant mice are resistant to IgE-mediated cutaneous inflammatory skin reaction. Macrophages from PLCgamma2-deficient mice have no detectable Fc(gamma)R-mediated Ca(2+) flux; however, the mutant cells have normal Fc(gamma)R-mediated phagocytosis. Moreover, PLCgamma2 plays a nonredundant role in Fc(gamma)R-mediated inflammatory skin reaction.  相似文献   

4.
The cellular responses initiated by cross-linking rodent Fc gamma RII-b1, Fc gamma RII-b2, Fc gamma RIII, and Fc epsilon RI in mast cells were compared. Individual murine Fc gamma R isoforms were transfected into rat basophilic leukemia cells and after cross-linking the FcR, changes in the phosphorylation of protein tyrosines, in the level of intracellular Ca2+, in the hydrolysis of phosphoinositides, and in the release of arachidonic acid metabolites and hexosaminidase were monitored. Cross-linking of Fc gamma RIII initiated all of these early and late biochemical functions, and although they were quantitatively somewhat smaller, the responses were qualitatively indistinguishable from those stimulated by the endogenous Fc epsilon RI. However, despite ample expression, neither Fc gamma RII-b1 nor Fc gamma RII-b2 stimulated these functions when cross-linked. The functional differences between Fc gamma RII and Fc gamma RIII were studied further by assessing the responses to cross-linking of the endogenous Fc gamma R (Fc gamma RII-b1, Fc gamma RII-b2, and Fc gamma RIII) on P815 mouse mastocytoma cells that had been transfected with normal or functionally defective Fc epsilon RI. Two types of mutant subunits had previously been observed to impair the activity of Fc epsilon RI: gamma-chains missing the cytoplasmic domain, and beta-chains missing the COOH-terminal cytoplasmic domain. In both types of transfectants the functional inhibition of the endogenous Fc gamma R paralleled that of the transfected Fc epsilon RI. These results are consistent with the gamma subunit being associated with the functions of Fc gamma RIII as well as of Fc epsilon RI. The functional results also complement the recently reported evidence that Fc gamma RIII can interact with Fc epsilon RI beta-subunits (J. Exp. Med. 175:447, 1992).  相似文献   

5.
As part of an effort to define the cytotoxic trigger molecules on human myeloid cells, the ability of the different Fc receptors for IgG (Fc gamma R) to mediate killing of tumor cell lines by monocytes and granulocytes was examined. This was accomplished by studying cytolysis of hybridoma cell (HC) targets bearing surface antibody directed toward the different Fc gamma R. The HC line, HC IV.3A, which bears Ig directed to the low affinity Fc gamma R (Fc gamma RII) on monocytes and neutrophils was lysed by human monocytes. The extent of lysis of HC IV.3A was approximately equal to that of anti-Fc gamma RI (the high affinity Fc gamma R on human monocytes) bearing HC lines (HC 32.2A and HC 62A) and was not augmented by treatment of the monocytes with interferon-gamma (IFN-gamma). In contrast, neutrophils lysed HC IV.3A and HC 32.2A only after activation with IFN-gamma. Since Fc gamma RI is not detectable on untreated neutrophils and is induced by IFN-gamma on these cells, lysis of HC 32.2A by IFN-gamma-activated neutrophils correlated with receptor induction. On the other hand, Fc gamma RII was present at equal levels on untreated and IFN-gamma-treated neutrophils, but only IFN-gamma-treated neutrophils mediated cytotoxicity via Fc gamma RII. In this case, enhanced killing appeared to be due to events other than an increase in Fc gamma RII number. Neither untreated nor IFN-gamma-treated neutrophils mediated the lysis of the anti-Fc gamma RIII bearing HC 3G8A. Thus, binding to the tumor target via this Fc receptor does not lead to lysis and may initiate signals distinct from those triggered through Fc gamma RI or Fc gamma RII. Surprisingly, HC bearing high amounts of mouse IgG1 antibody of irrelevant specificity were also lysed by monocytes. This lysis was blocked by soluble IV.3 antibody and thus appeared to be due to binding of the Fc portion of the surface Ig to Fc gamma RII on monocytes. Furthermore, monocytes from donors with a form of Fc gamma RII incapable of binding aggregated mouse IgG1 did not lyse these HC, but displayed normal lysis of HC IV.3, demonstrating that this structurally different Fc gamma RII remained a functional trigger molecule. Overall, these studies have demonstrated the specificity of Fc receptors in triggering monocyte- and granulocyte-mediated antibody-dependent tumor cell killing and have begun to dissect functional similarities and differences among the three defined Fc gamma R on human myeloid cells.  相似文献   

6.
Restriction fragments analysis of DNA from mouse-hamster somatic-cell hybrid clones revealed that a mouse gamma crystallin cDNA hybridized to genomic sequences located on mouse chromosome 1. Identification of restriction fragment length polymorphisms (RFLPs) in the gamma crystallin sequences of inbred strains of mice permitted the further localization of the gamma crystallin genes (Cryg) to the proximal region of chromosome 1 closely linked to the loci encoding isocitrate dehydrogenase (Idh-1), a low molecular weight (LM) crystallin protein polymorphism (Len-1), and fibronectin (Fn-1). A single recombinant was observed betweenLen-1 and an RFLP in the gamma crystallin gene family, consistent with the hypothesis thatLen-1 is one of the several structural loci encoding gamma crystallin genes.Len-1 is probably located on the centromeric end of theCryg gene family. Linkage ofIdh-1, Cryg, andFn-1 in mice extends the syntenic relationship of those loci to the human, bovine, and rodent genomes and may define a chromosomal region that is generally conserved among mammals. The map position ofCryg, near the eye lens obsolescence (Elo) locus, was confirmed by the discovery that the restriction fragment patterns of gamma crystallin sequences differed between strain C3H/HeJ and the congenic anophthalmic mutant strain, C3H.Elo. Therefore, the gamma crystallin genes were contransferred with the mutantElo gene in the derivation of C3H.Elo. The results establish that LEN-1 is a marker for the gamma crystallin gene family, position the gamma crystallin gene family relative to other markers on mouse chromosome 1, and provide additional evidence that theElo mutation is encoded at a locus closely linked to the gamma crystallin gene cluster. This study found no evidence of recombination hot spots within the gamma crystallin gene cluster.  相似文献   

7.
The formyl peptide receptor (FPR) and the glycosyl-phosphatidylinositol-linked type III receptor for the Fc portion of IgG (Fc gamma RIIIB; CD16) play important roles in various inflammatory responses in human neutrophils. The mechanisms of signaling by the glycosyl phosphatidylinositol-anchored Fc gamma RIIIB are not known. Therefore, we investigated the possibility that Fc gamma RIIIB and FPR may act in concert to mediate neutrophil functions. We observed that pretreatment of normal human neutrophils with Fab fragments of a mAb to the Fc gamma RIII (3G8) specifically inhibited their chemotaxis into micropore filters in response to the formylated peptides FMLP or formyl-norleucyl-leucyl-phenylalanine. Pretreatment of neutrophils with a saturating concentration of 3G8 Fab (100 nM or 5 micrograms/ml) followed by exposure to FMLP (0.5 to 500 nM) indicated that significant inhibition of chemotaxis was observed at peptide concentrations greater than 5 nM. However, 3G8 Fab had no effect on the neutrophil response to a wide range (0.05 to 500 nM) of other chemotactic factors, including C5a, leukotriene B4, IL-8 (neutrophil-activating peptide-1), and platelet-activating factor. Moreover, pretreatment of neutrophils with mAb to other cell surface molecules (decay-accelerating factor, Fc gamma RII, and HLA class I) did not affect chemotaxis to FMLP. Inhibition of movement was not due to degradation of FMLP by the cell surface endopeptidase 24.11 (CD10), because neutrophils pretreated with the CD10 inhibitor phosphoramidone and 3G8 Fab displayed the same altered response to FMLP as cells pretreated with 3G8 Fab alone. Ligation of the Fc binding site of Fc gamma RIIIB appears to be essential for altering the FMLP-induced response, since soluble aggregated IgG and other anti-Fc gamma RIII antibodies, all of which recognize the ligand binding site, mimic the inhibitory effect of the 3G8 Fab on FMLP-induced chemotaxis. In contrast, a mAb (214.1) that does not recognize the Fc binding site of Fc gamma RIIIB had no effect on FMLP-induced chemotaxis. Not only did anti-Fc gamma RIII inhibit neutrophil chemotaxis to FMLP in a filter-based migration assay, but 3G8 Fab also inhibited FMLP-induced neutrophil transendothelial migration. Scatchard plot analysis of radioligand binding experiments indicated that 3G8 Fab did not significantly alter the number of FMLP binding sites on neutrophils but significantly increased the affinity of the FPR for [3H]FMLP. Removal of greater than 80% of cell surface Fc gamma RIIIB by phospholipase C abolished the neutrophil chemotactic response to FMLP but did not affect movement toward C5a, IL-8, or leukotriene B4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
9.
The receptor for IgE (Fc epsilon RI) is a multimeric complex containing one alpha chain, one beta chain with four transmembrane domains and one homodimer of disulfide-linked gamma-chains. The Fc epsilon RI gamma-chains form additional disulfide-linked dimers with the homologous zeta- and eta-chains, as part of the TCR complex. The low affinity receptor for IgG (Fc gamma RIII)2 on NK cells is also associated with zeta-chains. Here we show that the gamma-chain is expressed in NK cells both as a group of heterogenous gamma gamma homodimers and also as a heterodimer bound to zeta. Fc gamma RIIIA is associated with three types of dimers zeta zeta, gamma zeta, and notably gamma gamma as well. In fact, gamma gamma appears to be the predominant species associating with Fc gamma RIIIA. The surface expressed Fc epsilon RI also associates with the same group of heterogenous gamma gamma homodimers. We also show that there is no C-terminal posttranslational cleavage of gamma occurring before its insertion into the plasma membrane as previously suggested. Thus, like the TCR, Fc gamma RIIIA may form a variety of receptor isoforms, though at present we do not understand the functional implications of these structures.  相似文献   

10.
We have isolated cDNA clones encoding a mouse low affinity receptor for IgE (Fc epsilon RII) from a cDNA library of BALB/c splenic B cells activated with LPS and IL-4. The 2.2-kb cDNA clone encodes a 331 amino acid membrane glycoprotein that is homologous to human Fc epsilon RII (CD23) and a family of carbohydrate-binding proteins. COS7 cells transfected with the cDNA clones expressed a 45,000 m.w. protein that bound IgE and the anti-Fc epsilon RII mAb, B3B4. Fc epsilon RII mRNA was up-regulated in mouse B cells by culture with IL-4, but not in B cells cultured with IgE. Fc epsilon RII mRNA was detected in IgM+/IgD+ B cell lines, but not in pre-B cell lines or in B cell lines which have undergone differentiation to secrete Ig. The monocyte line P388D1, mast cell lines MC/9 and PT18, and peritoneal macrophages stimulated with IL-4 lacked detectable Fc epsilon RII mRNA, as did Thy-1.2+, CD4+, and CD8+ normal T cells and Thy-1.2+ T cells from Nippostrongylus brasiliensis-infected mice.  相似文献   

11.
12.
Chen L  Pielak GJ  Thompson NL 《Biochemistry》1999,38(7):2102-2109
The cytoplasmic regions of the mouse low-affinity Fc gamma RII isoforms, Fc gamma RIIb1 and Fc gamma RIIb2, play key roles in signal transduction by mediating different cellular functions. The Fc gamma RIIb1 (94 residues) and Fc gamma RIIb2 (47 residues) cytoplasmic regions are generated by differential mRNA splicing in which a single aspartic acid residue in Fc gamma RIIb2 is replaced by a 48-residue insert in Fc gamma RIIb1. In previous work, quantities of the mFc gamma RIIb1 and mFc gamma RIIb2 cytoplasmic regions were generated, and their secondary structures were examined in different solutions with circular dichroism [Chen, L., Thompson, N. L., and Pielak, G. J. (1997) Protein Sci. 6, 1038-1046]. In the work described here, steady-state light scattering was used to investigate possible interactions of the two isolated cytoplasmic regions with phospholipid vesicles. Three phospholipid compositions were examined: phosphatidylserine/phosphatidylcholine (PS/PC) (25/75, mol/mol); phosphatidylinositol bisphosphate/phosphatidylcholine (PIP2/PC) (25/75, mol/mol); and pure phosphatidylcholine (PC). Binding was examined in the presence and absence of Ca2+. The mFc gamma RIIb1 cytoplasmic peptide binds PS/PC vesicles weakly in the absence of Ca2+ and more strongly in the presence of Ca2+. For PIP2/PC vesicles, the behavior is reversed; binding is weak in the presence of Ca2+ and stronger in its absence. The mFc gamma RIIb1 peptide also weakly binds pure PC vesicles, in a Ca2+-independent manner. The mFc gamma RIIb2 cytoplasmic peptide does not bind, in the presence or absence of Ca2+, to PS/PC, PIP2/PC, or PC vesicles. The implications of these results for the mechanisms of signal transduction mediated by the two mFc gamma RII cytoplasmic regions are discussed.  相似文献   

13.
The cytoplasmic regions of the mouse low-affinity Fc gamma RII isoforms, mFc gamma RIIb1, and mFc gamma RIIb2, play a key role in signal transduction by mediating different cellular functions. mFc gamma RIIb1 has a 94-residue cytoplasmic region, whereas mFc gamma RIIb2 has a 47-residue cytoplasmic region. Genes encoding the cytoplasmic regions of mFc gamma RIIb1 (b1-94) and mFc gamma RIIb2 (b2-47) were designed, synthesized, and expressed as fusion proteins in Escherichia coli. A sequence-specific protease, thrombin, was used to release the b1-94 peptide, which was purified by using HPLC. The b2-47 peptide was synthesized chemically. CD spectropolarimetry was employed to examine the secondary structures of b1-94 and b2-47. These studies were conducted in aqueous solution, in mixtures of water and trifluoroethanol or methanol, and as a function of temperature. The results indicate that the b1-94 and b2-47 structures are sensitive functions of the solvent environment, and that nonaqueous solvents induce significant alpha-helical structure.  相似文献   

14.
The polymorphic Fc gamma receptor II gene maps to human chromosome 1q   总被引:5,自引:0,他引:5  
Human receptors for IgG (Fc gamma R) play important roles in the immune response. Expression of the human Fc gamma RII gene may be relevant in immune complex related disorders such as systemic lupus erythematosus and Sjogren's syndrome. We have used spot blot analysis of dual laser-sorted human chromosomes to localize the Fc gamma RII gene to human chromosome 1. Spot blot analysis of sorted derivative chromosomes sublocalized the gene to the chromosome 1 long arm (1q12----q25.1). This subchromosomal localization involved reassigning a reciprocal chromosome translocation breakpoint. We also identified Xmn I and Taq I Fc gamma RII polymorphic restriction sites that arose before the races diverged. These common Xmn I and Taq I polymorphisms are predicted to be informative for segregation analysis with human diseases in 85% of all matings.  相似文献   

15.
Culture of murine splenic B cells with interleukin 4 (IL-4) caused the up-regulation of the lymphocyte Fc receptor for immunoglobulin E (IgE) (Fc epsilon R) over a similar dose range as required for Ia up-regulation. However, the expression level of the Fc receptor for immunoglobulin G (Fc gamma R) did not increase, rather IL-4 caused a slight but consistent decrease in the Fc gamma R level on the B cells. Fc epsilon R+ B hybridoma cells also responded to IL-4 by exhibiting increased Fc epsilon R expression; with the hybridoma cells Fc gamma R levels were unaffected. IL-4 caused an increase in the number of Fc epsilon R per cell and the highest levels of expression were obtained by having both IgE and IL-4 present in the culture. The specificity of the increase was demonstrated by blocking IL-4-mediated actions with monoclonal anti-IL-4 (11B11). Experiments following the incorporation of [35S]methionine into the Fc epsilon R demonstrated that IL-4 increased the rate of Fc epsilon R biosynthesis; this provides an explanation for the IL-4-induced increase in Fc epsilon R expression. IL-4, unlike IgE, had no effect on the rate of degradation of the Fc epsilon R. Interferon-gamma (IFN-gamma) totally abrogated IL-4-mediated Fc epsilon R up-regulation; at the same concentration of IFN-gamma Ia up-regulation is also suppressed, although not as effectively. IFN-gamma was shown to directly suppress Fc epsilon R synthesis, thereby explaining the inhibitory action on Fc epsilon R levels. Finally, it was shown that 11B11 inhibited the increased expression of Fc epsilon R on B cells obtained from mice during the early, but not the late, stages of Nippostrongylus brasiliensis infection. This latter finding suggests that the high Fc epsilon R levels seen early in parasite infections are dependent upon IL-4. The results overall provide further insight into the biologic activities of IL-4.  相似文献   

16.
The engagement of high affinity receptors for IgE (FcepsilonRI) generates both positive and negative signals whose integration determines the intensity of mast cell responses. FcepsilonRI-positive signals are also negatively regulated by low affinity receptors for IgG (FcgammaRIIB). Although the constitutive negative regulation of FcepsilonRI signaling was shown to depend on the submembranous F-actin skeleton, the role of this compartment in FcgammaRIIB-dependent inhibition is unknown. We show in this study that the F-actin skeleton is essential for FcgammaRIIB-dependent negative regulation. It contains SHIP1, the phosphatase responsible for inhibition, which is constitutively associated with the actin-binding protein, filamin-1. After coaggregation, FcgammaRIIB and FcepsilonRI rapidly interact with the F-actin skeleton and engage SHIP1 and filamin-1. Later, filamin-1 and F-actin dissociate from FcR complexes, whereas SHIP1 remains associated with FcgammaRIIB. Based on these results, we propose a dynamic model in which the submembranous F-actin skeleton forms an inhibitory compartment where filamin-1 functions as a donor of SHIP1 for FcgammaRIIB, which concentrate this phosphatase in the vicinity of FcepsilonRI and thereby extinguish activation signals.  相似文献   

17.
Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.  相似文献   

18.
FcepsilonRI expression and function is a central aspect of allergic disease. Using bone marrow-derived mouse mast cell populations, we have previously shown that the Th2 cytokine IL-4 inhibits FcepsilonRI expression and function. In the current study we show that the Th2 cytokine IL-10 has similar regulatory properties, and that it augments the inhibitory effects of IL-4. FcepsilonRI down-regulation was functionally significant, as it diminished inflammatory cytokine production and IgE-mediated FcepsilonRI up-regulation. IL-10 and IL-4 reduced FcepsilonRI beta protein expression without altering the alpha or gamma subunits. The ability of IL-4 and IL-10 to alter FcepsilonRI expression by targeting the beta-chain, a critical receptor subunit known to modulate receptor expression and signaling, suggests the presence of a Th2 cytokine-mediated homeostatic network that could serve to both initiate and limit mast cell effector function.  相似文献   

19.
20.
Previous studies have shown that En-1, a homeobox-containing gene, maps close to or at the Dh locus in the mouse. Since homeobox-containing genes are key genes in the control of development the close proximity of En-1 to the developmentally significant gene Dh raised the possibility that the Dh mutation represented a mutant allele of En-1. A genetic analysis involving En-1, Dh, and other chromosome 1 markers (Emv-17, ln and Pep-3) shows that although Dh and En-1 are closely linked they are separable by recombination (4/563). The likely gene order and recombination frequencies of these loci are: ln (5.2 +/- 0.9) Emv-17 (1.1 +/- 0.4) Dh (0.7 +/- 0.4) En-1 (3.0 +/- 0.7) Pep-3. This shows that Dh is not a mutant allele of En-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号