首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Root Knot nematode (RKN; Meloidogyne spp.) is one of the most devastating parasites that infect the roots of hundreds of plant species. RKN cannot live independently from their hosts and are the biggest contributors to the loss of the world''s primary foods. RNAi gene silencing studies have demonstrated that there are fewer galls and galls are smaller when RNAi constructs targeted to silence certain RKN genes are expressed in plant roots. We conducted a comparative genomics analysis, comparing RKN genes of six species: Meloidogyne Arenaria, Meloidogyne Chitwoodi, Meloidogyne Hapla, Meloidogyne Incognita, Meloidogyne Javanica, and Meloidogyne Paranaensis to that of the free living nematode Caenorhabditis elegans, to identify candidate genes that will be lethal to RKN when silenced or mutated. Our analysis yielded a number of such candidate lethal genes in RKN, some of which have been tested and proven to be effective in soybean roots. A web based database was built to house and allow scientists to search the data. This database will be useful to scientists seeking to identify candidate genes as targets for gene silencing to confer resistance in plants to RKN.

Availability

The database can be accessed from http://bioinformatics.towson.edu/RKN/  相似文献   

2.
3.

Background and Aims

The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l).

Methods

Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10–25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C).

Key Results

Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (Tb) of 9·0–11·3 °C and a thermal time requirement for 50 % of germination (θ50) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations.

Conclusions

The thermal thresholds for seed germination identified in this study (Tb and θ50) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.  相似文献   

4.
Cytoplasmic polyadenylation drives the translational activation of specific mRNAs in early metazoan development and is performed by distinct complexes that share the same catalytic poly(A)-polymerase subunit, GLD-2. The activity and specificity of GLD-2 depend on its binding partners. In Caenorhabditis elegans, GLD-2 promotes spermatogenesis when bound to GLD-3 and oogenesis when bound to RNP-8. GLD-3 and RNP-8 antagonize each other and compete for GLD-2 binding. Following up on our previous mechanistic studies of GLD-2–GLD-3, we report here the 2.5 Å resolution structure and biochemical characterization of a GLD-2–RNP-8 core complex. In the structure, RNP-8 embraces the poly(A)-polymerase, docking onto several conserved hydrophobic hotspots present on the GLD-2 surface. RNP-8 stabilizes GLD-2 and indirectly stimulates polyadenylation. RNP-8 has a different amino-acid sequence and structure as compared to GLD-3. Yet, it binds the same surfaces of GLD-2 by forming alternative interactions, rationalizing the remarkable versatility of GLD-2 complexes.  相似文献   

5.
Soluble N-ethylmaleimide-sensitive-factor Attachment protein Receptors (SNAREs) participate in the specificity of membrane fusions in the cell. The mechanisms of specific SNARE sorting are still however poorly documented. We investigated the possible role of Adaptor Protein (AP) complexes in sorting of the Dictyostelium discoideum v-SNARE VAMP7. In live cells, GFP-VAMP7 is observed in the membrane of endocytic compartments. It is also observed in the plasma membrane of a small proportion of the cells. Mutation of a potential dileucine motif dramatically increases the proportion of cells with GFP-VAMP7 in their plasma membrane, strongly supporting the participation of an AP complex in VAMP7 sorting to the endocytic pathway. A partial increase occurs in knockout cells for the medium subunits of AP-2 and AP-3 complexes, indicating a role for both AP-2 and AP-3. VAMP7, as well as its t-SNAREs partners syntaxin 8 and Vti1, are co-immunoprecipitated with each of the medium subunits of the AP-1, AP-2, AP-3 and AP-4 complexes. This result supports the conclusion that VAMP7 directly interacts with both AP-2 and AP-3. It also raises the hypothesis of an interaction with AP-1 and AP-4. GFP-VAMP7 is retrieved from the endocytic pathway at and/or before the late post-lysosomal stage through an AP-independent mechanism.  相似文献   

6.
7.

Background and Aims

Little is known about morphological (MD) or morphophysiological (MPD) dormancy in cold desert species and in particular those in Liliaceae sensu lato, an important floristic element in the cold deserts of Central Asia with underdeveloped embyos. The primary aim of this study was to determine if seeds of the cold desert liliaceous perennial ephemeral Eremurus anisopterus has MD or MPD, and, if it is MPD, then at what level.

Methods

Embryo growth and germination was monitored in seeds subjected to natural and simulated natural temperature regimes and the effects of after-ripening and GA3 on dormancy break were tested. In addition, the temperature requirements for embryo growth and dormancy break were investigated.

Key Results

At the time of seed dispersal in summer, the embryo length:seed length (E:S) ratio was 0·73, but it increased to 0·87 before germination. Fresh seeds did not germinate during 1 month of incubation in either light or darkness over a range of temperatures. Thus, seeds have MPD, and, after >12 weeks incubation at 5/2 °C, both embryo growth and germination occurred, showing that they have a complex level of MPD. Since both after-ripening and GA3 increase the germination percentage, seeds have intermediate complex MPD.

Conclusions

Embryos in after-ripened seeds of E. anisopterus can grow at low temperatures in late autumn, but if the soil is dry in autumn then growth is delayed until snowmelt wets the soil in early spring. The ecological advantage of embryo growth phenology is that seeds can germinate at a time (spring) when sand moisture conditions in the desert are suitable for seedling establishment.  相似文献   

8.
9.
The human X-ray repair complementing group 1 gene (XRCC1) is an important candidate gene influencing hepatocellular carcinoma (HCC) susceptibility. The objective of this study was to detect the association between c.1161G>A and c.1779C>G variants of XRCC1 gene and HCC risk. This study was conducted in Chinese population consisting of 623 HCC cases and 639 controls. These two genetic variants could be genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The association of XRCC1 gene variants with the risk of HCC was investigated under different genetic models. Our findings suggested that the genotypes/alleles from c.1161G>A and c.1779C>G genetic variants were statistically associated with HCC risk. As for the c.1161G>A, the AA genotype was statistically associated with the increased risk of HCC compared to GG wild genotype (OR = 2.36, 95% CI 1.63-3.40, P < 0.001). As for the c.1779C>G, the risk of HCC was significantly higher for GG genotype compared to CC wild genotype (OR = 2.17, 95% CI 1.51-3.12, P < 0.001). Furthermore, significant differences in the risk of HCC were also detected in other genetic models for these two variants. The allele-A of c.1161G>A and allele-G of c.1779C>G variants may contribute to the susceptibility of HCC (A versus G: OR = 1.48, 95% CI 1.26-1.75, P < 0.001 and G versus C: OR = 1.51, 95% CI 1.28-1.78, P < 0.001). Our data indicated that these two variants of XRCC1 gene were statistically associated with HCC risk in Chinese population.  相似文献   

10.
Classical hereditary hemochromatosis involves the HFE-gene and diagnostic analysis of the DNA variants HFE p.C282Y (c.845G > A; rs1800562) and HFE p.H63D (c.187C > G; rs1799945). The affected protein alters the iron homeostasis resulting in iron overload in various tissues. The aim of this study was to validate the TaqMan-based Sample-to-SNP protocol for the analysis of the HFE-p.C282Y and p.H63D variants with regard to accuracy, usefulness and reproducibility compared to an existing SNP protocol. The Sample-to-SNP protocol uses an approach where the DNA template is made accessible from a cell lysate followed by TaqMan analysis. Besides the HFE-SNPs other eight SNPs were used as well. These SNPs were: Coagulation factor II-gene F2 c.20210G > A, Coagulation factor V-gene F5 p.R506Q (c.1517G > A; rs121917732), Mitochondria SNP: mt7028 G > A, Mitochondria SNP: mt12308 A > G, Proprotein convertase subtilisin/kexin type 9-gene PCSK9 p.R46L (c.137G > T), Plutathione S-transferase pi 1-gene GSTP1 p.I105V (c313A > G; rs1695), LXR g.-171 A > G, ZNF202 g.-118 G > T. In conclusion the Sample-to-SNP kit proved to be an accurate, reliable, robust, easy to use and rapid TaqMan-based SNP detection protocol, which could be quickly implemented in a routine diagnostic or research facility.  相似文献   

11.
Electron transfer between plant-type [2Fe-2S] ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) depends on the physical interaction between both proteins. We have applied a random mutagenesis approach with subsequent in vivo selection using the yeast two-hybrid system to obtain mutants of Toxoplasma gondii FNR with higher affinity for Fd. One mutant showed a 10-fold enhanced binding using affinity chromatography on immobilized Fd. A single serine-to-arginine exchange in the active site was responsible for its increased affinity. The mutant reductase was also enzymatically inactive. Homology modeling of the mutant FNR-Fd complex predicts substantial alterations of protein-FAD interactions in the active site of the enzyme with subsequent structural changes. Collectively, for the first time a point mutation in this important class of enzymes is described which leads to greatly enhanced affinity for its protein ligand.  相似文献   

12.
Ji YJ  Choi KY  Song HO  Park BJ  Yu JR  Kagawa H  Song WK  Ahnn J 《FEBS letters》2006,580(13):3161-3166
Vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump, which transports protons across the membrane. It is a multi-protein complex which is composed of at least 13 subunits. The Caenorhabditis elegans vha-8 encodes the E subunit of V-ATPase which is expressed in the hypodermis, intestine and H-shaped excretory cells. VHA-8 is necessary for proper intestinal function likely through its role in cellular acidification of intestinal cells. The null mutants of vha-8 show a larval lethal phenotype indicating that vha-8 is an essential gene for larval development in C. elegans. Interestingly, characteristics of necrotic cell death were observed in the hypodermis and intestine of the arrested larvae suggesting that pH homeostasis via the E subunit of V-ATPase is required for the cell survival in C. elegans.  相似文献   

13.
Boris K. Semin  Michael Seibert 《BBA》2006,1757(3):189-197
The role of carboxylic residues at the high-affinity, Mn-binding site in the ligation of iron cations blocking the site [Biochemistry 41 (2000) 5854] was studied, using a method developed to extract the iron cations blocking the site. We found that specifically bound Fe(III) cations can be extracted with citrate buffer at pH 3.0. Furthermore, citrate can also prevent the photooxidation of Fe(II) cations by YZ. Participation of a COOH group(s) in the ligation of Fe(III) at the high-affinity site was investigated using 1-ethyl-3-[(3-dimethylamino)propyl] carbodiimide (EDC), a chemical modifier of carboxylic amino acid residues. Modification of the COOH groups inhibits the light-induced oxidation of exogenous Mn(II) cations by Mn-depleted photosystem II (PSII[−Mn]) membranes. The rate of Mn(II) oxidation saturates at ≥10 μM in PSII(−Mn) membranes and ≥500 μM in EDC-treated PSII (−Mn) samples. Intact PSII(−Mn) membranes have only one site for Mn(II) oxidation via YZ (dissociation constant, Kd = 0.64 μM), while EDC-treated PSII(−Mn) samples have two sites (Kd = 1.52 and 22 μM; the latter is the low-affinity site). When PSII(−Mn) membranes were incubated with Fe(II) before modifier treatment (to block the high-affinity site) and the blocking iron cations were extracted with citrate (pH 3.0) after modification, the membranes contained only one site (Kd = 2.3 μM) for exogenous Mn(II) oxidation by YZ radical. In this case, the rate of electron donation via YZ saturated at a Mn(II) concentration ≥15 μM. These results indicate that the carboxylic residue participating in Mn(II) coordination and the binding of oxidized manganese cations at the HAZ site is protected from the action of the modifier by the iron cations blocking the HAZ site. We concluded that the carboxylic residue (D1 Asp-170) participating in the coordination of the manganese cation at the HAZ site (Mn4 in the tetranuclear manganese cluster [Science 303 (2004) 1831]) is also involved in the ligation of the Fe cation(s) blocking the high-affinity Mn-binding site.  相似文献   

14.
Mutants of the plasma membrane Ca(2+) pump (human isoform 4xb) with deletions in the linker between domain A and transmembrane segment M3 (A(L) region) were constructed and expressed in Chinese hamster ovary cells. The total or partial removal of the amino acid segment 300-349 did not change the maximal Ca(2+) transport activity, but mutants with deletions involving residues 300-338 exhibited a higher apparent affinity for Ca(2+) than the wild type h4xb enzyme. Deletion of the putative acidic lipid interacting sequence (residues 339-349) had no observable functional consequences. The removal of either residues 300-314 or 313-338 resulted in a similar increase in the apparent Ca(2+) affinity of the pump although the increase was somewhat lower than that obtained by the deletion 300-349 suggesting that both deletions affected the same structural determinant. The results show that alterations in the region of the alternative splicing site A change the sensitivity to Ca(2+) of the human isoform 4 of the PMCA.  相似文献   

15.
Senescence marker protein-30 (SMP30) has been reported to hydrolyze diisopropyl fluorophosphate (DFP), a surrogate compound of chemical warfare nerve agents. Thus, SMP30 has the potential to be useful as a prophylactic against chemical warfare nerve agent toxicity. Our efforts to generate human SMP30 in bacteria using a variety of expression vectors invariably resulted in insoluble and inactive preparations. In this study, properly folded and active recombinant human SMP30 (rHuSMP30) was produced in Escherichia coli by coexpressing it with molecular chaperones in a combined strategy. The coexpression of rHuSMP30 with GroES/GroEL/Tf at 15 °C, combined with the addition of a membrane fluidizer, increased osmolytes, and a two-step expression resulted in the highest enhancement of solubility and DFPase activity. Our results pave the way for exploring the use of rHuSMP30 against organophosphate and nerve agent toxicity.  相似文献   

16.
Metal ions interact with RNA to enhance folding, stabilize structure, and, in some cases, facilitate catalysis. Assigning functional roles to specifically bound metal ions presents a major challenge in analyzing the catalytic mechanisms of ribozymes. Bacillus subtilis ribonuclease P (RNase P), composed of a catalytically active RNA subunit (PRNA) and a small protein subunit (P protein), catalyzes the 5′-end maturation of precursor tRNAs (pre-tRNAs). Inner-sphere coordination of divalent metal ions to PRNA is essential for catalytic activity but not for the formation of the RNase P·pre-tRNA (enzyme-substrate, ES) complex. Previous studies have demonstrated that this ES complex undergoes an essential conformational change (to the ES? conformer) before the cleavage step. Here, we show that the ES? conformer is stabilized by a high-affinity divalent cation capable of inner-sphere coordination, such as Ca(II) or Mg(II). Additionally, a second, lower-affinity Mg(II) activates cleavage catalyzed by RNase P. Structural changes that occur upon binding Ca(II) to the ES complex were determined by time-resolved Förster resonance energy transfer measurements of the distances between donor-acceptor fluorophores introduced at specific locations on the P protein and pre-tRNA 5′ leader. These data demonstrate that the 5′ leader of pre-tRNA moves 4 to 6 Å closer to the PRNA·P protein interface during the ES-to-ES? transition and suggest that the metal-dependent conformational change reorganizes the bound substrate in the active site to form a catalytically competent ES? complex.  相似文献   

17.
The interaction of Escherichia coli agmatinase (EC 3.5.3.11) with the substrate guanidinium group was investigated by kinetic and site-directed mutagenesis studies. Putrescine and guanidinium ions (Gdn+) were slope-linear, competitive inhibitors with respect to agmatine and their bindings to the enzyme were not mutually exclusive. By site-directed mutagenesis, the E274A variant exhibiting about 1-2% of wild-type activity was obtained. Mutation produced a moderate, but significant, increase in the Km value for agmatine (from 1.1 +/- 0.2 mM to 6.3 +/- 0.3 mM) and the Ki value for competitive inhibition by Gdn+ (from 15.0 +/- 0.1 mM to 44.2 +/- 2.1 mM), but the Ki value for putrescine inhibition (2.8 +/- 0.2 mM) was not altered. The tryptophan fluorescence properties (lambdamax = 342 nm) and circular dichroism spectra were not significantly altered by the Glu274 --> Ala mutation. The dimeric structure of the enzyme was also maintained. We conclude that Glu274 is involved in binding and positioning of the guanidinium moiety of the substrate for efficient catalysis. A kinetic mechanism involving rapid equilibrium random release of products is proposed for E. coli agmatinase.  相似文献   

18.
19.
Density-labeled crosses were performed with bacteriophage lambda under conditions which diminish DNA duplication. The production of viable phage containing fully conserved parental DNA was found to be dependent upon the action of the genetic recombination systems. The production of phage containing DNA with one newly synthesized chain was less dependent upon recombination. The production of phage with chromosomes both of whose chains were synthesized following infection show little, if any, dependence on recombination. One can speculate that some step in the maturation process of bacteriophage lambda is inseparable from the reduction of lambda DNA to the monomeric rods characteristic of lambda virions.  相似文献   

20.
Cytotoxic studies using an azo compound HPAN and its Co(II) complex were carried out on non-small lung epithelium carcinoma (A549) cells and peripheral blood mononuclear (PBM) cells. The results obtained suggest that the Co(II) complex is much less toxic toward both cell lines and the decreased toxicity due to the complex was more pronounced with carcinoma A549 cells. An attempt was made to correlate the findings related to cytotoxicity with the interaction of the compounds with DNA using calf thymus DNA as the target. The study was able to conclude that the complex was a relatively weak binder to calf thymus DNA. This information was used to explain the interaction of azo compounds with DNA in peripheral blood mononuclear cells and A549 lung carcinoma cells. It was concluded that the Co(II) complex interacts with DNA to a much lesser extent than HPAN alone. Cyclic voltammetry experiments carried out with HPAN and the Co(II) complex further showed that the presence of the metal ion in the complex prevents reduction of the azo group to such species that are responsible for inducing cytotoxicity. The overall finding was that complex formation with azo compounds might serve as a possible route to curb their toxicities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号