首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The UGA suppressor tRNA produced by Schizosaccharomyces pombe strain sup3-e was purified to homogeneity. It can be aminoacylated with a serine by a crude aminoacyl-tRNA synthetase preparation from S. pombe cells. By combining post-labeling fingerprinting and gel sequencing methods the nucleotide sequence of this tRNA was determined to be: pG-U-C-A-C-U-A-U-G-U-C-ac4C-G-A-G-D-G-G-D-D-A-A-G-G-A-m2G2-psi-U-A-G-A-N-U-U-C-A-i6A-A-psi-C-U-A-A-U-G-G-G-C-U-U-U-G-C-C-C-G-m5C-G-G-C-A-G-G-T-psi-C-A-m1A-A-U-C-C-U-G-C-U-G-G-U-G-A-C-G-C-C-A OH. The anticodon sequence u ca is complementary to the UGA codon.  相似文献   

4.
5.
6.
7.
The gene for the U6 small nuclear RNA (snRNA) in the fission yeast Schizosaccharomyces pombe is interrupted by an intron whose structure is similar to those found in messenger RNA precursors (pre-mRNAs) (1). This is the only known example of a split snRNA gene from any organism--animal, plant, or yeast. To address the uniqueness of the S. pombe U6 gene, we have investigated the structures of the U6 genes from five Schizosaccharomyces strains and three other fungi. A fragment of the U6 coding sequence was amplified from the genomic DNA of each strain by the polymerase chain reaction (PCR). The sizes of the PCR products indicated that all of the fission yeast strains possess intron-containing U6 genes; whereas, the U6 genes from the other fungi appeared to be uninterrupted. The sequences of the Schizosaccharomyces U6 gene fragments revealed that each had an intron of approximately 50 base pairs in precisely the same position. In addition to the splice sites and putative branch point regions, a sequence immediately upstream of the branch point consensus was found to be conserved in all of the Schizosaccharomyces U6 genes. This sequence matches the consensus for the B box of eukaryotic tRNA promoters. These results raise the interesting possibility that synthesis of U6 RNA in fission yeast might involve the use of internal promoter elements similar to those found in other genes transcribed by RNA polymerase III.  相似文献   

8.
The recognition by RNase P of precursor tRNAs   总被引:9,自引:0,他引:9  
We have generated mutants of M1 RNA, the catalytic subunit of Escherichia coli RNaseP, and have analyzed their properties in vitro and in vivo. The mutations, A333----C333, A334----U334, and A333 A334----C333 U334 are within the sequence UGAAU which is complementary to the GT psi CR sequence found in loop IV of all E. coli tRNAs. We have examined: 1) whether the mutant M1 RNAs are active in processing wild type tRNA precursors and 2) whether they can restore the processing defect in mutant tRNA precursors with changes within the GT psi CR sequence. As substrates for in vitro studies we used wild type E. coli SuIII tRNA(Tyr) precursor, and pTyrA54, a mutant tRNA precursor with a base change that could potentially complement the U334 mutation in M1 RNA. The C333 mutation had no effect on activity of M1 RNA on wild type pTyr. The U334 mutant M1 RNA, on the other hand, had a much lower activity on wild type pTyr. However, use of pTyrA54 as substrate instead of wild type pTyr did not restore the activity of the U334 mutant M1 RNA. These results suggest that interactions via base pairing between nucleotides 331-335 of M1 RNA and the GT psi CG of pTyr are probably not essential for cleavage of these tRNA precursors by M1 RNA. For assays of in vivo function, we examined the ability of mutant M1 RNAs to complement a ts mutation in the protein component of RNaseP in FS101, a recA- derivative of E. coli strain A49. In contrast to wild type M1 RNA, which complements the ts mutation when it is overproduced, neither the C333 nor the U334 mutant M1 RNAs was able to do so.  相似文献   

9.
10.
A characteristic feature of tRNAs is the numerous modifications found throughout their sequences, which are highly conserved and often have important roles. Um(44) is highly conserved among eukaryotic cytoplasmic tRNAs with a long variable loop and unique to tRNA(Ser) in yeast. We show here that the yeast ORF YPL030w (now named TRM44) encodes tRNA(Ser) Um(44) 2'-O-methyltransferase. Trm44 was identified by screening a yeast genomic library of affinity purified proteins for activity and verified by showing that a trm44-delta strain lacks 2'-O-methyltransferase activity and has undetectable levels of Um(44) in its tRNA(Ser) and by showing that Trm44 purified from Escherichia coli 2'-O-methylates U(44) of tRNA(Ser) in vitro. Trm44 is conserved among metazoans and fungi, consistent with the conservation of Um(44) in eukaryotic tRNAs, but surprisingly, Trm44 is not found in plants. Although trm44-delta mutants have no detectable growth defect, TRM44 is required for survival at 33 degrees C in a tan1-delta mutant strain, which lacks ac(4)C12 in tRNA(Ser) and tRNA(Leu). At nonpermissive temperature, a trm44-delta tan1-delta mutant strain has reduced levels of tRNA(Ser(CGA)) and tRNA(Ser(UGA)), but not other tRNA(Ser) or tRNA(Leu) species. The trm44-delta tan1-delta growth defect is suppressed by addition of multiple copies of tRNA(Ser(CGA)) and tRNA(Ser(UGA)), directly implicating these tRNA(Ser) species in this phenotype. The reduction of specific tRNA(Ser) species in a trm44-delta tan1-delta mutant underscores the importance of tRNA modifications in sustaining tRNA levels and further emphasizes that tRNAs undergo quality control.  相似文献   

11.
12.
13.
14.
15.
Substrate structural requirements of Schizosaccharomyces pombe RNase P   总被引:1,自引:0,他引:1  
D Drainas  S Zimmerly  I Willis  D S?ll 《FEBS letters》1989,251(1-2):84-88
RNase P from Schizosaccharomyces pombe has been purified over 2000-fold. The apparent Km for two S. pombe tRNA precursors derived from the supS1 and sup3-e tRNA(Ser) genes is 20 nM; the apparent Vmax is 2.5 nM/min (supS1) and 1.1 nM/min (sup3-e). Processing studies with precursors of other mutants show that the structures of the acceptor stem and anticodon/intron loop of tRNA are crucial for S. pombe RNase P action.  相似文献   

16.
17.
18.
19.
The large subunit of the U2 auxiliary factor (U2AF) recognizes the polypyrimidine tract (Py-tract) located adjacent to the 3' splice site to facilitate U2 snRNP recruitment. While U2AF is considered essential for pre-mRNA splicing, its requirement for splicing on a genome-wide level has not been analyzed. Using Solexa sequencing, we performed mRNA profiling for splicing in the Schizosaccharomyces pombe U2AF(59) (prp2.1) temperature-sensitive mutant. Surprisingly, our analysis revealed that introns show a range of splicing defects in the mutant strain. While U2AF(59) inactivation (nonpermissive) conditions inhibit splicing of some introns, others are spliced apparently normally. Bioinformatics analysis indicated that U2AF(59)-insensitive introns have stronger 5' splice sites and higher A/U content. Most importantly, features that contribute to U2AF(59) insensitivity of an intron unexpectedly reside in its 5'-most 30 nucleotides. These include the 5' splice site, a guanosine at position 7, and the 5' splice site-to-branch point sequence context. A differential requirement (similar to U2AF(59)) for introns may also apply to other general splicing factors (e.g., prp10). Our combined results indicate that U2AF insensitivity is a common phenomenon and that varied intron features support the existence of unrecognized aspects of spliceosome assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号