首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Mutations leading to aberrant splicing are found as a cause of numerous pathologies. Splice-switching oligonucleotides (SSOs), which modify aberrant expression patterns of alternatively spliced mRNAs, are a novel means of potentially controlling such diseases. METHODS: We used an experimental model in which a mutated beta-globin intron, carrying an aberrant splice site at nucleotide 705, interrupts the coding region of the luciferase reporter gene inserted in HeLa pLuc/705 cells. We have optimized delivery of splice correcting, steric-blocking 2'-O-methyl SSOs targeting the 705 mutated region (2'-O-Me SSO(705)) with DLS (DLS: delivery liposomal system) lipoplexes. RESULTS: Optimal luciferase activity for DLS/2'-O-Me SSO(705) was achieved at 100 nM and was detectable at concentrations as low as 10 nM in serum-containing culture medium, confirming the potential of DLS lipoplex-mediated nuclear SSO delivery as observed in cellular uptake studies. We confirmed by cytofluorometry and epifluorescence microscopy the high potential of the DLS lipoplex for cellular and nuclear oligonucleotide uptake. The DLS lipoplex was then used to directly compare the intracellular efficacy of various SSO chemistries and sequences in correction of aberrant splicing. 2'-O-Methoxyethyl-oligodeoxyribonucleoside phosphorothioates had a greater activity than 2'-O-methyl phosphodiester or 2'-O-methyl-phosphorothioate oligoribonucleotides. Targeting the splicing enhancer 623 region upstream was as efficient as targeting the 705 splice site, and, remarkably, simultaneous targeting of both sites was more efficient than treatment of the cells either with 2'-O-Me SSO(705) or 2'-O-Me SSO(623) alone. CONCLUSIONS: We demonstrated that SSOs can switch on luciferase activity in HeLa cells previously transfected with the pLuc/705 plasmid via the same DLS vector and provides a novel approach to modulate the expression of a transgene.  相似文献   

2.
3.
4.
Synthetic oligonucleotides had been employed in DNA repair and promised great potentials in gene therapy. To test the ability of single-stranded oligonucleotide (SSO)-mediated gene repair within a chromosomal site in human cells, a HeLa cell line stably integrated with mutant enhanced green fluorescence protein gene (mEGFP) in the genome was established. Transfection with specific SSOs successfully repaired the mEGFP gene and resulted in the expression of functional fluorescence proteins, which could be detected by fluorescence microscopy and FACS assay. Western blot showed that EGFP was only present in the cells transfected with correction SSOs rather than the control SSOs. Furthermore, DNA sequencing confirmed that phenotype change resulted from the designated nucleotide correction at the target site. Using this reporter system, we determined the optimal structure of SSO by investigating the effect of length, modifications, and polarities of SSOs as well as the positions of the mismatch-forming nucleotide on the efficiency of SSO-mediated gene repair. Interestingly, we found that SSOs with mismatch-forming nucleotide positioned at different positions have varying potencies that homology at the 5'-end of SSOs was more crucial for the SSO's activity. These results provided guidance for designing effective SSOs as tools for treating monogenic inherited diseases.  相似文献   

5.
Close to 90% of human genes are transcribed into pre-mRNA that undergoes alternative splicing, producing multiple mRNAs and proteins from single genes. This process is largely responsible for human proteome diversity, and about half of genetic disease-causing mutations affect splicing. Splice-switching oligonucleotides (SSOs) comprise an emerging class of antisense therapeutics that modify gene expression by directing pre-mRNA splice site usage. Bauman et al. investigated an SSO that up-regulated the expression of an anti-cancer splice variant while simultaneously eliminating an over-expressed cancer-causing splice variant. This was accomplished by targeting pre-mRNA of the apoptotic regulator Bcl-x, which is alternatively spliced to express anti- and pro-apoptotic splice variants Bcl-xL and Bcl-xS, respectively. High expression of Bcl-xL is a hallmark of many cancers and is considered a general mechanism used by cancer cells to evade apoptosis. Redirection of Bcl-x pre-mRNA splicing from Bcl-xL to -xS by SSO induced apoptotic and chemosensitizing effects in various cancer cell lines. Importantly, the paper shows that delivery of Bcl-x SSO using a lipid nanoparticle redirected Bcl-x splicing and reduced tumor burden in melanoma lung metastases. This was the first demonstration of SSO efficacy in tumors in vivo. SSOs are not limited to be solely potential anti-cancer drugs.?SSOs were first applied to repair aberrant splicing in thalassemia, a genetic disease, they have been used to create novel proteins (e.g., ?7TNFR1), and they have recently progressed to clinical trials for patients with Duchenne muscular dystrophy.  相似文献   

6.
Targeted delivery can potentially improve the pharmacological effects of antisense and siRNA oligonucleotides. Here, we describe a novel bioconjugation approach to the delivery of splice-shifting antisense oligonucleotides (SSOs). The SSOs are linked to albumin via reversible S-S bonds. The albumin is also conjugated with poly(ethylene glycol) (PEG) chains that terminate in an RGD ligand that selectively binds the alphavbeta3 integrin. As a test system, we utilized human melanoma cells that express the alphavbeta3 integrin and that also contain a luciferase reporter gene that can be induced by delivery of SSOs to the cell nucleus. The RGD-PEG-SSO-albumin conjugates were endocytosed by the cells in an RGD-dependent manner; using confocal fluorescence microscopy, evidence was obtained that the SSOs accumulate in the nucleus. The conjugates were able to robustly induce luciferase expression at concentrations in the 25-200 nM range. At these levels, little short-term or long-term toxicity was observed. Thus, the RGD-PEG-albumin conjugates may provide an effective tool for targeted delivery of oligonucleotides to certain cells and tissues.  相似文献   

7.
Single-stranded oligonucleotides (SSOs) mediate gene repair of punctual chromosomal mutations at a low frequency. We hypothesized that enhancement of DNA binding affinity of SSOs by intercalating agents may increase the number of corrected cells. Several biochemical modifications of SSOs were tested for their capability to correct a chromosomally integrated and mutated GFP reporter gene in human 293 cells. SSOs of 25 nucleotide length conjugated with acridine at their 5' end increased the efficiency of gene correction up to 10-fold compared to nonmodified SSOs. Acridine and psoralen conjugates were both evaluated, and acridine-modified SSOs were the most effective. Conjugation with acridine at the 3' end of the SSO inhibited gene correction, whereas flanking the SSO by acridine on both sides provided an intermediate level of correction. These results suggest that increasing the stability of hybridization between SSO and its target without hampering a 3' extension improves gene targeting, in agreement with the "annealing-integration" model of DNA repair.  相似文献   

8.
RNA interference (RNAi), mediated by either long double-stranded RNA (dsRNA) or short interfering RNA (siRNA), has become a routine tool for transient knockdown of gene expression in a wide range of organisms. The antisense strand of the siRNA duplex (antisense siRNA) was recently shown to have substantial mRNA depleting activity of its own. Here, targeting human Tissue Factor mRNA in HaCaT cells, we perform a systematic comparison of the activity of antisense siRNA and double-strand siRNA, and find almost identical target position effects, appearance of mRNA cleavage fragments and tolerance for mutational and chemical backbone modifications. These observations, together with the demonstration that excess inactive double-strand siRNA blocks antisense siRNA activity, i.e. shows sequence-independent competition, indicate that the two types of effector molecules share the same RNAi pathway. Interest ingly, both FITC-tagged and 3′-deoxy antisense siRNA display severely limited activity, despite having practically wild-type activity in a siRNA duplex. Finally, we find that maximum depletion of target mRNA expression occurs significantly faster with antisense siRNA than with double-strand siRNA, suggesting that the former enters the RNAi pathway at a later stage than double-strand siRNA, thereby requiring less time to exert its activity.  相似文献   

9.
10.
RNA polymerase III (Pol III) expression systems for short hairpin RNAs (U6 shRNAs or chimeric VA1 shRNAs) or individually expressed sense/antisense small interfering RNA (siRNA) strands have been used to trigger RNA interference (RNAi) in mammalian cells. Here we show that individually expressed siRNA expression constructs produce 21-nucleotide siRNAs that strongly accumulate as duplex siRNAs in the nucleus of human cells, exerting sequence-specific silencing activity similar to cytoplasmic siRNAs derived from U6 or VA1-expressed hairpin precursors. In contrast, 29-mer siRNAs separately expressed as sense/antisense strands fail to elicit RNAi activity, despite accumulation of these RNAs in the nucleus. Our findings delineate different intracellular accumulation patterns for the three expression strategies and suggest the possibility of a nuclear RNAi pathway that requires 21-mer duplexes.  相似文献   

11.
RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19–27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10–12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo.  相似文献   

12.
The single-strand origin (SSO) of the rolling-circle (RC), broad-host-range lactococcal plasmid pWVO1 was functionally characterized. The activity of this SSO in the conversion of single-stranded DNA to double-stranded DNA was tested both in vivo and in vitro. In addition, the effect of this SSO on plasmid maintenance was determined. The functional pWVO1 SSO comprises a 250 by region, containing two inverted repeats (IRs). The activity of each IR was tested, separately and in combination, in a plasmid derivative that was otherwise completely devoid of structures that might function as SSO. One of the IRs (IR 1) showed some homology with other previously described SSOs of the SSOA type, as well as with the conversion signal of the Escherichia coli phage X174. This IR was shown to have a partial, RNA polymerise-independent activity in complementary strand synthesis, both in vivo and in vitro. The second IR, which had no activity of its own, was required for full SSO activity, both in vivo and in vitro. The conversion of single-stranded DNA to the double-stranded form by the complete SSO was only partly sensitive to inhibition by rifampicin, indicating the existence of an RNA polymerase-independent pathway for this event. The results suggest that the pWVO1 SSO can be activated by two different routes: an RNA polymerise-dependent one (requiring the entire SSO), and an RNA polymerase-independent one (requiring only IR I).  相似文献   

13.
Single-stranded oligonucleotide (SSO)-mediated gene modification is a newly developed tool for site-specific gene repair in mammalian cells; however, the corrected cells always show G2/M arrest and cannot divide to form colonies. This phenomenon and the unclear mechanism seriously challenge the future application of this technique. In this study, we developed an efficient SSO-mediated DNA repair system based on double-stranded break (DSB) induction. We generated a mutant EGFP gene with insertions of 24 bp to 1.6 kb in length as a reporter integrated in mammalian cell lines. SSOs were successfully used to delete the insertion fragments upon DSB induction at a site near the insertion. We demonstrated that this process is dependent on the ATM/ATR pathway. Importantly, repaired cell clones were viable. Effects of deletion length, SSO length, strand bias, and SSO modification on gene repair frequency were also investigated.  相似文献   

14.

Background

During non-rapid eye movement (NREM) sleep synchronous neural oscillations between neural silence (down state) and neural activity (up state) occur. Sleep Slow Oscillations (SSOs) events are their EEG correlates. Each event has an origin site and propagates sweeping the scalp. While recent findings suggest a SSO key role in memory consolidation processes, the structure and the propagation of individual SSO events, as well as their modulation by sleep stages and cortical areas have not been well characterized so far.

Methodology/Principal Findings

We detected SSO events in EEG recordings and we defined and measured a set of features corresponding to both wave shapes and event propagations. We found that a typical SSO shape has a transition to down state, which is steeper than the following transition from down to up state. We show that during SWS SSOs are larger and more locally synchronized, but less likely to propagate across the cortex, compared to NREM stage 2. Also, the detection number of SSOs as well as their amplitudes and slopes, are greatest in the frontal regions. Although derived from a small sample, this characterization provides a preliminary reference about SSO activity in healthy subjects for 32-channel sleep recordings.

Conclusions/Significance

This work gives a quantitative picture of spontaneous SSO activity during NREM sleep: we unveil how SSO features are modulated by sleep stage, site of origin and detection location of the waves. Our measures on SSOs shape indicate that, as in animal models, onsets of silent states are more synchronized than those of neural firing. The differences between sleep stages could be related to the reduction of arousal system activity and to the breakdown of functional connectivity. The frontal SSO prevalence could be related to a greater homeostatic need of the heteromodal association cortices.  相似文献   

15.
Shim MS  Kwon YJ 《The FEBS journal》2010,277(23):4814-4827
RNA interference (RNAi) has been regarded as a revolutionary tool for manipulating target biological processes as well as an emerging and promising therapeutic strategy. In contrast to the tangible and obvious effectiveness of RNAi in vitro, silencing target gene expression in vivo using small interfering RNA (siRNA) has been a very challenging task due to multiscale barriers, including rapid excretion, low stability in blood serum, nonspecific accumulation in tissues, poor cellular uptake and inefficient intracellular release. This minireview introduces major challenges in achieving efficient siRNA delivery in vivo and discusses recent advances in overcoming them using chemically modified siRNA, viral siRNA vectors and nonviral siRNA carriers. Enhanced specificity and efficiency of RNAi in vivo via selective accumulations in desired tissues, specific binding to target cells and facilitated intracellular trafficking are also commonly attempted utilizing targeting moieties, cell-penetrating peptides, fusogenic peptides and stimuli-responsive polymers. Overall, the crucial roles of the interdisciplinary approaches to optimizing RNAi in vivo, by efficiently and specifically delivering siRNA to target tissues and cells, are highlighted.  相似文献   

16.
In this paper we describe the isolation and characterization of single strand origins (SSOs) of several cryptic Bacillus subtilis plasmids which use the rolling-circle mechanism of replication. The plasmids used in this study involved pTA1015, pTA1020, pTA1030, pTA1040, pTA1050 and pTA1060. The SSO of pTA1015 was isolated by shotgun cloning in a specially designed vector, pWM100, which has no SSO of its own. Sequence analysis revealed that the SSO of pTA1015 is almost identical to formerly described palT type SSOs. Also pTA1020 and pTA1060 were shown to contain SSOs highly homologous to palT. Using Southern hybridization with the palT of pTA1015 as a probe, the SSO of pTA1040 was cloned. Sequence analysis revealed a region of 200 bp which is 77% identical to the palT of pTA1015. The plasmids pTA1030 and pTA1050 contain an SSO which is highly homologous to the SSO of pTA1040. The majority of the SSOs of rolling-circle plasmids from B.subtilis seem to belong to two related families which we denote as palT1 (present on pTA1015, pTA1020 and pTA1060) and palT2 (present on pTA1030, pTA1040 and pTA1050). Both families of SSOs are highly efficient single-strand-conversion signals in B.subtilis.  相似文献   

17.
18.
It is often believed that small interfering RNA (siRNA) is at least 10-fold more effective than the single-stranded antisense oligonucleotide for silencing the same target gene in the same cells. In view of the recent discovery that the RNA-induced silencing complex (RISC) contains only a single-stranded RNA (ssRNA) molecule and can be reconstituted using single-stranded antisense RNA, such a large difference in efficacy seems puzzling. One possible reason is that hybridization protects siRNA from hydrolysis by endogenous RNase activity until it is incorporated in the RISC, whereas ssRNA is rapidly hydrolyzed. Because the single-stranded poly-2'-O-(2,4-dinitrophenyl)-RNA (DNP-ssRNA) is both RNase resistant and membrane permeable, we synthesized homologous native siRNAs, DNP-siRNAs, native ssRNAs, and DNP-ssRNAs and made a comparative study of their efficacies for inhibiting the growth of two cancer cell lines with different overexpressed target genes under equivalent experimental conditions. It was found that the efficacy of antisense DNP-ssRNA is higher than that of the corresponding siRNA and that the efficacy of native siRNA for inhibiting cell growth can also be enhanced from 2-fold to 6-fold by replacing the native strands of RNA in siRNA with homologous DNP-RNA. Thermal denaturation data show that the hybridization affinity of the DNP-RNA/RNA duplex is higher than that of the native RNA/RNA duplex. Western blotting analysis of A549 cells treated with antisense DNP-ssRNAs containing single mismatching bases shows that the gene silencing by antisense DNP-ssRNA is as sequence specific as that by siRNA. The observed large enhancement of inhibition efficacy of native RNAs by DNP derivatization should be advantageous for both gene silencing studies and therapeutic applications.  相似文献   

19.
RNA interference can be considered as an antisense mechanism of action that utilizes a double-stranded RNase to promote hydrolysis of the target RNA. We have performed a comparative study of optimized antisense oligonucleotides designed to work by an RNA interference mechanism to oligonucleotides designed to work by an RNase H-dependent mechanism in human cells. The potency, maximal effectiveness, duration of action, and sequence specificity of optimized RNase H-dependent oligonucleotides and small interfering RNA (siRNA) oligonucleotide duplexes were evaluated and found to be comparable. Effects of base mismatches on activity were determined to be position-dependent for both siRNA oligonucleotides and RNase H-dependent oligonucleotides. In addition, we determined that the activity of both siRNA oligonucleotides and RNase H-dependent oligonucleotides is affected by the secondary structure of the target mRNA. To determine whether positions on target RNA identified as being susceptible for RNase H-mediated degradation would be coincident with siRNA target sites, we evaluated the effectiveness of siRNAs designed to bind the same position on the target mRNA as RNase H-dependent oligonucleotides. Examination of 80 siRNA oligonucleotide duplexes designed to bind to RNA from four distinct human genes revealed that, in general, activity correlated with the activity to RNase H-dependent oligonucleotides designed to the same site, although some exceptions were noted. The one major difference between the two strategies is that RNase H-dependent oligonucleotides were determined to be active when directed against targets in the pre-mRNA, whereas siRNAs were not. These results demonstrate that siRNA oligonucleotide- and RNase H-dependent antisense strategies are both valid strategies for evaluating function of genes in cell-based assays.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号