首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The Bacillus subtilis gsiA operon was induced rapidly, but transiently, as cells entered the stationary phase in nutrient broth medium. A mutation at the gsiC locus caused sporulation to be defective and expression of gsiA to be elevated and prolonged. The sporulation defect in this strain was apparently due to persistent expression of gsiA, since a gsiA null mutation restored sporulation to wild-type levels. Detailed mapping experiments revealed that the gsiC82 mutation lies within the kinA gene, which encodes the histidine protein kinase member of a two-component regulatory system. Since mutations in this gene caused a substantial blockage in expression of spoIIA, spoIIG, and spoIID genes, it seems that accumulation of a product of the gsiA operon interferes with sporulation by blocking the completion of stage II. It apparently does so by inhibiting or counteracting the activity of KinA.  相似文献   

13.
14.
15.
16.
The roles of the CcpC, CodY, and AbrB proteins in regulation of the Bacillus subtilis aconitase (citB) gene were found to be distinct and to vary with the conditions and phase of growth. CcpC, a citrate-inhibited repressor that is the primary factor regulating citB expression in minimal-glucose-glutamine medium, also contributed to repression of citB during exponential-phase growth in broth medium. A null mutation in codY had no effect on citB expression during growth in minimal medium even when combined with ccpC and abrB mutations. However, a codY mutation slightly relieved repression during exponential growth in broth medium and completely derepressed citB expression when combined with a ccpC mutation. An abrB mutation led to decreased expression of citB during stationary phase in both broth and minimal medium. All three proteins bound in vitro to specific and partially overlapping sites within the citB regulatory region. Interaction of CcpC and CodY with the citB promoter region was partially competitive.  相似文献   

17.
We studied the regulation of the Bacillus subtilis ypaA gene-encoding riboflavin-transporter by FMN riboswitch. Using translational fusions of the leader region of wild-type ypaA gene with the lacZ-reporter gene in the leader region we showed that in vivo ypaA gene expression decreased more than 10-fold in the presence of endogenous FMN. Introduction of two nucleotide substitutions providing stabilization of the sequester hairpins results in almost complete repression of reporter gene expression. Using toeprint assay in vitro it has been shown that FMN presence inhibits the formation of the 30S initiation complexint the ypaA gene leader mRNA. Our results support the model of ypaA gene regulation whereby FMN binding with the ypaA gene leader sequence results in translation suppression through the sequestering of the SD-sequence.  相似文献   

18.
19.
The spoIIIG gene encodes a sigma factor that determines prespore-specific gene expression during sporulation in Bacillus subtilis. Correct spatial and temporal expression of the spoIIIG gene depends on a number of other sporulation (spo) genes, but only one of these genes, spoIIIE, has a specific effect on spoIIIG expression and not on gene expression in the other differentiating cell, the mother cell. However, the spoIIIE gene is expressed predominantly before differentiation begins. Thus, its product must play an important role in sensing or determining the spatial localization of prespore-specific gene expression in this system.  相似文献   

20.
Lactobacillus plantarum has an unusually high Mn(II) requirement for growth and accumulated over 30 mM intracellular Mn(II). The acquisition of Mn(II) by L. plantarum occurred via a specific active transport system powered by the transmembrane proton gradient. The Mn(II) uptake system has a Km of 0.2 microM and a Vmax of 24 nmol mg-1 of protein min-1. Above a medium Mn(II) concentration of 200 microM, the intracellular Mn(II) level was independent of the medium Mn(II) and unresponsive to oxygen stresses but was reduced by phosphate limitation. At a pH of 5.5, citrate, isocitrate, and cis-aconitate effectively promoted MN(II) uptake, although measurable levels of 1,5-[14C]citrate were not accumulated. When cells were presented with equimolar Mn(II) and Cd(II), Cd(II) was preferentially taken up by the Mn(II) transport system. Both Mn(II) and Cd(II) uptake were greatly increased by Mn(II) starvation. Mn(II) uptake by Mn(II)-starved cells was subject to a negative feedback regulatory mechanism functioning less than 1 min after exposure of the cells to Mn(II) and independent of protein synthesis. When presented with a relatively large amount of exogenous Mn(II), Mn(II)-starved cells exhibited a measurable efflux of their internal Mn(II), but the rate was only a small fraction of the maximal Mn(II) uptake rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号