首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
In mammals, control of S-adenosylmethionine decarboxylase (AdoMetDC) translation is one component of a feedback network that regulates intracellular levels of the polyamines, spermidine, and spermine. AdoMetDC mRNA from mammals contains a highly conserved upstream open reading frame (uORF) within its leader sequence that confers polyamine-regulated suppression of translation on the associated downstream cistron. This regulation is mediated through an interaction that depends on the amino acid sequence of the uORF-encoded hexapeptide. It remains to be shown whether polyamines participate directly in this interaction or indirectly through a specialized signal transduction pathway. We show that Saccharomyces cerevisiae does not have a uORF associated with its AdoMetDC gene (SPE2) and that ribosome loading on the SPE2 mRNA is not positively influenced by polyamine depletion, as it is in mammalian cells. Nevertheless, the mammalian AdoMetDC uORF, when introduced into a polyamine auxotroph of yeast, conferred polyamine regulation of both translational efficiency and ribosome loading on the associated mRNA. This regulatory activity depended on the amino acid sequence encoded by the fourth and fifth codons of the uORF, as in mammalian cells. The fact that the regulatory properties of this mammalian translational control element are quite similar in both mammalian and yeast cells suggests that a specialized signal transduction pathway is not required. Rather, it seems likely that polyamines may be directly participating in an interaction between the uORF-encoded peptide and a constitutive component of the translation machinery, which leads to inhibition of ribosome activity.  相似文献   

3.
Synthesis of S-adenosylmethionine decarboxylase (AdoMetDC), a key regulated enzyme in the pathway of polyamine biosynthesis, is feedback-controlled at the level of translation by spermidine and spermine. The peptide product of an upstream open reading frame (uORF) in the mRNA is solely responsible for polyamine regulation of AdoMetDC translation. Using a primer extension inhibition assay and in vitro protein synthesis reactions, we found ribosomes paused at or close to the termination codon of the uORF. This pause was greatly diminished with the altered uORFs' sequences that abolish uORF regulation in vivo. The half-life of the ribosome pause was related to the concentration of polyamines present but was unaffected by magnesium concentration. Furthermore, inhibition of translation initiation at a reporter gene placed downstream of the AdoMetDC uORF directly correlated with the stability of the ribosome pause at the uORF. These observations are consistent with a model in which regulation of ribosome pausing at the uORF by polyamines controls ribosome access to the downstream AdoMetDC reading frame.  相似文献   

4.
5.
Reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream uORFs to retain post-termination 40S subunits on mRNA. Its efficiency depends on surrounding cis-acting sequences, uORF elongation rates, various initiation factors, and the intercistronic distance. To unravel effects of cis-acting sequences, we investigated previously unconsidered structural properties of one such a cis-enhancer in the mRNA leader of GCN4 using yeast genetics and biochemistry. This leader contains four uORFs but only uORF1, flanked by two transferrable 5' and 3' cis-acting sequences, and allows efficient reinitiation. Recently we showed that the 5' cis-acting sequences stimulate reinitiation by interacting with the N-terminal domain (NTD) of the eIF3a/TIF32 subunit of the initiation factor eIF3 to stabilize post-termination 40S subunits on uORF1 to resume scanning downstream. Here we identify four discernible reinitiation-promoting elements (RPEs) within the 5' sequences making up the 5' enhancer. Genetic epistasis experiments revealed that two of these RPEs operate in the eIF3a/TIF32-dependent manner. Likewise, two separate regions in the eIF3a/TIF32-NTD were identified that stimulate reinitiation in concert with the 5' enhancer. Computational modeling supported by experimental data suggests that, in order to act, the 5' enhancer must progressively fold into a specific secondary structure while the ribosome scans through it prior uORF1 translation. Finally, we demonstrate that the 5' enhancer's stimulatory activity is strictly dependent on and thus follows the 3' enhancer's activity. These findings allow us to propose for the first time a model of events required for efficient post-termination resumption of scanning. Strikingly, structurally similar RPE was predicted and identified also in the 5' leader of reinitiation-permissive uORF of yeast YAP1. The fact that it likewise operates in the eIF3a/TIF32-dependent manner strongly suggests that at least in yeasts the underlying mechanism of reinitiation on short uORFs is conserved.  相似文献   

6.
7.
It is becoming apparent that control of protein synthesis by metabolites is more common than previously thought. Much of that control is exerted at the level of initiation of mRNA translation, orchestrated by upstream open reading frames (uORFs) and RNA secondary structure. S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in polyamine biosynthesis and both mammalian and plant AdoMetDCs are translationally regulated by uORFs in response to polyamine levels by distinct mechanisms.  相似文献   

8.
9.
Methionine synthase is a key enzyme poised at the intersection of folate and sulfur metabolism and functions to reclaim homocysteine to the methionine cycle. The 5' leader sequence in human MS is 394 nucleotides long and harbors two open reading frames (uORFs). In this study, regulation of the main open reading frame by the uORFs has been elucidated. Both uORFs downregulate translation as demonstrated by mutation of the upstream AUG codons (uAUG) either singly or simultaneously. The uAUGs are capable of recruiting the 40S ribosomal complex as revealed by their ability to drive reporter expression in constructs in which the luciferase is fused to the uORFs. uORF2, which is predicted to encode a 30 amino acid long polypeptide, has a clustering of rare codons encoding arginine and proline. Mutation of a tandemly repeated rare codon for arginine at positions 3 and 4 in uORF2 to either common codons for the same amino acid or common codons for alanine results in complete alleviation of translation inhibition. This suggests a mechanism for ribosome stalling and demonstrates that the cis-effects on translation by uORF2 is dependent on the nucleotide sequence but is apparently independent of the sequence of the encoded peptide. This study reveals complex regulation of the essential housekeeping gene, methionine synthase, by the uORFs in its leader sequence.  相似文献   

10.
Expression of the GCN4 gene of Saccharomyces cerevisiae is regulated at the translational level by short open reading frames (uORFs) present in the leader sequence of its mRNA. Under conditions of amino acid sufficiency, these sequences restrict the flow of initiating ribosomes to the GCN4 AUG start codon. Mutational analysis of GCN4 has led to a model in which ribosomes must translate the 5'-proximal uORF1 and reassemble an initiation complex in order to translate GCN4. This reassembly process is thought to be rapid when amino acids are abundant, such that reinitiation occurs at uORF2, uORF3, or uORF4. Reinitiation at these sites prevents translation of GCN4, presumably because ribosomes dissociate from the mRNA following termination at uORFs 2 to 4. Because of reduced initiation factor activity under starvation conditions, a substantial fraction of ribosomal subunits scanning downstream from uORF1 are not ready to reinitiate when they reach uORFs 2 to 4, but become competent to do so while scanning the additional sequences between uORF4 and GCN4. Examination of the effects of point mutations in the ATG codons of the different uORFs suggests a quantitative model for this control mechanism that describes the probability of reinitiation as a function of the distance scanned downstream from uORF1. This model accounts for the phenotypes of a number of deletion and insertion mutations that alter the intercistronic spacing between the uORFs and GCN4. The correspondence between observed and predicted results implies that the differential rates of reinitiation at GCN4 versus uORFs 2 to 4 are determined largely by the different scanning times required to reach each of these start sites following translation of uORF1. In addition, it supports the notion that an increased scanning-time requirement for reinitiation in amino acid-starved cells forms the basis for translational derepression of GCN4 expression.  相似文献   

11.
Translation of yeast GCN4 mRNA occurs by a reinitiation mechanism that is modulated by amino acid levels in the cell. Ribosomes which translate the first of four upstream open reading frames (uORFs) in the mRNA leader resume scanning and can reinitiate downstream. Under non-starvation conditions reinitiation occurs at one of the remaining three uORFs and GCN4 is repressed. Under starvation conditions, in contrast, ribosomes bypass the uORFs and reinitiate at GCN4 instead. The high frequency of reinitiation following uORF1 translation depends on an adequate distance to the next start codon and particular sequences surrounding the uORF1 stop codon. We present evidence that sequences 5' to uORF1 also strongly enhance reinitiation. First, reinitiation was severely inhibited when uORF1 was transplanted into the position of uORF4, even though the native sequence environment of the uORF1 stop codon was maintained, and this effect could not be accounted for by the decreased uORF1-GCN4 spacing. Second, insertions and deletions in the leader preceding uORF1 greatly reduced reinitiation at GCN4. Sequences 5' to uORF1 may influence the probability of ribosome release following peptide termination at uORF1. Alternatively, they may facilitate rebinding of an initiation factor required for reinitiation prior to resumption of the scanning process.  相似文献   

12.
13.
14.
The Saccharomyces cerevisiae GCN4 mRNA 5'-leader contains four upstream open reading frames (uORFs) and the CPA1 leader contains a single uORF. To determine how these uORFs control translation, we examined mRNAs containing these leaders in cell-free translation extracts to determine where ribosomes were loaded first and where they were loaded during steady-state translation. Ribosomes predominantly loaded first at GCN4 uORF1. Following its translation, but not the translation of uORF4, they efficiently reinitiated protein synthesis at Gcn4p. Adding purified eIF2 increased reinitiation at uORFs 3 or 4 and reduced reinitiation at Gcn4p. This indicates that eIF2 affects the site of reinitiation following translation of GCN4 uORF1 in vitro. In contrast, for mRNA containing the CPA1 uORF, ribosomes reached the downstream start codon by scanning past the uORF. Addition of arginine caused ribosomes that had synthesized the uORF polypeptide to stall at its termination codon, reducing loading at the downstream start codon, apparently by blocking scanning ribosomes, and not by affecting reinitiation. The GCN4 and CPA1 uORFs thus control translation in fundamentally different ways.  相似文献   

15.
16.
17.
Translation of Xenopus laevis Connexin41 mRNA is strongly controlled by the three upstream open reading frames (uORFs) in its 5′ untranslated region. Mutation of uAUG1 into AAG induced a 100-fold increase in translation of a green fluorescent protein (GFP) reporter ORF. The termination codon of uORF1 was mutated and the uORF was linked in-frame with the GFP ORF, enabling visualisation of initiation at uAUG1 by synthesis of an elongated GFP form. Unexpectedly, hardly any elongated GFP was made, suggesting that translation of uORF1 in wild-type mRNA causes constraining of the entry of 40S ribosomal subunits upstream of uORF1. A rare leucine codon, the third codon of uORF1, contributed to the slow translation and thus to slow scanning. Replacement of the rare leucine codon in uORF1 with a common leucine codon stimulated GFP translation. Remarkably, the rare leucine codon, the termination codon of uORF1, uAUG2 and uAUG3 all improved recognition of uAUG1. Apparently, the block formed by a stalled ribosome on any element in uORF1 prevented the landing of new ribosomal subunits next to the cap and therefore downregulated GFP translation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号