首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of various conditions of heat shock on production of actinomycins by Streptomyces chrysomallus 2 and their composition was studied. The actinomycin biosynthesis was shown to be the function of the growing mycelium and changed in accordance with changes in the volume of the mycelium and its morphological features after heat shock at various suboptimal temperatures. The temperature shock had a specific action on the antibiotic synthesis: the index of the actinomycin maximum quantity increased after the heat shock at 35 and 38 degrees C and lowered more sharply than that of the biomass volume after the heat shock at the temperatures of 40, 42, 45 and 50 degrees C for 1 hour. After the shock at 38 degrees C the component composition of the actinomycin complex did not significantly change while with addition of exogenic amino acids such as L-valine, L-leucine and L-isoleucine the shock effect on the component composition of the actinomycin complex was marked.  相似文献   

2.
The biosynthesis of proteolytic enzymes in the thermophilic culture of Actinomyces thermovulgaris, strain T-54, was directed by changing the composition of the medium and the temperature of cultivation. A temperature of 40 degrees C is optimal for the growth and production of neutral and alkaline proteases. The maximum activity of acid proteases was found during the growth on a complex medium at 30 degrees C. An increase of temperature to 50 degrees C during the cultivation of the microorganism on a chemically defined medium resulted in its secondary growth and a sharp rise in the activity of alkaline and neutral proteases.  相似文献   

3.
Effect of temperature shift during culture period on cell growth and paclitaxel was investigated to optimize paclitaxel production in suspension culture of Taxus chinensis. Cell growth showed the optimum at 24 degrees C while paclitaxel synthesis showed the maximum at 29 degrees C. To minimize the inhibitory effect of higher temperature on cell growth, temperature was shifted after a certain period of culture time at 24 degrees C. Paclitaxel synthesis in plant cell culture increased dramatically during day 14 to day 21 regardless of treatment, reaching the maximum production of 137.5 mg paclitaxel/L. When the temperature was maintained at 29 degrees C after day 21, the specific productivity of paclitaxel was sustained for prolonged period of 42 days. The possible relationship between temperature and paclitaxel synthetic pathway was also suggested.  相似文献   

4.
Citrinin is a mycotoxin, which is produced by fungi belonging to the genus Monascus, known in biotechnology as producers of azaphilone pigments. The relation between biosynthesis of these secondary metabolites was investigated in different species of the genus Monascus in batch-culture at the following cultivation conditions: T = 28 degrees C, agitation 220 rpm, and a medium, which induce citrinin production, containing ethanol as a carbon source. The screening was carried out with 16 fungal strains and the biosynthesis of citrinin and pigments was monitored quantitatively at the standard conditions mentioned above. Some kinetic parameters of the process have been determined. The values of the growth yield coefficient Y(X/C) were between 0.32 and 0.57. The amount of the extracellular red and orange pigments at the end of cultivation varied for the different strains between 0.09 and 1.33 OU/ mg dry weight, and 0.15 and 0.96 OU/mg dry weight, respectively. The amount of the total pigments measured was between 0.16 and 3.6 OU/mg dry weight, and between 0.21 and 3.39 OU/mg dry weight. The determined ratio 500 nm/400 nm, characterizing the pigment production, ranged between 0.60 and 1.06. Twelve of the investigated strains produced citrinin and pigments, two of them produced only pigments. Two strains were not able to produce neither pigments nor citrinin. Thus, the biosynthesis of citrinin appeared to be strain-specific and does not correlate with the pigments' biosynthesis by the fungal strains belonging to the genus Monascus.  相似文献   

5.
Pigmentation mutants of Pseudomonas aeruginosa, selected by observed visual differences in coloration from the wild-type strain, were examined for altered patterns of phenazine synthesis. Three classes of mutants that were incapable of pyocyanine production were identified. Pigmentation patterns that were found to characterize the various mutant classes implicated precursor-product relationships, and a biochemical scheme covering the terminal reactions of pyocyanine biosynthesis is proposed. Among compounds tested as inhibitors of pigmentation, two effectively inhibited pyocyanine production production while allowing cell growth. p-Aminobenzoate inhibited total pigmentation; i.e., no other phenazine accumulated. m-Aminobenzoate inhibited a presumptive methylation step in pyocyanine biosynthesis, abolishing the formation of pyocyanine and aeruginosin pigments but increasing the yields of phenazine 1-carboxylic acid and oxychlororaphin. D-[2,3,4,5(n)-14C]shikimate was most efficiently incorporated into phenazines in the middle to late exponential phase of growth. Label was incorporated predominantly into pyocyanine in the absence of inhibitors and into phenazine 1-carboxylic acid when the organism was grown in the presence of m-aminobenzoate.  相似文献   

6.
The effect of various conditions of heat shock (1 hour at 35, 38, 40, 42, 45 and 50 degrees C) on the growth and morphological features of Streptomyces chrysomallus, an organism producing actinomycin, was studied. A definite regularity in the mycelium morphological changes at high temperatures was observed. After the shock at 35 and 38 degrees C the biomass volume and morphological features of the streptomycete did not markedly differ from those in the control. The shock at 40 degrees C induced the growth inhibition with decreasing the biomass volume by 50 per cent and appearance of submerged spores. When the shock conditions were more rigid (42, 45 and 50 degrees C) the mycelium growth lacked. It is of interest that the temperature of 42 degrees C induced abundant formation of the spores. With further increasing of the temperature to 45 and 50 degrees C the spore formation was not so abundant. The changes in the growth and development of the streptomycete are discussed in relation to the molecular mechanism of the cell protection from temperature shock.  相似文献   

7.
温度对假单胞rsmA突变株M-18R合成Plt和PCA的区别性影响   总被引:1,自引:0,他引:1  
次生代谢物阻遏蛋白(Repressor of secondary metabolite,Rsm)A是一种全局性调控因子,与mRNA的RBS结合,转录后水平上抑制基因翻译。运用同源重组技术,构建了假单胞茵(Pseudomonas sp.)M-18的rsmA突变菌株M-18R。在37℃、28℃恒温和短期升温(37℃、4h培养,转28℃继续培养)条件下,比较野生株M-18和突变株M-18R生物合成藤黄绿菌素(Plt)和吩嗪-1-羧酸(PCA)的量。在37℃条件下,M-18和M-18R合成这两种抗生物质的能力几乎受到完全抑制。在28℃条件下,M-18R合成P11的量约为野生型M-18的10倍,达到270μg/mL,但是合成PCA的量仅为野生型的50%。经短期升温培养,M-18的Plt合成量明显下降,PCA产量降低不显;相反,M-18R合成Plt的量达到400μg/mL,但PCA产量的变化仍不明显。推测,M-18菌株细胞内存在着某种与RsmA相关联的温度敏感因子,在RsmA缺失条件下,作为专一性激活剂促进Plt的生物合成,但是,并不参与对PCA合成的调控。  相似文献   

8.
Synthesis of mature 28-S ribosomal RNA and 60-S ribosomal subunits is inhibited in baby hamster kidney (BHK) cell line ts 422E at non-permissive temperature (39 degrees C). This leads to a 66% decrease of total ribosomes per cell, a marked imbalance between the large and small ribosomal subunits in the cytoplasm and a decrease of cells per dish after prolonged culture at 30 degrees C. However, inhibition of ribosome synthesis does not affect progression of cells through the G1 period of the cell division cycle, the length of the pre-replicative period, and the rate of entry of cells into S phase. In contrast to culture at non-permissive temperature, culture of BHK ts 422E cells in the presence of 0.04 micrograms/ml actinomycin D at 33 degrees C inhibits markedly the entry into S period. It is concluded that low doses of actinomycin D exert their inhibitory effect on cell growth by preventing maturation and transport of mRNA rather than by interfering with ribosome synthesis. Microfluorometric analysis revealed only slight differences in the distribution of BHK ts 422E cells in G1, S and G2 phases of the cycle either when cultured at 33 degrees C or at 39 degrees C. When too few ribosomes per cell are produced in BHK ts 422E cells at 39 degrees C, cells do not seem to be arrested reversibly at a specific point of the cell cycle but rather to die at random.  相似文献   

9.
The biochemical events associated with the heat shock response are not well understood in any organism, nor have the signals that initiate the induction of heat shock protein synthesis been identified. In this work, we demonstrate that the rate of serine catabolism of Escherichia coli cells grown in glucose minimal medium supplemented with serine is elevated three- to sevenfold when the growth temperature is shifted from 37 to 44 degrees C. Elevations in growth temperature and mutations or treatments that lead to elevated basal rates of serine catabolism at 37 degrees C result in the excretion into the culture medium of acetate derived from exogenous serine. Increases in the basal level of serine catabolism at 37 degrees C do not per se induce a heat shock response but are associated with abnormalities in the pattern of induction of heat shock polypeptides following a temperature shift. We postulate that the events responsible for or resulting from the elevation in serine catabolism associated with a shift-up in temperature modulate the induction of 3 of the 17 heat shock polypeptides identified in E. coli. These observations suggest that heat shock diverts serine away from the production of glycine and C1 units, which are required for initiation of protein synthesis and for nucleotide biosynthesis, and towards acetyl coenzyme A and acetate.  相似文献   

10.
Synthesis of the secondary metabolite, actinomycin, and the enzyme, phenoxazinone synthase, involved in the biosynthesis of the antibiotic, were shown to be under severe catabolite repression by glucose. Of a variety of hexoses and carbon compounds examined, glucose, and to a lesser extent, mannose, proved to be the most repressive for enzyme synthesis. The repression by glucose was most evident before production of the antibiotic. In a chemically defined medium suitable for actinomycin production, synthesis of phenoxazinone synthase began at the time the glucose (0.1%) supply was depleted. Soon after, antibiotic synthesis was initiated. Galactose, the major carbon source for growth and antibiotic synthesis, was not utilized until the glucose was consumed. Generally, carbon compounds which supported a rapid rate of growth were most effective in producing catabolite repression.  相似文献   

11.
12.
GC/MS检测方法采用初步探明黄独低温离体保存微型块茎的差异代谢物。与黄独微型块茎25℃离体保存相比较,黄独微型块茎4℃离体保存的差异性代谢物有丙氨酸(Alanine)、儿茶素(Catechin)、N,N-双(2-羟乙基)甲胺(N,N-Di-(2-Hydroxyethyl)-methanamine)、水杨酸(Salicylic acid)、柠檬酸(Citric acid)和山梨糖(Sorbose)等。在黄独微型块茎4℃离体保存中,丙氨酸(Alanine)参与氰基氨基酸代谢;儿茶素(Catechin)参与次生代谢产物生物合成、黄酮类化合物的生物合成和苯丙素的生物合成;水杨酸(Salicylic acid)参与多环芳烃降解、微生物在不同环境中的代谢、植物激素信号转导、次生代谢产物生物合成、二恶英降解、苯丙氨酸代谢、芳烃降解、植物激素生物合成、铁载体组非核糖体肽合成和苯丙素的生物合成等。柠檬酸(Citric acid)参与来自鸟氨酸、赖氨酸和烟酸的生物碱生物合成、组氨酸和嘌呤的生物碱生物合成、微生物在不同环境中的代谢、植物次生代谢产物的生物合成、2-氧代羧酸代谢、萜类和类固醇的生物合成、原核生物固碳途径、次生代谢产物生物合成、来自莽草酸途径的生物碱生物合成、来自萜类化合物和聚酮的生物碱生物合成、柠檬酸循环(TCA循环)、植物激素生物合成、乙醛酸和二羧酸代谢、双组分系统、苯丙素的生物合成以及来自鸟氨酸,赖氨酸和烟酸的生物碱生物合成等。黄独低温离体保存微型块茎差异代谢物的初步发现为进一步了解其低温离体保存的分子机制奠定了基础,也为低温离体保存黄独微型块茎的破除休眠以及其后续萌发提供了理论依据。  相似文献   

13.
The capsular polysaccharide of Pasteurella haemolytica A2 consists of a linear polymer of N-acetylneuraminic acid (Neu5Ac) with alpha(2-8) linkages. The production of this polymer is strictly regulated by the growth temperature and above 40 degrees C no production is detected. Analysis of the enzymatic activities directly involved in its biosynthesis reveals that Neu5Ac lyase, CMP-Neu5Ac synthetase and polysialyltransferase are involved in this regulation. Very low activities were found in P. haemolytica grown at 43 degrees C (at least 25 times lower than those observed when the growth temperature was 37 degrees C). The synthesis of these enzymes increased rapidly when bacteria grown at 43 degrees C were transferred to 37 degrees C and decreased dramatically when cells grown at 37 degrees C were transferred to 43 degrees C. These findings indicate that the cellular growth temperature regulates the synthesis of these enzymes and hence the concentration of the intermediates necessary for capsular polysaccharide genesis in P. haemolytica A2.  相似文献   

14.
Synchronous cells of the thermosensitive division-defective Escherichia coli strain MACI (divA) divided at the restrictive temperature (42 degrees C) if they were allowed to grow at 42 degrees C for a certain period before protein synthesis was inhibited by adding chloramphenicol (CAP) or rifampicin. The completion of chromosome replication was not required for such divA-independent division. Synchronous cells of strain MACI divided in the presence of an inhibitor of DNA synthesis, nalidixic acid, if they were shifted to 42 degrees C and CAP or rifampicin was added after some time; cells of the parent strain MC6 (div A+) treated in the same way did not divide. These data suggest that coupling of cell division to DNA synthesis depends on the divA function. The ability to divide at 42 degrees C, whether or not chromosome termination was allowed, was directly proportional to the mean cell volume of cultures at the time of CAP addition, suggesting that cells have to be a certain size to divide under these conditions. The period of growth required for CAP-induced division had to be at the restrictive temperature; when cells were grown at 30 degrees C, in the presence of nalidixic acid to prevent normal division, they did not divide on subsequent transfer to 42 degrees C followed, after a period, by protein synthesis inhibition. A model is proposed in which the role of divA as a septation initiator gene is to differentiate surface growth sites by converting a primary unregulated structure, with the capacity to make both peripheral wall and septum, to a secondary structure committed to septum formation.  相似文献   

15.
Pseudomonas syringae pv. glycinea PG4180 causes bacterial blight of soybean and produces the phytotoxin coronatine (COR) in a temperature-dependent manner. COR consists of a polyketide, coronafacic acid (CFA), and an amino acid derivative, coronamic acid, and is produced optimally at 18 degrees C whereas no detectable synthesis occurs at 28 degrees C. We investigated the impact of temperature on PG4180 during compatible and incompatible interactions with soybean and tobacco plants, respectively. After spray inoculation, PG4180 caused typical bacterial blight symptoms on soybean plants when the bacteria were grown at 18 degrees C prior to inoculation but not when derived from cultures grown at 28 degrees C. The disease outcome was quantified by determination of bacterial populations in planta. The temperature effect was not observed when PG4180 was artificially infiltrated into soybean leaves, indicating that the pre-inoculation temperature and phytotoxin synthesis were important for bacterial invasion via natural plant openings. In the incompatible interaction, PG4180 elicited the hypersensitive response (HR) on tobacco plants regardless of the bacterial pre-inoculation temperature. However, the HR was significantly delayed when tobacco plants were treated with cells of the CFA-overproducing derivative, PG4180.N9, which were derived from cultures grown at 18 degrees C, compared with parallels incubated at 28 degrees C. CFA biosynthesis by PG4180.N9 was optimal at 18 degrees C and negligible at 28 degrees C. The impact of CFA synthesis on the HR was studied with different growth media, mutants, and transconjugants of PG4180, indicating that the amount of synthesized CFA but not that of COR influenced the outcome of the HR. Feeding experiments with purified coronafacoyl compounds suggested that the observed delay of the HR was mediated by CFA, shedding further light on CFA's putative role as a molecular mimic of the plant signaling molecule, jasmonic acid.  相似文献   

16.
The inhibitory effect of methylprolines on actinomycin biosynthesis by Streptomyces antibioticus was studied; the order of effectiveness was 3- >4- >5-methyl-dl-proline. Cis-3-methyl-dl-proline was 14 times more active than the trans isomer. It was also found that 4- and, possibly, 5-methylproline were incorporated into the actinomycin molecule. When 4-methylproline was present, three new actinomycins, representing 50 to 60% of the antibiotic mixture, were synthesized. Growth of the organism may be stimulated at concentrations (0.1 to 1.0 mug per ml) of 3-methylproline that inhibit antibiotic formation, thus providing additional evidence for a different mechanism of actinomycin synthesis from that of protein synthesis. Azetidine-2-carboxylic acid, piperdine-2-carboxylic acid, and hydroxyproline (but not sarcosine) reversed the inhibition due to 3-methylproline.  相似文献   

17.
Streptomyces thermoviolaceus was grown in a chemostat under conditions of glutamate limitation. The effects of growth rate on production of the antibiotic granaticin, extracellular protein and protease activity as components of secondary metabolism were studied at 37, 45 and 50 degrees C. The amount of each secondary metabolite synthesized was highly dependent on growth rate and temperature. Granaticin yields were highest at growth rates of 0.1 to 0.15 h-1 at 37 degrees C, 0.175 h-1 at 45 degrees C and 0.045 h-1 at 50 degrees C. Protease activity of culture supernatants responded to low nutrient concentration and/or low growth rate. Measurements of extracellular protein revealed complex changes in amount which were dependent on growth rate and temperature. At 45 degrees C and a growth rate of 0.15 h-1, biomass yield was highest between pH 5.5 to 6.5 whereas granaticin synthesis was low at pH 5.5 and rose to highest values at between pH 6.5 and 7.5.  相似文献   

18.
红曲菌次生代谢产物生物合成途径及相关基因的研究进展   总被引:1,自引:0,他引:1  
红曲菌(Monascus spp.)是我国重要的药食两用微生物资源之一,能够产生天然食品添加剂红曲色素、降血酯活性物质Monacolin K等有益次生代谢产物,但也能分泌真菌毒素桔霉素(Citrinin),红曲菌及其相关产品的安全性由此受到质疑.因此,如何促进红曲菌有益代谢产物的产生,减少或抑制桔霉素的产生成为广大科研工作者研究的重点方向.近年来,红曲菌的分子生物学研究有了较快的发展,红曲菌次生代谢产物生物合成及其调控的研究是热点.本文重点介绍红曲色素、Monacolin K和桔霉素生物合成途径及相关基因的研究进展,以期为有效调控红曲菌次生代谢产物的产生、提高红曲产品的安全性提供参考和借鉴.  相似文献   

19.
Escherichia coli null dnaJ and dnaKdnaJ mutants were defective in the biosynthesis and secretion of several enzymes. The synthesis of beta-galactosidase induced in delta dnaJ and delta dnaKdnaJ mutants was abolished at 42 degrees C and significantly decreased at 30 and 37 degrees C. The activity of alkaline phosphatase in the periplasm in both mutant strains at high temperature was lower than in the wild-type strain. The synthesis of b-type cytochromes was defective in two deletion mutants while the synthesis of nitrate reductase-A at 42 degrees C was influenced by dnaK mutation only. The lack of DnaK and DnaJ does not impair the activity of catechol 2,3-dioxygenase irrespective of growth temperature.  相似文献   

20.
Escherichia coli K-12 mutants that are resistant to bacteriophage chi, defective in motility, and unable to grow at high temperature (42 degrees C) were isolated from among those selected for rifampin resistance at low temperature (30 degrees C) after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Genetic analysis of one such mutant indicated the presence of two mutations that probably affect the beta subunit of ribonucleic acid (RNA) polymerase: one (rif) causing rifampin resistance and the other (Ts-74) conferring resistance to phage chi (and loss of motility) and temperature sensitivity for growth. Observations with an electron microscope revealed that the number of flagella per mutant cell was significantly reduced, suggesting that the Ts-74 mutation somehow affected flagella formation at the permissive temperature. When a mutant culture was transferred from 30 to 42 degrees C, deoxyribonucleic acid synthesis accelerated normally, but RNA or protein synthesis was enhanced relatively little. The rate of synthesis of beta and beta' subunits of RNA polymerase was low even at 30 degrees C and was further reduced at 42 degrees C, in contrast to the parental wild-type strain. Expression of the lactose and other sugar fermentation operons, as well as lysogenization with phage lambda, occurred normally at 30 degrees C, suggesting that the mutation does not cause general shut-off of gene expression regulated by cyclic adenosine 3',5'-monophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号