首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The Hfq protein, which shares sequence and structural homology with the Sm and Lsm proteins, binds to various RNAs, primarily recognizing AU-rich single-stranded regions. In this paper, we study the ability of the Escherichia coli Hfq protein to bind to a polyadenylated fragment of rpsO mRNA. Hfq exhibits a high specificity for a 100-nucleotide RNA harboring 18 3′-terminal A-residues. Structural analysis of the adenylated RNA–Hfq complex and gel shift assays revealed the presence of two Hfq binding sites. Hfq binds primarily to the poly(A) tail, and to a lesser extent a U-rich sequence in a single-stranded region located between two hairpin structures. The oligo(A) tail and the interhelical region are sensitive to 3′–5′ exoribonucleases and RNase E hydrolysis, respectively, in vivo. In vitro assays demonstrate that Hfq protects poly(A) tails from exonucleolytic degradation by both PNPase and RNase II. In addition, RNase E processing, which occurred close to the U-rich sequence, is impaired by the presence of Hfq. These data suggest that Hfq modulates the sensitivity of RNA to ribonucleases in the cell.  相似文献   

2.
Enterohaemorrhagic Escherichia coli harbours a pathogenicity island encoding a type 3 secretion system used to translocate effector proteins into the cytosol of intestinal epithelial cells and subvert their function. The structural proteins of the translocon are encoded in a major espADB mRNA processed from a precursor. The translocon mRNA should be highly susceptible to RNase E cleavage because of its AU‐rich leader region and monophosphorylated 5′‐terminus, yet it manages to avoid rapid degradation. Here, we report that the espADB leader region contains a strong Shine–Dalgarno element (SD2) and a translatable mini‐ORF of six codons. Disruption of SD2 so as to weaken ribosome binding significantly reduces the concentration and stability of esp mRNA, whereas codon substitutions that impair translation of the mini‐ORF have no such effect. These findings suggest that occupancy of SD2 by ribosomes, but not mini‐ORF translation, helps to protect espADB mRNA from degradation, likely by hindering RNase E access to the AU‐rich leader region.  相似文献   

3.
4.
Rescue of the RNA phage genome from RNase III cleavage.   总被引:2,自引:1,他引:2       下载免费PDF全文
The secondary structure of the RNA from the single-stranded RNA bacteriophages, like MS2 and Qb, has evolved to serve a variety of functions such as controlling gene expression, exposing binding sites for the replicase and capsid proteins, allowing strand separation and so forth. On the other hand, all of these foldings have to perform in bacterial cells in which various RNA splitting enzymes are present. We therefore examined whether phage RNA structure is under selective pressure by host RNases. Here we show this to be true for RNase III. A fully double-stranded hairpin of 17 bp, which is an RNase III target, was inserted into a non-coding region of the MS2 RNA genome. In an RNase III-host these phages survived but in wild-type bacteria they did not. Here the stem underwent Darwinian evolution to a structure that was no longer a substrate for RNase III. This was achieved in three different ways: (i) the perfect stem was maintained but shortened by removing all or most of the insert; (ii) the stem acquired suppressor mutations that replaced Watson-Crick base pairs by mismatches; (iii) the stem acquired small deletions or insertions that created bulges. These insertions consist of short stretches of non-templated A or U residues. Their origin is ascribed to polyadenylation at the site of the RNase III cut (in the + or - strand) either by Escherichia coli poly(A) polymerase or by idling MS2 replicase.  相似文献   

5.
Solubilization in formamide protects RNA from degradation.   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   

6.
Previous work has demonstrated that iron-dependent variations in the steady-state concentration and translatability of sodB mRNA are modulated by the small regulatory RNA RyhB, the RNA chaperone Hfq and RNase E. In agreement with the proposed role of RNase E, we found that the decay of sodB mRNA is retarded upon inactivation of RNase E in vivo, and that the enzyme cleaves within the sodB 5′-untranslated region (5′-UTR) in vitro, thereby removing the 5′ stem–loop structure that facilitates Hfq and ribosome binding. Moreover, RNase E cleavage can also occur at a cryptic site that becomes available upon sodB 5′-UTR/RyhB base pairing. We show that while playing an important role in facilitating the interaction of RyhB with sodB mRNA, Hfq is not tightly retained by the RyhB–sodB mRNA complex and can be released from it through interaction with other RNAs added in trans. Unlike turnover of sodB mRNA, RyhB decay in vivo is mainly dependent on RNase III, and its cleavage by RNase III in vitro is facilitated upon base pairing with the sodB 5′-UTR. These data are discussed in terms of a model, which accounts for the observed roles of RNase E and RNase III in sodB mRNA turnover.  相似文献   

7.
8.
RNase H degradation of two 15 nt RNA target sites was examined in the presence of hairpin DNAs with a 5 nt loop and a 10 bp stem or single-stranded 15 nt DNAs. One target site was a segment of a 79 nt RNA, and the other was part of a 53 nt RNA. Secondary structure predictions indicate that the 53 nt RNA target site is entirely single stranded, while a portion of the 79 nt RNA target site forms an intramolecular duplex. Less RNase H and DNA were needed to cleave the 53 nt RNA target site than the less accessible 79 nt RNA site. The hairpin DNAs had their 5 nt loop and 3' side of the stem fully complementary to the target sites or had sequence changes that produced one to nine mismatched pairs. T(m) values ranged from 57 to 80 degrees C. The stability of the hairpin DNAs relative to the stability of their corresponding RNA-DNA hybrids influenced the extent of RNase H degradation at 37 degrees C. Under the assay conditions employed, the amount of degradation directed by the hairpin DNAs was correlated with their predicted DeltaG(o) (37) of binding to the RNA targets. A DNA hairpin with one mismatch to the target site of the 79 nt RNA did not induce degradation under conditions where fully complementary DNA hairpins produced 50-80% degradation. The in vitro results indicate that DNA hairpins can enhance the stringency of RNase H targeted degradation of the RNA sites.  相似文献   

9.
RecA- mutants of Escherichia coli extensively degrade their DNA following UV irradiation. Most of this degradation is due to the recBC DNase, which suggests that the recA gene is involved in the control of recBC DNase in vivo. We have shown that purified recA protein inhibits the endonuclease and exonuclease activities of recBC DNase on single-stranded DNA. The extent of inhibition is dependent on the relative concentration of recA protein, recBC DNase, and the DNA substrate; inhibition is greatest when the concentrations of DNA and recBC DNase are low and the concentrations of recA protein is high. At fixed concentrations of recA protein and recBC DNase, inhibition is eliminated at high concentrations of DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), an ATP analog which stabilizes the binding of recA protein to both single- and double-stranded DNA, recA protein is a more potent inhibitor of the nuclease activities on single-stranded DNA and is a weak inhibitor of the exonuclease activity on double-stranded DNA. Inhibition of the latter is enhanced by oligodeoxynucleotides, which stimulate the binding of recA protein to double-stranded DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), recA protein also inhibits the action of exonuclease I on single-stranded DNA and of lambda exonuclease on double-stranded DNA. These observations are most consistent with the idea that recA protein protects DNA from recBC DNase by binding to DNA. RecA protein also blocks the endonucleolytic cleavage of gapped circular DNA by recBC DNase. Since both recA protein and recBC DNase have the ability under certain conditions to unwind duplex DNA and to displace strands, we looked for evidence that their combined action would enlarge gaps but found no extensive enlargement. D-loops, a putative intermediate in genetic recombination, are effectively protected against the action of recBC DNase by the E. coli single strand binding protein and by recA protein in the presence of adenosine 5'-O-(3-thiotriphosphate).  相似文献   

10.
RNase E, an RNA processing enzyme from Escherichia coli.   总被引:18,自引:0,他引:18  
An activity, RNase E, was purified about 100-fold from Escherichia coli cells, it can process p5 rRNA from a 9 S RNA molecule which accumulates in a mutant of E. coli defective in the maturation of 5 S rRNA. The enzyme requires Na+, K+, or NH4+, and Mg2+ or Mn2+. The molecular weight of the enzyme is about 70,000 and its pH optimum is 7.6 to 8.0. Its temperature optimum is around 30 degrees C, and it can be irreversibly inactivated at 50 degrees C. It has a very high degree of specificity but the reaction can be inhibited by nonspecific RNAs. We interpret its mode of action in producing p5 RNA as being accomplished in two steps, 9 S RNA is first processed to 7 S and 4 S, and subsequently 7 S is further processed to p5.  相似文献   

11.
Degradation of the cspA mRNA in vivo is very rapid at temperatures greater than 30 degrees C and is moderately dependent on RNase E. Investigations in vitro show that degradosomes prepared from normal or cold-shocked cultures cleave the cspA mRNA preferentially at a single site in vitro between two stem-loops approximately 24 residues 3' to the termination codon and approximately 31 residues from the 3' end. The site of cleavage is independent of the temperature and largely independent of the phosphorylation status of the 5' end of cspA mRNA. A 5' stem-loop, potential occlusion of the initiation and termination codons, temperature-dependent translational efficiency, and the position of the RNase E cleavage site can explain the differential stability of the cspA mRNA.  相似文献   

12.
13.
14.
15.
16.
17.
18.
SgrS is an Hfq-binding small antisense RNA that is induced upon phosphosugar stress. It forms a ribonucleoprotein complex with RNase E through Hfq to mediate silencing of the target ptsG mRNA encoding the membrane component of the glucose-specific phosphoenolpyruvate phosphotransferase system. Although SgrS is believed to act on ptsG mRNA through base pairing between complementary regions, this was not previously tested experimentally. We addressed the question of whether SgrS indeed forms an RNA-RNA duplex with ptsG mRNA to exert its regulatory function. Specific single nucleotide substitutions around the Shine-Dalgarno (SD) sequence of ptsG completely eliminated SgrS action while compensatory mutations in SgrS restored it. A systematic mutational analysis of both ptsG and SgrS RNAs revealed that six base pairs around SD sequence of ptsG are particularly important for SgrS action. We also showed in vitro that SgrS forms a stable duplex with the ptsG mRNA, and that Hfq markedly facilitates the rate of duplex formation.  相似文献   

19.
The HER-2 gene is overexpressed in a subset of breast, ovarian, lung, and pancreatic cancers. Antisense oligonucleotides suppress gene expression depending on the stability of the DNA.RNA hybrids formed at the target site. Polyamines, the cellular cations that interact with DNA and RNA, may influence hybrid stability in the cell. Therefore, we studied the ability of natural polyamines (putrescine, spermidine, and spermine) and a series of their structural analogues to stabilize DNA.RNA and RNA.RNA duplexes using melting temperature (T(m)) measurements and circular dichroism (CD) spectroscopy. Phosphodiester (PO) and phosphorothioate (PS) oligonucleotides (ODNs) (15 nucleotides, 5'-CTCCATGGTGCTCAC-3') targeted to the initiation codon region of the HER-2 mRNA, and complementary RNA and DNA ODNs, were used in this study. The relative order of thermal stability was as follows: RNA.RNA > PO-DNA.RNA > PO-DNA.PO-DNA > PS-DNA.RNA > PS-DNA.PO-DNA > PS-DNA.PS-DNA. The ability of polyamines to stabilize the duplexes improved with the cationicity of the polyamine, with hexamines being more effective than pentamines, which in turn were more effective than tetramines and triamines. However, chemical structural effects were clearly evident with isovalent homologues of spermidine and spermine. CD spectra showed B and A conformations, respectively, for the DNA and RNA helices. DNA.RNA hybrids adopted an intermediate structure between the B and A forms. These data help us to understand the role of endogenous polyamines in DNA.RNA hybrid stabilization, and provide information for designing novel polyamines to facilitate the use of antisense ODNs for controlling HER-2 gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号