首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Key message

UBIQUITIN-SPECIFIC PROTEASES play important roles in plant development and stress responses.

Abstract

Protein ubiquitination and deubiquitination are reversible processes, which can modulate the stability, activity as well as subcellular localization of the substrate proteins. UBIQUITIN-SPECIFIC PROTEASE (UBP) protein family participates in protein deubiquitination. Members of UBP family are involved in a variety of physiological processes in plants, as evidenced by their functional characterization in model plant Arabidopsis and other plants. UBPs are conserved in plants and distinct UBPs function in different regulatory processes, although functional redundancies exist between some members. Here we briefly reviewed recent advances in understanding the biological functions of UBP protein family in Arabidopsis, particularly the molecular mechanisms by which UBPs regulate plant development and stress responses. We believe that elucidation of UBPs function and regulation in Arabidopsis will provide new insights about protein deubiquitination and might shed light on the understanding of the mechanistic roles of UBPs in general, which will definitely contribute to crop improvement in agriculture.
  相似文献   

2.
Ubiquitin-specific proteases (UBPs) are a family of unique hydrolases that specifically remove polypeptides covalently linked via peptide or isopeptide bonds to the C-terminal glycine of ubiquitin. UBPs help regulate the ubiquitin/26S proteolytic pathway by generating free ubiquitin monomers from their initial translational products, recycling ubiquitins during the breakdown of ubiquitin-protein conjugates, and/or by removing ubiquitin from specific targets and thus presumably preventing target degradation. Here, we describe a family of 27 UBP genes from Arabidopsis that contain both the conserved cysteine (Cys) and histidine boxes essential for catalysis. They can be clustered into 14 subfamilies based on sequence similarity, genomic organization, and alignments with their closest relatives from other organisms, with seven subfamilies having two or more members. Recombinant AtUBP2 functions as a bona fide UBP: It can release polypeptides attached to ubiquitins via either alpha- or epsilon-amino linkages by an activity that requires the predicted active-site Cys within the Cys box. From the analysis of T-DNA insertion mutants, we demonstrate that the AtUBP1 and 2 subfamily helps confer resistance to the arginine analog canavanine. This phenotype suggests that the AtUBP1 and 2 enzymes are needed for abnormal protein turnover in Arabidopsis.  相似文献   

3.
Deubiquitinating enzymes are essential to the ubiquitin (Ub)/26S proteasome system where they release Ub monomers from the primary translation products of poly-Ub and Ub extension genes, recycle Ubs from polyubiquitinated proteins, and reverse the effects of ubiquitination by releasing bound Ubs from individual targets. The Ub-specific proteases (UBPs) are one large family of deubiquitinating enzymes that bear signature cysteine and histidine motifs. Here, we genetically characterize a UBP subfamily in Arabidopsis (Arabidopsis thaliana) encoded by paralogous UBP3 and UBP4 genes. Whereas homozygous ubp3 and ubp4 single mutants do not display obvious phenotypic abnormalities, double-homozygous mutant individuals could not be created due to a defect in pollen development and/or transmission. This pollen defect was rescued with a transgene encoding wild-type UBP3 or UBP4, but not with a transgene encoding an active-site mutant of UBP3, indicating that deubiquitination activity of UBP3/UBP4 is required. Nuclear DNA staining revealed that ubp3 ubp4 pollen often fail to undergo mitosis II, which generates the two sperm cells needed for double fertilization. Substantial changes in vacuolar morphology were also evident in mutant grains at the time of pollen dehiscence, suggesting defects in vacuole and endomembrane organization. Even though some ubp3 ubp4 pollen could germinate in vitro, they failed to fertilize wild-type ovules even in the absence of competing wild-type pollen. These studies provide additional evidence that the Ub/26S proteasome system is important for male gametogenesis in plants and suggest that deubiquitination of one or more targets by UBP3/UBP4 is critical for the development of functional pollen.  相似文献   

4.
A phylogenetic analysis of the glycoside hydrolases of family 3 (GH3s) was conducted in order to infer particular trends in its evolution: functional specialization, gene transfer events, gene duplications and paralogous evolution, and gene deletions. The phylogenetic analysis of GH3s revealed six clusters, i.e., A, B, C, D, E, and F that could fit the definition of 3 sub-families, i.e., AB, AB' and AB". While the sub-families AB' and AB" contain a single cluster, F and E, respectively, the AB sub-family is sub-divided into four clusters. Global analysis of the GH3 phylogenetic tree suggests a primary burst of amplification of the GH3s that might have led to these sub-families. Specializations, gene transfers, and gene duplications among each of these sub-families and phylogenetic clusters might then have occurred and have been inferred. The fine comparison of the enzyme properties and phylogenetic relationships of GH3s allowed to detect common functional groups that belong to the same cluster (D, E or F), or sub-cluster (A1, A2 or B2). The prokaryotic and eukaryotic beta-xylosidases and beta-glucosidases belong to the AB and AB' sub-families, and the N-acetylglucosaminidases are in sub-family AB" (in cluster E). In some instances (B1, B2, C1, C2, and C3), the lack of data and/or the high heterogeneity of the hydrolytic properties did not allow to infer a particular link between an enzyme functional group and a phylogenetic cluster, suggesting the emergence of some highly specialized GH3s.  相似文献   

5.
Vertebrate interferon-induced transmembrane (IFITM) genes have been demonstrated to have extensive and diverse functions, playing important roles in the evolution of vertebrates. Despite observance of their functionality, the evolutionary dynamics of this gene family are complex and currently unknown. Here, we performed detailed evolutionary analyses to unravel the evolutionary history of the vertebrate IFITM family. A total of 174 IFITM orthologous genes and 112 pseudogenes were identified from 27 vertebrate genome sequences. The vertebrate IFITM family can be divided into immunity-related IFITM (IR-IFITM), IFITM5 and IFITM10 sub-families in phylogeny, implying origins from three different progenitors. In general, vertebrate IFITM genes are located in two loci, one containing the IFITM10 gene, and the other locus containing IFITM5 and various numbers of IR-IFITM genes. Conservation of evolutionary synteny was observed in these IFITM genes. Significant functional divergence was detected among the three IFITM sub-families. No gene duplication or positive selection was found in IFITM5 sub-family, implying the functional conservation of IFITM5 in vertebrate evolution, which is involved in bone formation. No IFITM5 locus was identified in the marmoset genome, suggesting a potential association with the tiny size of this monkey. The IFITM10 sub-family was divided into two groups: aquatic and terrestrial types. Functional divergence was detected between the two groups, and five IFITM10-like genes from frog were dispersed into the two groups. Both gene duplication and positive selection were observed in aquatic vertebrate IFITM10-like genes, indicating that IFITM10 might be associated with the adaptation to aquatic environments. A large number of lineage- and species-specific gene duplications were observed in IR-IFITM sub-family and positive selection was detected in IR-IFITM of primates and rodents. Because primates have experienced a long history of viral infection, such rapid expansion and positive selection suggests that the evolution of primate IR-IFITM genes is associated with broad-spectrum antiviral activity.  相似文献   

6.
7.
8.
9.
The ubiquitin-specific proteases (UBPs) are a class of enzymes vital to the ubiquitin pathway. These enzymes cleave ubiquitin at its C-terminus from two types of substrates containing (i) ubiquitin in an α-amino linkage, as found in the primary ubiquitin translation products, polyubiquitin and ubiquitin-ribosomal fusion proteins, or (ii) ubiquitin in an ?-amino linkage, as found in multiubiquitin chains either unattached or conjugated to cellular proteins. We have isolated cDNAs for two Arabidopsis thaliana genes, AtUBP3 and AtUBP4, which encode UBPs that are 93% identical. These two cDNAs represent the only two members of this subgroup and encode the smallest UBPs described to date in any organism. Using in vivo assays in Escherichia coli that allow the coexpression of a UBP with a putative substrate, we have shown that AtUBP3 and AtUBP4 can specifically deubiquitinate the artificial substrate Ub-X-β-gal but cannot act upon the natural α-amino-linked ubiquitin fusions Arabidopsis Ub-CEP52 and Arabidopsis polyubiquitin. Affinity-purified antibody prepared against AtUBP3 expressed in E. coli recognizes both AtUBP3 and AtUBP4. AtUBP3 and/or AtUBP4 are present in all Arabidopsis organs examined and at multiple developmental stages. Subcellular localization studies show that AtUBP3 and/or AtUBP4 are present in nuclear extracts. Possible physiological roles for these UBPs are discussed.  相似文献   

10.
The ubiquitin-specific proteases (UBPs) are a class of enzymes vital to the ubiquitin pathway. These enzymes cleave ubiquitin at its C-terminus from two types of substrates containing (i) ubiquitin in an α-amino linkage, as found in the primary ubiquitin translation products, polyubiquitin and ubiquitin-ribosomal fusion proteins, or (ii) ubiquitin in an ɛ-amino linkage, as found in multiubiquitin chains either unattached or conjugated to cellular proteins. We have isolated cDNAs for two Arabidopsis thaliana genes, AtUBP3 and AtUBP4, which encode UBPs that are 93% identical. These two cDNAs represent the only two members of this subgroup and encode the smallest UBPs described to date in any organism. Using in vivo assays in Escherichia coli that allow the coexpression of a UBP with a putative substrate, we have shown that AtUBP3 and AtUBP4 can specifically deubiquitinate the artificial substrate Ub-X-β-gal but cannot act upon the natural α-amino-linked ubiquitin fusions Arabidopsis Ub-CEP52 and Arabidopsis polyubiquitin. Affinity-purified antibody prepared against AtUBP3 expressed in E. coli recognizes both AtUBP3 and AtUBP4. AtUBP3 and/or AtUBP4 are present in all Arabidopsis organs examined and at multiple developmental stages. Subcellular localization studies show that AtUBP3 and/or AtUBP4 are present in nuclear extracts. Possible physiological roles for these UBPs are discussed. Received: 14 November 1996 / Accepted: 6 February 1997  相似文献   

11.
The Arabidopsis LOB-domain (LBD) gene family is composed by 43 members divided in two classes based on amino acid conservation within the LOB-domain. The LOB domain is known to be responsible for DNA binding and protein-protein interactions. There is very little functional information available for most genes in the LBD family and many lbd single mutants do not exhibit conspicuous phenotypes. One plausible explanation for the limited loss-of-function phenotypes observed in this family is that LBD genes exhibit significant functional redundancy. Here we discuss an example of one phylogenetic subgroup of the LBD family, in which genes that are closely related based on phylogeny exhibit distinctly different expression patterns and do not have overlapping functions. We discuss the challenges of using phylogenetic analyses to predict redundancy in gene families.  相似文献   

12.
The Arabidopsis (Arabidopsis thaliana) genome contains 16 genes belonging to the class IV homeodomain-Leucine zipper gene family. These include GLABRA2, ANTHOCYANINLESS2, FWA, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1), and PROTODERMAL FACTOR2 (PDF2). Our previous study revealed that atml1 pdf2 double mutants have severe defects in the shoot epidermal cell differentiation. Here, we have characterized additional members of this gene family, which we designated HOMEODOMAIN GLABROUS1 (HDG1) through HDG12. Analyses of transgenic Arabidopsis plants carrying the gene-specific promoter fused to the bacterial beta-glucuronidase reporter gene revealed that some of the promoters have high activities in the epidermal layer of the shoot apical meristem and developing shoot organs, while others are temporarily active during reproductive organ development. Expression profiles of highly conserved paralogous gene pairs within the family were found to be not necessarily overlapping. Analyses of T-DNA insertion mutants of these HDG genes revealed that all mutants except hdg11 alleles exhibit no abnormal phenotypes. hdg11 mutants show excess branching of the trichome. This phenotype is enhanced in hdg11 hdg12 double mutants. Double mutants were constructed for other paralogous gene pairs and genes within the same subfamily. However, novel phenotypes were observed only for hdg3 atml1 and hdg3 pdf2 mutants that both exhibited defects in cotyledon development. These observations suggest that some of the class IV homeodomain-Leucine zipper members act redundantly with other members of the family during various aspects of cell differentiation. DNA-binding sites were determined for two of the family members using polymerase chain reaction-assisted DNA selection from random oligonucleotides with their recombinant proteins. The binding sites were found to be similar to those previously identified for ATML1 and PDF2, which correspond to the pseudopalindromic sequence 5'-GCATTAAATGC-3' as the preferential binding site.  相似文献   

13.
Type-A Arabidopsis (Arabidopsis thaliana) response regulators (ARRs) are a family of 10 genes that are rapidly induced by cytokinin and are highly similar to bacterial two-component response regulators. We have isolated T-DNA insertions in six of the type-A ARRs and constructed multiple insertional mutants, including the arr3,4,5,6,8,9 hextuple mutant. Single arr mutants were indistinguishable from the wild type in various cytokinin assays; double and higher order arr mutants showed progressively increasing sensitivity to cytokinin, indicating functional overlap among type-A ARRs and that these genes act as negative regulators of cytokinin responses. The induction of cytokinin primary response genes was amplified in arr mutants, indicating that the primary response to cytokinin is affected. Spatial patterns of ARR gene expression were consistent with partially redundant function of these genes in cytokinin signaling. The arr mutants show altered red light sensitivity, suggesting a general involvement of type-A ARRs in light signal transduction. Further, morphological phenotypes of some arr mutants suggest complex regulatory interactions and gene-specific functions among family members.  相似文献   

14.
15.
The content and composition of the plant cell wall polymer lignin affect plant fitness, carbon sequestration potential, and agro-industrial processing. These characteristics, are heavily influenced by the supply of hydroxycinnamyl alcohol precursors synthesized by the enzyme cinnamyl alcohol dehydrogenase (CAD). In angiosperms, CAD is encoded by a multigene family consisting of members thought to have distinct roles in different stages of plant development. Due to the high sequence similarity among CAD genes, it has been challenging to identify and study the role of the individual genes without a genome sequence. Analysis of the recently released sorghum genome revealed the existence of 14 CAD-like genes at seven genomic locations. Comparisons with maize and rice revealed subtle differences in gene number, arrangement, and expression patterns. Sorghum CAD2 is the predominant CAD involved in lignification based on the phylogenetic relationship with CADs from other species and genetic evidence showing that a set of three allelic brown midrib (bmr) lignin mutants contained mutations in this gene. The impact of the mutations on the structure of the protein was assessed using molecular modeling based on X-ray crystallography data of the closely related Arabidopsis CAD5. The modeling revealed unique changes in structure consistent with the observed phenotypes of the mutants.  相似文献   

16.
17.
A total of 18 paralogs of xyloglucan-specific endoglucanases (EGLs) from the glycosyl hydrolase family 12 were identified and characterized in Phytophthora sojae and Phytophthora ramorum. These genes encode predicted extracellular enzymes, with sizes ranging from 189 to 435 amino acid residues, that would be capable of hydrolyzing the xyloglucan component of the host cell wall. In two cases, four and six functional copies of these genes were found in tight succession within a region of 5 and 18 kb, respectively. The overall gene copy number and relative organization appeared well conserved between P. sojae and P. ramorum, with apparent synteny in this region of their respective genomes. Phylogenetic analyses of Phytophthora endoglucanases of family 12 and other known members of EGL 12, revealed a close relatedness with a fairly conserved gene sub-family containing, among others, sequences from the fungi Emericella desertorum and Aspergillus aculeatus. This is the first report of family 12 EGLs present in plant pathogenic eukaryotes.  相似文献   

18.
Jung KH  Lee J  Dardick C  Seo YS  Cao P  Canlas P  Phetsom J  Xu X  Ouyang S  An K  Cho YJ  Lee GC  Lee Y  An G  Ronald PC 《PLoS genetics》2008,4(8):e1000164
Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families.  相似文献   

19.
The phenotypic analysis of mice carrying germline mutations in protooncogenes is beginning to provide convincing genetic evidence for the important role that these genes play in mammalian development and differentiation. Two approaches are being taken to elucidate the biological function of proto-oncogenes in vivo. The first involves the molecular analysis of existing mouse developmental mutants, while the second approach involves the generation of specific germline mutations by gene targeting using homologous recombination in embryonic stem cells. Several key points have already emerged from these genetic approaches. First, many proto-oncogenes are important to more than one cell lineage and function both during embryogenesis and in the adult. Second, the patterns of expression of these genes provide only a guide to their biological function. Third, mutant phenotypes are generally less severe than would be expected from their expression patterns, suggesting that there may be functional overlap between two or more members of a gene family.  相似文献   

20.
A cDNA for a new ubiquitin-specific protease (UBP), AtUBP5, was identified from Arabidopsis thaliana flower mRNA using an oligonucleotide made against the conserved UBP cysteine (Cys) box. The 924-amino-acid AtUBP5 contains the regions characteristic of all UBPs and has 35% identity and 53% similarity overall to a mammalian UBP (Unp), resulting from additional significant similarity outside these regions. AtUBP5 has 48% identity and 58% similarity overall to two uncharacterized Arabidopsis genomic sequences but is distinct outside the UBP conserved regions from two other previously published Arabidopsis UBPs, AtUBP3 and -4. Using in vivo Escherichia coli assays, which allow co-expression of GSTAtUBPs and substrates, we show that all three UBPs were active. AtUBP5 was active without 311 amino acids N-terminal to the active site cysteine, or without 233 nonconserved amino acids between the Cys and His boxes, or without both, indicating the core region was sufficient. In in vivo and in vitro assays, GSTAtUBP3, -4, and -5 exhibited preference for specific Ub-Ub linkages, suggesting accessibility and/or conformation is important and demonstrating that these enzymes cleave post-translationally. A chimeric UBP consisting of the AtUBP5 Cys box with AtUBP3 amino acids was active and exhibited AtUBP3 specificity, indicating that the modular nature of UBPs and specificity for cleavage sites is not determined by the Cys box.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号