首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The influence of structural changes of an abasic site in duplex DNA on noncovalent and site-directed spin labeling (NC-SDSL) of the spin label ç were examined with electron paramagnetic resonance (EPR) spectroscopy. The binding affinities of ç to sixteen different DNA duplexes containing all possible sequences immediately flanking the abasic site were determined and the results showed that the binding of ç is highly flanking-sequence dependent. In general, a 5′-dG nucleotide favors the binding of the spin label. In particular, 5′-d(G__T) was the best binding sequence whereas 5′-d(C__T) showed the lowest affinity. Changing the structure of the abasic site linker from a tetrahydrofuran analog (F) to the anucleosidic C3-spacer (C3) does not appreciably affect the binding of ç to the abasic site. For efficient binding of ç, the abasic site needs to be located at least four base pairs away from the duplex end. Introducing a methyl substituent at N3 of ç did not change the binding affinity, but a decreased binding was observed for both N3-ethyl and -propyl groups. These results will guide the design of abasic site receptors and spin label ligands for NC-SDSL of nucleic acids.  相似文献   

2.
To investigate nucleic acid base pairing and stacking via atom-specific mutagenesis and crystallography, we have synthesized for the first time the 6-Se-deoxyguanosine phosphoramidite and incorporated it into DNAs via solid-phase synthesis with a coupling yield over 97%. We found that the UV absorption of the Se-DNAs red-shifts over 100 nm to 360 nm (ε = 2.3 × 104 M−1 cm−1), the Se-DNAs are yellow colored, and this Se modification is relatively stable in water and at elevated temperature. Moreover, we successfully crystallized a ternary complex of the Se-G-DNA, RNA and RNase H. The crystal structure determination and analysis reveal that the overall structures of the native and Se-modified nucleic acid duplexes are very similar, the selenium atom participates in a Se-mediated hydrogen bond (Se … H–N), and the SeG and C form a base pair similar to the natural G–C pair though the Se-modification causes the base-pair to shift (approximately 0.3 Å). Our biophysical and structural studies provide new insights into the nucleic acid flexibility, duplex recognition and stability. Furthermore, this novel selenium modification of nucleic acids can be used to investigate chemogenetics and structure of nucleic acids and their protein complexes.  相似文献   

3.
4.
8-Halogenated guanine (haloG), a major DNA adduct formed by reactive halogen species during inflammation, is a promutagenic lesion that promotes misincorporation of G opposite the lesion by various DNA polymerases. Currently, the structural basis for such misincorporation is unknown. To gain insights into the mechanism of misincorporation across haloG by polymerase, we determined seven x-ray structures of human DNA polymerase β (polβ) bound to DNA bearing 8-bromoguanine (BrG). We determined two pre-catalytic ternary complex structures of polβ with an incoming nonhydrolyzable dGTP or dCTP analog paired with templating BrG. We also determined five binary complex structures of polβ in complex with DNA containing BrG·C/T at post-insertion and post-extension sites. In the BrG·dGTP ternary structure, BrG adopts syn conformation and forms Hoogsteen base pairing with the incoming dGTP analog. In the BrG·dCTP ternary structure, BrG adopts anti conformation and forms Watson-Crick base pairing with the incoming dCTP analog. In addition, our polβ binary post-extension structures show Hoogsteen BrG·G base pair and Watson-Crick BrG·C base pair. Taken together, the first structures of haloG-containing DNA bound to a protein indicate that both BrG·G and BrG·C base pairs are accommodated in the active site of polβ. Our structures suggest that Hoogsteen-type base pairing between G and C8-modified G could be accommodated in the active site of a DNA polymerase, promoting G to C mutation.  相似文献   

5.
Nucleic acid fragmentation (footprinting) by ·OH radicals is used often as a tool to probe nucleic acid structure and nucleic acid–protein interactions. This method has proven valuable because it provides structural information with single base pair resolution. Recent developments in the field introduced the ‘synchrotron X-ray footprinting’ method, which uses a high-flux X-ray source to produce single base pair fragmentation of nucleic acid in tens of milliseconds. We developed a complementary method that utilizes X-rays generated from a conventional rotating anode machine in which nucleic acid footprints can be generated by X-ray exposures as short as 100–300 ms. Our theoretical and experimental studies indicate that efficient cleavage of nucleic acids by X-rays depends upon sample preparation, energy of the X-ray source and the beam intensity. In addition, using this experimental set up, we demonstrated the feasibility of conducting X-ray footprinting to produce protein–DNA protection portraits at sub-second timescales.  相似文献   

6.
Thymine DNA glycosylase (TDG) promotes genomic integrity by excising thymine from mutagenic G·T mismatches arising by deamination of 5-methylcytosine, and follow-on base excision repair enzymes restore a G·C pair. TDG cleaves the N-glycosylic bond of dT and some other nucleotides, including 5-substituted 2′-deoxyuridine analogs, once they have been flipped from the helix into its active site. We examined the role of two strictly conserved residues; Asn140, implicated in the chemical step, and Arg275, implicated in nucleotide flipping. The N140A variant binds substrate DNA with the same tight affinity as wild-type TDG, but it has no detectable base excision activity for a G·T substrate, and its excision rate is vastly diminished (by ∼104.4-fold) for G·U, G·FU, and G·BrU substrates. Thus, Asn140 does not contribute substantially to substrate binding but is essential for the chemical step, where it stabilizes the transition state by ∼6 kcal/mol (compared with 11.6 kcal/mol stabilization provided by TDG overall). Our recent crystal structure revealed that Arg275 penetrates the DNA minor groove, filling the void created by nucleotide flipping. We found that the R275A and R275L substitutions weaken substrate binding and substantially decrease the base excision rate for G·T and G·BrU substrates. Our results indicate that Arg275 promotes and/or stabilizes nucleotide flipping, a role that is most important for target nucleotides that are relatively large (dT and bromodeoxyuridine) and/or have a stable N-glycosylic bond (dT). Arg275 does not contribute substantially to the binding of TDG to abasic DNA product, and it cannot account for the slow product release exhibited by TDG.  相似文献   

7.
8.
Abstract

Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible ?, ζ, α, β and γ backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain α/γ changes are accompanied by C3′ endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual ?/ζ combinations occur with C2′ (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all con- formational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.  相似文献   

9.
Rice Hoja Blanca Tenuivirus (RHBV), a negative strand RNA virus, has been identified to infect rice and is widely transmitted by the insect vector. NS3 protein encoded by RHBV RNA3 was reported to be a potent RNAi suppressor to counterdefense RNA silencing in plants, insect cells, and mammalian cells. Here, we report the crystal structure of the N-terminal domain of RHBV NS3 (residues 21–114) at 2.0 Å. RHBV NS3 N-terminal domain forms a dimer by two pairs of α-helices in an anti-parallel mode, with one surface harboring a shallow groove at the dimension of 20 Å × 30 Å for putative dsRNA binding. In vitro RNA binding assay and RNA silencing suppression assay have demonstrated that the structural conserved residues located along this shallow groove, such as Arg50, His51, Lys77, and His85, participate in dsRNA binding and RNA silencing suppression. Our results provide the initial structural implications in understanding the RNAi suppression mechanism by RHBV NS3.  相似文献   

10.
Abstract

The development and assessment of a prediction method for gel retardation and sequence dependent curvature of DNA based on dinucleotide step parameters are described. The method is formulated using the Babcock-Olson equations for base pair step geometry (1) and employs Monte Carlo simulated annealing for parameter optimization against experimental data. The refined base pair step parameters define a structural construct which, when the width of observed parameter distributions is taken into account, is consistent with the results of DNA oligonucleotide crystal structures. The predictive power of the method is demonstrated and tested via comparisons with DNA bending data on sets of sequences not included in the training set, including A-tracts with and without periodic helix phasing, phased A4T4 and T4A4 motifs, a sequence with a phased GGGCCC motif, some “unconventional” helix phasing sequences, and three short fragments of kinetoplast DNA from Crithidia fasiculata that exhibit significantly different behavior on non-denaturing polyacrylamide gels. The nature of the structural construct produced by the methodology is discussed with respect to static and dynamic models of structure and representations of bending and bendability. An independent theoretical account of sequence dependent chemical footprinting results is provided. Detailed analysis of sequences with A-tract induced axis bending forms the basis for a critical discussion of the applicability of wedge models, junction models and non A-tract, general sequence models for understanding the origin of DNA curvature at the molecular level.  相似文献   

11.
A truly universal nucleobase enables a host of novel applications such as simplified templates for PCR primers, randomized sequencing and DNA based devices. A universal base must pair indiscriminately to each of the canonical bases with little or preferably no destabilization of the overall duplex. In reality, many candidates either destabilize the duplex or do not base pair indiscriminatingly. The novel base 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin- 4-amine) N8-(2′deoxyribonucleoside), a deoxyadenosine analog (UB), pairs with each of the natural DNA bases with little sequence preference. We have utilized NMR complemented with molecular dynamic calculations to characterize the structure and dynamics of a UB incorporated into a DNA duplex. The UB participates in base stacking with little to no perturbation of the local structure yet forms an unusual base pair that samples multiple conformations. These local dynamics result in the complete disappearance of a single UB proton resonance under native conditions. Accommodation of the UB is additionally stabilized via heightened backbone conformational sampling. NMR combined with various computational techniques has allowed for a comprehensive characterization of both structural and dynamic effects of the UB in a DNA duplex and underlines that the UB as a strong candidate for universal base applications.  相似文献   

12.
We report here the first structure of double helical arabino nucleic acid (ANA), the C2′-stereoisomer of RNA, and the 2′-fluoro-ANA analogue (2′F-ANA). A chimeric dodecamer based on the Dickerson sequence, containing a contiguous central segment of arabino nucleotides, flanked by two 2′-deoxy-2′F-ANA wings was studied. Our data show that this chimeric oligonucleotide can adopt two different structures of comparable thermal stabilities. One structure is a monomeric hairpin in which the stem is formed by base paired 2′F-ANA nucleotides and the loop by unpaired ANA nucleotides. The second structure is a bimolecular duplex, with all the nucleotides (2′F-ANA and ANA) forming Watson–Crick base pairs. The duplex structure is canonical B-form, with all arabinoses adopting a pure C2′-endo conformation. In the ANA:ANA segment, steric interactions involving the 2′-OH substituent provoke slight changes in the glycosidic angles and, therefore, in the ANA:ANA base pair geometry. These distortions are not present in the 2′F-ANA:2′F-ANA regions of the duplex, where the –OH substituent is replaced by a smaller fluorine atom. 2′F-ANA nucleotides adopt the C2′-endo sugar pucker and fit very well into the geometry of B-form duplex, allowing for favourable 2′F···H8 interactions. This interaction shares many features of pseudo-hydrogen bonds previously observed in 2′F-ANA:RNA hybrids and in single 2′F-ANA nucleotides.  相似文献   

13.
The conformational pathways and the free energy variations for base opening into the major and minor grooves of a B-DNA duplex are studied using umbrella sampling molecular dynamics simulations. We compare both GC and AT base pair opening within a double-stranded d(GAGAGAGAGAGAG)· d(CTCTCTCTCTCTC) oligomer, and we are also able to study the impact of opening on the conformational and dynamic properties of DNA and on the surrounding solvent. The results indicate a two-stage opening process with an initial coupling of the movements of the bases within the perturbed base pair. Major and minor groove pathways are energetically comparable in the case of the pyrimidine bases, but the major groove pathway is favored for the larger purine bases. Base opening is coupled to changes in specific backbone dihedrals and certain helical distortions, including untwisting and bending, although all these effects are dependent on the particular base involved. Partial opening also leads to well defined water bridging sites, which may play a role in stabilizing the perturbed base pairs.  相似文献   

14.
15.
Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible epsilon, zeta, alpha, beta and gamma backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain alpha/gamma changes are accompanied by C3' endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual epsilon/zeta combinations occur with C2' (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all conformational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.  相似文献   

16.
The development and assessment of a prediction method for gel retardation and sequence dependent curvature of DNA based on dinulcleotide step parameters are described. The method is formulated using the Babcock-Olson equations for base pair step geometry (1) and employs Monte Carlo simulated annealing for parameter optimization against experimental data. The refined base pair step parameters define a stuctural construct which, when the width of observed parameter distributions is taken into account, is consistent with the results of DNA oligonucleotide crystal structures. The predictive power of the method is demonstrated and tested via comparisons with DNA bending data on sets of sequences not included in the training set, including A-tracts with and without periodic helix phasing, phased A4T4 and T4A4 motifs, a sequence with a phased GGGCCC motif, some "unconventional" helix phasing sequences, and three short fragments of kinetoplast DNA from Crithidia fasiculata that exhibit significantly different behavior on non-denaturing polyacrylamide gels. The nature of the structural construct produced by the methodology is discussed with respect to static and dynamic models of structure and representations of bending and bendability. An independent theoretical account of sequence dependent chemical footprinting results is provided. Detailed analysis of sequences with A-tract induced axis bending forms the basis for a critical discussion of the applicability of wedge models,junction models and non A-tract, general sequence models for understanding the origin of DNA curvature at the molecular level.  相似文献   

17.
The cissyn dimer is the major DNA photoproduct produced by UV irradiation. In order to determine the origin of the mutagenic property of the cissyn dimer, we used NMR restraints and molecular dynamics to determine the solution structure of a DNA decamer duplex containing a wobble pair between the 3′-T of the cissyn dimer and the opposite T residue (CS/TA duplex). The solution structure of the CS/TA duplex revealed that the 3′-T·T base pair of the cissyn dimer had base pair geometry that was significantly different from the canonical Watson–Crick base pair and caused destabilization and conformational distortion of its 3′-region. However, a 3′-T·A base pair at the cissyn dimer within this related DNA decamer maintains the normal Watson–Crick base pair geometry and causes little distortion in the conformation of its 3′-side. Our results show that in spite of its stable hydrogen bonding, the insertion of a T residue opposite the 3′-T of the cissyn dimer is inhibited by structural distortion caused by the 3′-T·T base pair. This may explain why the frequency of the 3′-T→A transversion, which is the major mutation produced by the cissyn dimer, is only 4%.  相似文献   

18.
‘Locked nucleic acids’ (LNAs) are known to introduce enhanced bio- and thermostability into natural nucleic acids rendering them powerful tools for diagnostic and therapeutic applications. We present the 1.9 Å X-ray structure of an ‘all LNA’ duplex containing exclusively modified β-d-2′-O-4′C-methylene ribofuranose nucleotides. The helix illustrates a new type of nucleic acid geometry that contributes to the understanding of the enhanced thermostability of LNA duplexes. A notable decrease of several local and overall helical parameters like twist, roll and propeller twist influence the structure of the LNA helix and result in a widening of the major groove, a decrease in helical winding and an enlarged helical pitch. A detailed structural comparison to the previously solved RNA crystal structure with the corresponding base pair sequence underlines the differences in conformation. The surrounding water network of the RNA and the LNA helix shows a similar hydration pattern.  相似文献   

19.
We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm-long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual C⋅C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression, and bending deformations with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young’s and bending moduli of the nanowire, as well as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to that of a metal. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties.  相似文献   

20.
Helicases are motor enzymes that convert the chemical energy of NTP hydrolysis into mechanical force for motion and nucleic acid strand separation. Within the cell, helicases process a range of nucleic acid sequences. It is not known whether this composite rate of moving and opening the strands of nucleic acids depends on the base sequence. Our presteady state kinetic studies of helicases from two classes, the ring-shaped T7 helicase and two forms of non-ring-shaped hepatitis C virus (HCV) helicase, show that both the unwinding rate and processivity depend on the sequence and decrease as the nucleic acid stability increases. The DNA unwinding activity of T7 helicase and the RNA unwinding activity of HCV helicases decrease steeply with increasing base pair stability. On the other hand, the DNA unwinding activity of HCV helicases is less sensitive to base pair stability. These results predict that helicases will fall into a spectrum of modest to high sensitivity to base pair stability depending on their biological role in the cell. Modeling of the dependence provided the degree of the active involvement of helicase in base pair destabilization during the unwinding process and distinguished between passive and active mechanisms of unwinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号