共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Summary Opium poppy (Papaver somniferum L.) contains a number of pharmaceutically important alkaloids of the benzylisoquinoline type including morphine, codeine,
papaverine, and sanguinarine. Although these alkaloids accumulate to high concentrations in various organs of the intact plant,
only the phytoalexin sanguinarine has been found at significant levels in opium poppy cell cultures. Moreover, even sanguinarine
biosynthesis is not constitutive in poppy cell suspension cultures, but is typically induced only after treatment with a funga-derived
elicitor. The absence of appreciable quantities of alkaloids in dedifferentiated opium poppy cell cultures suggests that benzylisoquinoline
alkaloid biosynthesis is developmentally regulated and requires the differentiation of specific tissues. In the 40 yr since
opium poppy tissues were first culturedin vitro, a number of reports on the redifferentiation of roots and buds from callus have appeared. A requirement for the presence
of specialized laticifer cells has been suggested before certain alkaloids, such as morphine and codeine, can accumulate.
Laticifers represent a complex internal secretory system in about 15 plant families and appear to have multiple evolutionary
origins. Opium poppy laticifers differentiate from procambial cells and undergo articulation and anastomosis to form a continuous
network of elements associated with the phloem throughout much of the intact plant. Latex is the combined cytoplasm of fused
laticifer vessels, and contains numerous large alkaloid vesicles in which latex-associated poppy alkaloids are sequestered.
The formation of alkaloid vesicles, the subcellular compartmentation of alkaloid biosynthesis, and the tissue-specific localization
and control of these processes are important unresolved problems in plant cell biology. Alkaloid biosynthesis in opium poppy
is an excellent model system to investigate the developmental regulation and cell biology of complex metabolic pathways, and
the relationship between metabolic regulation and cell-type specific differentiation. In this review, we summarize the literature
on the roles of cellular differentiation and plant development in alkaloid biosynthesis in opium poppy plants and tissue cultures. 相似文献
4.
5.
The influence of different foliar applications of Triacontanol (Tria.) on growth, CO2 exchange, capsule development and alkaloid accumulation in opium poppy was studied in glasshouse conditions. Plant height, capsule number and weight, morphine content, CO2 exchange rate, total chlorophyll and fresh and dry weight of the shoot were significantly maximum at 0.01 mg/l Tria. At the highest concentration (4 mg/l) total chlorophyll, CO2 exchange rate and plant height were significantly inhibited. Thebaine and codeine contents remained unaffected at all the concentrations. The concentration of Fe, Mn, Cu in shoots were maximum at .01 and Zn at 0.1 mg/l Tria. Increase in shoot weight, leaf area ratio and chlorophyll content were significantly correlated with morphine content.CIMAP Communication No. 839. 相似文献
6.
7.
Zulak KG Cornish A Daskalchuk TE Deyholos MK Goodenowe DB Gordon PM Klassen D Pelcher LE Sensen CW Facchini PJ 《Planta》2007,225(5):1085-1106
8.
Background and Aims
The study of variation in number, position and type of floral organs may serve as a key to understanding the mechanisms underlying their variation, and will make it possible to improve the analysis of gene function in model plant species by means of a more accurate characterization of mutant phenotypes. The present analysis was carried out in order to understand the correlation between number and position of floral organs in Arabidopsis thaliana.Methods
An analysis of number and position of organs in flowers of wild type as well as in a series of mutations with floral organ position alterations was carried out, using light and electron microscopy. Variation common to different genotypes was analysed by means of individual diagrams, upon which generalized diagrams depicting variation in number and position of organs, were built by superimposition.Key Results and Conclusions
It is shown that in the Arabidopsis flower a correlation exists between positions of petals and sepals, as well as between positions of stamens and carpels, whereas the position of carpels does not seem to depend on number and position of petals and stamens. This suggests that the position of organs in the basal (sepals) and apical (carpels) parts of the flower are determined before that in the intermediate zone. This assumption is consistent with the results of mathematical modelling and is supposed to be the consequence of stem-cell activity in the flower. 相似文献9.
Background and Aims
Cyanolichens are usually stated to be bipartite (mycobiont plus cyanobacterial photobiont). Analyses revealed green algal carbohydrates in supposedly cyanobacterial lichens (in the genera Pseudocyphellaria, Sticta and Peltigera). Investigations were carried out to determine if both cyanobacteria and green algae were present in these lichens and, if so, what were their roles.Methods
The types of photobiont present were determined by light and fluorescence microscopy. Small carbohydrates were analysed to detect the presence of green algal metabolites. Thalli were treated with selected strengths of Zn2+ solutions that stop cyanobacterial but not green algal photosynthesis. CO2 exchange was measured before and after treatment to determine the contribution of each photobiont to total thallus photosynthesis. Heterocyst frequencies were determined to clarify whether the cyanobacteria were modified for increased nitrogen fixation (high heterocyst frequencies) or were normal, vegetative cells.Key Results
Several cyanobacterial lichens had green algae present in the photosynthetic layer of the thallus. The presence of the green algal transfer carbohydrate (ribitol) and the incomplete inhibition of thallus photosynthesis upon treatment with Zn2+ solutions showed that both photobionts contributed to the photosynthesis of the lichen thallus. Low heterocyst frequencies showed that, despite the presence of adjacent green algae, the cyanobacteria were not altered to increase nitrogen fixation.Conclusions
These cyanobacterial lichens are a tripartite lichen symbiont combination in which the mycobiont has two primarily photosynthetic photobionts, ‘co-primary photobionts’, a cyanobacterium (dominant) and a green alga. This demonstrates high flexibility in photobiont choice by the mycobiont in the Peltigerales. Overall thallus appearance does not change whether one or two photobionts are present in the cyanobacterial thallus. This suggests that, if there is a photobiont effect on thallus structure, it is not specific to one or the other photobiont. 相似文献10.
11.
12.
Kim SN Shim HP Jeon BN Choi WI Hur MW Girton JR Kim SH Jeon SH 《Molecules and cells》2011,32(6):549-554
Polycomb group (PcG) proteins maintain the spatial expression patterns of genes that are involved in cell-fate specification
along the anterior-posterior (A/P) axis. This repression requires cis-acting silencers, which are called PcG response elements (PREs). One of the PcG proteins, Pleiohomeotic (Pho), which has
a zinc finger DNA binding protein, plays a critical role in recruiting other PcG proteins to bind to PREs. In this study,
we characterized the effects of a pho mutation on embryonic segmentation. pho maternal mutant embryos showed various segmental defects including pair-rule gene mutant patterns. Our results indicated
that engrailed and even-skipped genes were misexpressed in pho mutant embryos, which caused embryonic segment defects. 相似文献
13.
Noscapine biosynthesis in opium poppy is thought to occur via N-methylcanadine, which would be produced through 9-O-methylation of (S)-scoulerine, methylenedioxy bridge formation on (S)-tetrahydrocolumbamine, and N-methylation of (S)-canadine. Only scoulerine 9-O-methyltransferase has been functionally characterized. We report the isolation and characterization of a cytochrome P450 (CYP719A21) from opium poppy that converts (S)-tetrahydrocolumbamine to (S)-canadine. Recombinant CYP719A21 displayed strict substrate specificity and high affinity (Km = 4.63 ± 0.71 μM) for (S)-tetrahydrocolumbamine. Virus-induced gene silencing of CYP719A21 caused a significant increase in (S)-tetrahydrocolumbamine accumulation and a corresponding decrease in the levels of putative downstream intermediates and noscapine in opium poppy plants. 相似文献
14.
This study was aimed at identifying, in 203 patients with Alzheimer's disease followed during long-term treatment with Acetylcholinesterase inhibitors (ChEIs), the predictive factors of the clinical response among cognition (MMSE), functioning (BADL and IADL) measures and age and gender at the baseline (T0). The ANCOVA test showed a significant association between MMSE scores at time T0 and T3, and the variation T9 to T0, T15 to T0 and T21 to T0 of the MMSE scores, using also gender, age and drug as covariates. The significance was higher for the patients affected by mild dementia. Regarding functional activities, a significant relationship was detected, by the ANCOVA test, only between the scores at T3 and the variation T15 to T0 for BADL, and the variation T9 to T0, T15 to T0 for IADL, respectively. Our results confirm, in a real world setting, that ChEIs provide long-term cognitive benefit, which is correlated to, and predictable by, the short-term response (within the third month) as well as the cognitive status (evaluated by means of the MMSE) at the beginning of the treatment. These factors should be the basis of any cost/effectiveness algorithm in health economic decision models. 相似文献
15.
Previous studies have identified two zebrafish mutants, cloche and groom of cloche, which lack the majority of the endothelial lineage at early developmental stages. However, at later stages, these avascular mutant embryos generate rudimentary vessels, indicating that they retain the ability to generate endothelial cells despite this initial lack of endothelial progenitors. To further investigate molecular mechanisms that allow the emergence of the endothelial lineage in these avascular mutant embryos, we analyzed the gene expression profile using microarray analysis on isolated endothelial cells. We find that the expression of the genes characteristic of the mesodermal lineages are substantially elevated in the kdrl + cells isolated from avascular mutant embryos. Subsequent validation and analyses of the microarray data identifies Sox11b, a zebrafish ortholog of SRY-related HMG box 11 (SOX11), which have not previously implicated in vascular development. We further define the function sox11b during vascular development, and find that Sox11b function is essential for developmental angiogenesis in zebrafish embryos, specifically regulating sprouting angiogenesis. Taken together, our analyses illustrate a complex regulation of endothelial specification and differentiation during vertebrate development. 相似文献
16.
Mervi M. Sepp?nen Kirsi Pakarinen Venla Jokela Jeppe R. Andersen Alice Fiil Arja Santanen Perttu Virkaj?rvi 《Annals of botany》2010,106(5):697-707
Background
Timothy is a long-day grass species well adapted for cultivation in northern latitudes. It produces elongating tillers not only in spring growth but also later in summer. As the quantity and quality of harvested biomass is dictated by canopy architecture and the proportion of stem-forming flowering tillers, the regulation of flowering is of great interest in forage grass production.Methods
Canopy architecture, stem morphology and freezing tolerance of vernalized timothy were investigated in greenhouse and field experiments. The molecular control of development was examined by analysing the relationship between apex development and expression of timothy homologues of the floral inducer VRN1 and repressor VRN2.Key Results
True stem formation and lignification of the sclerenchyma ring occur in both vernalized and regrowing stems irrespective of the developmental stage of the apex. The stems had, however, divergent morphology. Vernalization enhanced flowering, and the expression of the VRN1 homologue was elevated when the apex had passed into the reproductive stage. High VRN1 homologue expression was not associated with reduction in freezing tolerance and the expression coincided with increased levels of the floral repressor VRN2 homologue. Field experiments supported the observed linkage between the upregulation of the VRN1 homologue and the transition to the reproductive stage in vernalized tillers. The upregulation of putative VRN1 or VRN2 genes was restricted to vernalized tillers in the spring yield and, thus, not detected in non-vernalized tillers of the second yield; so-called regrowth.Conclusions
The formation of a lignified sclerenchyma ring that efficiently reduces the digestibility of the stem was not related to apex development but rather to a requirement for mechanical support. The observed good freezing tolerance of reproductive timothy tillers could be one important adaptation mechanism ensuring high yields in northern conditions. Both VRN1 and VRN2 homologues required a vernalization signal for expression so the development of yield-forming tillers in regrowth was regulated independently of the studied genes. 相似文献17.
18.
19.
20.