首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI) has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven.  相似文献   

3.
4.
5.
6.
The process of mammalian X chromosome inactivation results in the inactivation of most, but not all, genes along one or the other of the two X chromosomes in females. On the human X chromosome, several genes have been described that "escape" inactivation and continue to be expressed from both homologues. All such previously mapped genes are located in the distal third of the short arm of the X chromosome, giving rise to the hypothesis of a region of the chromosome that remains noninactivated during development. The A1S9T gene, an X-linked locus that complements a mouse temperature-sensitive defect in DNA synthesis, escapes inactivation and has now been localized, in human-mouse somatic cell hybrids, to the proximal short arm, in Xp11.1 to Xp11.3. Thus, A1S9T lies in a region of the chromosome that is separate from the other genes known to escape inactivation and is located between other genes known to be subject to X inactivation. This finding both rules out models based on a single chromosomal region that escapes inactivation and suggests that X inactivation proceeds by a mechanism that allows considerable autonomy between different genes or regions on the chromosome.  相似文献   

7.
X chromosome inactivation of the human TIMP gene.   总被引:12,自引:0,他引:12       下载免费PDF全文
  相似文献   

8.
Mouse-human cell hybrid clones retaining an inactive translocated chromosome involving the human X and 13 were isolated. Esterase D, a marker on the segment of chromosome 13 translocated to the X, was not expressed in these clones. These results provide genetic evidence for the spreading of inactivation into the autosomal segment in an inactive human X-autosome translocation.  相似文献   

9.
L F Lock  N Takagi  G R Martin 《Cell》1987,48(1):39-46
DNA sequences have previously been identified in the first intron of the mouse Hprt gene that are methylated on the inactive but not the active X chromosome. The temporal relationship between methylation of these sequences and X-inactivation was studied in teratocarcinoma cells and postimplantation mouse embryos: the sequences are unmethylated prior to X-inactivation and do not become methylated on the inactive X in most fetal cells until several days postinactivation. Such inactive X-specific methylation occurs in a significantly smaller proportion of the cells in the extra-embryonic tissues, yolk sac mesoderm and endoderm, than in the fetus. These data suggest that the inactive X-specific methylation of sequences such as those in the first intron of the Hprt gene does not play any role in the primary events of X-inactivation, but may function as part of a secondary, tissue-specific mechanism for maintaining the inactive state.  相似文献   

10.
LeMaire-Adkins R  Hunt PA 《Genetics》2000,156(2):775-783
A fundamental principle of Mendelian inheritance is random segregation of alleles to progeny; however, examples of distorted transmission either of specific alleles or of whole chromosomes have been described in a variety of species. In humans and mice, a distortion in chromosome transmission is often associated with a chromosome abnormality. One such example is the fertile XO female mouse. A transmission distortion effect that results in an excess of XX over XO daughters among the progeny of XO females has been recognized for nearly four decades. Utilizing contemporary methodology that combines immunofluorescence, FISH, and three-dimensional confocal microscopy, we have readdressed the meiotic segregation behavior of the single X chromosome in oocytes from XO females produced on two different inbred backgrounds. Our studies demonstrate that segregation of the univalent X chromosome at the first meiotic division is nonrandom, with preferential retention of the X chromosome in the oocyte in approximately 60% of cells. We propose that this deviation from Mendelian expectations is facilitated by a spindle-mediated mechanism. This mechanism, which appears to be a general feature of the female meiotic process, has implications for the frequency of nondisjunction in our species.  相似文献   

11.
Using mice that were mosaics for both Xce and phosphoglycerate kinase (Pgk-1) alleles, we present further evidence that the parental source of the X chromosome may affect the probability of that X chromosome remaining active. The reciprocal cross differences in PGK-1 activity described here are intermediate between those published previously for other alleles of Xce.  相似文献   

12.
13.
X chromosome inactivation represents a compelling example of chromosome-wide, long-range epigenetic gene-silencing in mammals. The cis- and trans-acting factors that establish and maintain the patterns and levels of gene expression from the active and inactive X chromosomes remain incompletely understood; however, the availability of the complete genomic sequence of the human X chromosome, together with complementary approaches that explore the computational biology, epigenetic modifications and gene expression-profiling along the chromosome, suggests that the features of the X chromosome that are responsible for its unique forms of gene regulation are increasingly amenable to experimental analysis.  相似文献   

14.
During embryogenesis, one of the two X chromosomes is inactivated in embryos. The production of embryos in vitro may affect epigenetic mechanisms that could alter the expression of genes related to embryo development and X chromosome inactivation (XCI). The aim of this study was to understand XCI during in vitro, pre‐implantation bovine embryo development by characterizing the allele‐specific expression pattern of the X chromosome‐linked gene, monoamine oxidase A (MAOA). Two pools of ten embryos, comprised of the 4‐, 8‐ to 16‐cell, morula, blastocyst, and expanded blastocyst stages, were collected. Total RNA from embryos was isolated, and the RT‐PCR‐RFLP technique was used to observe expression of the MAOA gene. The DNA amplicons were also sequenced using the dideoxy sequencing method. MAOA mRNA was detected, and allele‐specific expression was identified in each pool of embryos. We showed the presence of both the maternal and paternal alleles in the 4‐, 8‐ to 16‐cell, blastocyst and expanded blastocyst embryos, but only the maternal allele was present in the morula stage. Therefore, we can affirm that the paternal X chromosome is totally inactivated at the morula stage and reactivated at the blastocyst stage. To our knowledge, this is the first report of allele‐specific expression of an X‐linked gene that is subject to XCI in in vitro bovine embryos from the 4‐cell to expanded blastocyst stages. We have established a pattern of XCI in our in vitro embryo production system that can be useful as a marker to assist the development of new protocols for in vitro embryo production. Mol. Reprod. Dev. 77: 615–621, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Dear Editor, Sex determination is one of the most fundamental develop-ment processes,as gender is the first and most important identity of human.In most mammals...  相似文献   

16.
17.
18.
19.
X chromosome inactivation (XCI) is an essential epigenetic process that ensures X‐linked gene dosage equilibrium between sexes in mammals. XCI is dynamically regulated during development in a manner that is intimately linked to differentiation. Numerous studies, which we review here, have explored the dynamics of X inactivation and reactivation in the context of development, differentiation and diseases, and the phenotypic and molecular link between the inactive status, and the cellular context. Here, we also assess whether XCI is a uniform mechanism in mammals by analyzing epigenetic signatures of the inactive X (Xi) in different species and cellular contexts. It appears that the timing of XCI and the epigenetic signature of the inactive X greatly vary between species. Surprisingly, even within a given species, various Xi configurations are found across cellular states. We discuss possible mechanisms underlying these variations, and how they might influence the fate of the Xi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号