首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
司风玲  何正波  陈斌 《昆虫学报》2016,59(4):402-410
【目的】低分子量(12~43 kDa)热激蛋白(sHSPs)具有抗逆应答的功能,滞育是昆虫抵抗不良环境的特殊发育形式,但sHSPs在昆虫滞育发育过程中的作用仍不清楚。本研究克隆和特征化葱蝇Delia antiqua sHSP基因,并研究它在夏滞育和冬滞育发育过程中的表达模式,为阐明sHSPs在滞育发育上的功能奠定基础。【方法】通过RACE-PCR方法克隆了葱蝇HSP23基因,通过相似性比较分析了其特征、结构域及与双翅目代表性同源基因的系统发育关系;采用实时荧光定量PCR研究了该基因在葱蝇冬滞育蛹和夏滞育蛹发育过程中的表达情况,通过表达的差异比较揭示了该基因与滞育发育的关系。【结果】克隆出了葱蝇HSP23基因,命名为DaHSP23(GenBank登录号:HQ392521.1),其cDNA全长序列为904 bp,编码186个氨基酸,推测蛋白分子量为20.9 kDa,等电点为6.42。该基因的编码蛋白与其他双翅目昆虫的sHSPs有超过66%的氨基酸序列一致性,与已报道的其他双翅目昆虫的滞育相关HSP23基因同源。基因组测序显示该基因无内含子。DaHSP23基因在葱蝇非滞育蛹的发育过程中一直保持在较低的水平,各发育阶段间的表达量不存在显著差异。但在冬滞育和夏滞育蛹中,该基因从滞育起始期开始逐渐显著升高表达,到滞育维持期的中后期达到峰值,在滞育终止期逐渐降到较低的水平。【结论】DaHSP23基因在葱蝇冬滞育和夏滞育发育过程中明显上调表达,但存在差异,它在滞育期的调控可能是种专化的。DaHSP23可能在葱蝇两种类型的滞育上起重要作用。  相似文献   

2.
3.
葱蝇非滞育、 冬滞育和夏滞育蛹发育和形态特征比较   总被引:1,自引:0,他引:1  
黎万顺  陈斌  何正波 《昆虫学报》2012,55(7):816-824
昆虫非滞育、 冬滞育和夏滞育蛹具有不同的生理和发育过程。本研究以葱蝇Delia antiqua作为模式种, 以黑腹果蝇Drosophila melanogaster蛹的发育形态特征和命名为参照, 用解剖、 拍照、 长度测量和图像处理等方法系统地比较研究了非滞育、 冬滞育和夏滞育蛹的发育历期和形态变化, 重点在头外翻和滞育相关发育和形态特征, 目的在于弄清非滞育、 冬滞育和夏滞育蛹发育和形态特征差异, 为滞育发育阶段的识别、 滞育分子机理研究奠定形态学基础。冬滞育蛹的滞育前期、 滞育期和滞育后期分别为4, 85和27 d, 夏滞育蛹的滞育前期、 滞育期和滞育后期分别为2, 8和22 d。从化蛹至头外翻完成为滞育前期, 头外翻完成约10 h内复眼中央游离脂肪体可见。头外翻的完成是滞育发生的前提, 非滞育、 夏滞育和冬滞育蛹头外翻发生在化蛹后的48, 36和83 h, 在头外翻过程中发育形态没有差异。头外翻的过程为: 首先, 头囊和胸部附肢从胸腔外翻, 头部形态出现; 然后, 腹部肌肉继续收缩, 将血淋巴和脂肪体推进头部及胸部附肢。葱蝇蛹在完成蛹期有效积温约15%时进入冬滞育或夏滞育。在滞育期, 蛹的形态一直停留在复眼中央游离脂肪体可见这一形态时期, 且冬滞育和夏滞育的蛹在形态上没有区别。在体长、 体宽和体重上, 冬滞育蛹最大, 夏滞育蛹次之, 非滞育蛹最小。在滞育后期, 在黄色体出现期间, 非滞育蛹的马氏管清楚可见, 呈绿色, 而滞育蛹的马氏管几乎不可见。本研究为认知昆虫滞育生理、 从发育历期和形态上推断滞育发育进程提供了依据。  相似文献   

4.
Cold hardiness and biochemical changes were investigated in winter and summer pupae of the cabbage armyworm Mamestra brassicae at the diapause and post-diapause stages under temperature acclimation. Diapause pupae were successively acclimated to 25, 20 and then 10 degrees C (warm-acclimated group). Pupae at the diapause and post-diapause stages were successively acclimated to 5, 0, -5 and then -10 degrees C (cold-acclimated groups). Supercooling point values in winter and summer pupae remained constant regardless of the diapause stages and acclimated temperatures. Warm-acclimated pupae at the diapause stage did not survive the subzero temperature exposure, whereas, cold-acclimated pupae achieved cold hardiness to various degrees. Winter pupae were more cold hardy than summer pupae, and pupae at the post-diapause stage were more cold hardy than those at the diapause stage. Trehalose contents in winter pupae rose under cold acclimation. Summer pupae accumulated far lower trehalose contents than winter pupae, with the maximal level occurring in winter pupae at the post-diapause stage. Glycogen content remained at a high level in diapause pupae after warm acclimation, whereas it decreased after cold acclimation. Alanine, the main free amino acid in haemolymph after cold acclimation, increased at lower temperatures in both diapause and post-diapause pupae, but the increase was greater in the diapause pupae. These results suggest that cold hardiness is more fully developed in winter pupae than in summer pupae, and cold acclimation provides higher cold hardiness in winter pupae at the post-diapause stage than at the diapause stage.  相似文献   

5.
6.
海藻糖-6-磷酸合成酶(trehalose-6-phosphate synthase, TPS)是昆虫海藻糖合成途径中的关键酶之一。本研究通过对葱蝇Delia antiqua海藻糖-6-磷酸合成酶基因的克隆、 序列分析及滞育相关表达的分析, 旨在证明该基因在能源合成以及抵御高温和低温环境方面发挥重要作用, 为进一步弄清葱蝇滞育分子机制提供理论依据。根据葱蝇抑制消减杂交文库中的EST序列信息, 设计特异性引物, 并通过RACE技术克隆了葱蝇海藻糖-6-磷酸合成酶基因全长cDNA, 命名为DaTPS1 (GenBank登录号: JX681124), 其全长为2 904 bp, 开放阅读框2 448 bp, 编码815个氨基酸, 推测其相对分子质量为91.2 kD, 等电点为5.96。生物信息学分析表明, 该基因编码的氨基酸序列具有两个保守结构域, 与其他物种TPS具有较高的同源性, 其中和黑腹果蝇Drosophila melanogaster亲缘关系最近, 氨基酸序列一致性为92.1%; 其蛋白质三维结构有15条大的α螺旋和11股反向平行的β链折叠。RT-PCR分析表明, DaTPS1在葱蝇非滞育、 夏滞育和冬滞育期蛹中都有表达, 但是非滞育期各时期表达量基本没有变化, 而在夏滞育和冬滞育蛹的滞育前期表达量较高, 滞育保持期表达量较低, 滞育期后期表达量又有所升高。推断在葱蝇蛹夏滞育和冬滞育期前期, TPS1开始催化合成较多的海藻糖以提高滞育期抵御不良环境的能力, 滞育保持期蛹的新陈代谢降低, 所需能量较少, 所以TPS1处于低水平表达状态, 而滞育期结束后, 蛹生长发育逐渐恢复, 所需能量有所增加, TPS1的表达量再次升高。本研究对揭示昆虫TPS在能量代谢通路中的作用及昆虫滞育的分子机理具有一定的科学意义。  相似文献   

7.
Liu Z  Gong P  Wu K  Sun J  Li D 《Journal of insect physiology》2006,52(10):1012-1020
Summer diapause in the cotton bollworm, Helicoverpa armigera (Hübner), which prolongs the pupal stage, particularly in males, is induced by high temperatures. In the laboratory, summer-diapausing pupae of H. armigera were induced at high temperatures (33-39 degrees C) with a photoperiod of LD8:16; winter-diapausing and non-diapausing pupae, cultured at 20 degrees C with a photoperiod of LD8:16 and at 27 degrees C, LD16:8, respectively, acted as a control. Retention time of eye spots, weight, and lipid and glycogen levels were compared. At high temperatures, both body weight and energy storage capacity were much higher in summer-diapausing pupae than in non-diapausing pupae reared at 33-39 degrees C. At temperatures (>33 degrees C) high enough to maintain summer diapause, the eye spots of summer-diapausing pupae did not move during the 30-day experiment. However, eye spots of summer-diapausing pupae placed at 30 degrees C began to move about 10 days after they were transferred, significantly later than in non-diapausing pupae reared at 33-39 degrees C or non-diapausing pupae reared at 27 degrees C, which initiated eye spot movement 2 days after pupation. The differences in retention time of eye spots between summer- and winter-diapausing pupae shows that winter diapause is more intense than summer diapause in this insect. The weight loss, and lipid and glycogen metabolism curves indicate that the summer-diapausing pupae's metabolism is very low. We conclude that summer diapause in the cotton bollworm is a true diapause and that the summer diapause enables the cotton bollworm to withstand the high temperatures of summer.  相似文献   

8.
9.
Insects living in the temperate climate include summer diapause, or aestivation, in their seasonal cycle to solve various problems related to adaptation to unfavorable seasons. Unlike winter diapause, summer diapause occurs in summer and is usually terminated in autumn when active feeding, development, and/or reproduction are restored. Typically, high temperature and long day induce summer diapause and then maintain it, whereas short day and low temperature prevent induction of this diapause or terminate it. The summer diapause syndrome is basically similar to that of winter diapause; it includes prior development of large fat body, decreased level of metabolism, increased general resistance to unfavorable abiotic and biotic conditions, etc. Inhibition of morphogenesis and gametogenesis is under the control of the endocrine system. The onset of summer diapause is often accompanied by migrations to varying, sometimes significant distances to the sites of aestivation. The selective factors responsible for evolution of summer diapause vary between insect species. Climatic factors and, consequently, availability and abundance of food, as well as pressure of predators and parasites are likely to be the main factors that stimulate its occurrence. In some species, prolonged diapause begins in spring or early summer and ceases only after over-wintering. When studied in detail, such prolonged diapause often turns out to be a sequence of two independent diapauses, summer and winter ones, occurring in succession without detectable external changes.  相似文献   

10.
Effects of photoperiod and temperature on diapause induction and termination were investigated in both aestival and hibernal pupae of Pegomyia bicolor Wiedemann under field and laboratory conditions. In the field, summer diapause had occurred already in part of the first pupal population; the proportion of diapause gradually rose as the day length and temperature increased. This fly is a short-day species with a pupal summer and winter diapause. Summer diapause was induced by both long day-lengths and mild temperatures. The whole larval life is sensitive to photoperiod. Winter diapause was induced mainly by low temperatures, especially in the first 10 days after pupation. High temperatures strongly enhanced summer diapause induction regardless of photoperiod. The diapause-averting influence of short photoperiods was fully expressed only at moderately low temperatures. High temperatures delayed diapause development, resulting in a rather long summer diapause; whereas low temperatures hastened it, leading to a short winter diapause and showing a low thermal threshold for diapause development. In the field, the post-diapause development started in January, the coldest month, suggesting that the thermal requirements for post-diapause development is also low.  相似文献   

11.
The cabbage butterfly, Pieris melete hibernates and aestivates as a diapausing pupa. We present evidence that the optimum of low temperature and optimal chilling periods for both summer and winter diapause development are based on a similar mechanism. Summer or winter diapausing pupae were exposed to different low temperatures of 1, 5, 10 or 15°C for different chilling periods (ranging from 30 to 120 d) or chilling treatments started at different stages of diapause, and were then transferred to 20°C, LD12.5∶11.5 to terminate diapause. Chilling temperature and duration had a significant effect on the development of aestivating and hibernating pupae. The durations of diapause for both aestivating and hibernating pupae were significantly shorter when they were exposed to low temperatures of 1, 5 or 10°C for 50 or 60 days, suggesting that the optimum chilling temperatures for diapause development were between 1 and 10°C and the required optimal chilling period was about 50–60 days. Eighty days of chilling was efficient for the completion of both summer and winter diapause. When chilling periods were ≥90 days, the durations of summer and winter diapause were significantly lengthened; however, the adult emergence was more synchronous. The adaptive significance of a similar mechanism on summer and winter diapause development is discussed.  相似文献   

12.
Abstract.  Diapause is common among insects and is regarded as an adaptive response to periodic occurrence of adverse conditions. It occurs at a particular developmental stage, typically only once in a lifetime. However, little is known about the details of the control mechanism of life cycles with multiple diapauses in insects. In this study, a complex 2-year life cycle with three types of diapause is reported in a subtropical cockroach, Symploce japonica : a winter diapause in mid-nymphal instars, a summer diapause in later nymphal instars, and a reproductive diapause is reported in the adult stage. Nymphal development was extremely slow either at short days (winter diapause) or long days (summer diapause). Nymphs in summer diapause matured rapidly when transferred from long days to short days, indicating that seasonal changes in day-length are the pivotal factor in the control of this life cycle. It is proposed that the main significance of winter diapause in this subtropical species is to enable the nymphs to survive the mild winter successfully with reduced energy demand, and that of summer diapause is to delay adult emergence until late in the autumn for successful induction of the following adult diapause. Adults do not emerge until shortly before winter, yet the presence of diapause in the adult stage does not simply appear to be a response to cope with the winter conditions but, instead, ensures that reproduction will occur early the next year, before summer, because reproduction is greatly hampered at high temperature.  相似文献   

13.
Host plant-associated fitness trade-offs are central to models of sympatric speciation proposed for certain phytophagous insects. But empirical evidence for such trade-offs is scant, which has called into question the likelihood of nonallopatric speciation. Here, we report on the second in a series of studies testing for host-related selection on pupal life-history characteristics of apple- (Malus pumila L.) and hawthorn- (Crataegus mollis L. spp.) infesting races of the Tephritid fruit fly, Rhagoletis pomonella (Walsh). In particular, we examine the effects of winter length on the genetics of these flies. We have previously found that the earlier fruiting phenology of apple trees exposes apple-fly pupae to longer periods of warm weather preceding winter than hawthorn-fly pupae. Because R. pomonella has a facultative diapause, we hypothesized that this selects for pupae with more recalcitrant pupal diapauses (or slower metabolic/development rates) in the apple-fly race. A study in which we experimentally manipulated the length of the prewintering period for hawthorn-origin pupae supported this prediction. If the period preceding winter is important for apple- and hawthorn-fly pupae, then so too should be the length (duration) of winter; the rationale for this prediction is that “fast developing” pupae that break diapause too early will deplete their energy reserves and disproportionately die during long winters. To test this possibility, we chilled apple- and hawthorn-origin pupae collected from a field site near Grant, Michigan, in a refrigerator at 4°C for time periods ranging from one week to two years. Our a priori expectation was that longer periods of cold storage would select against allozyme markers that were associated with faster rates of development in our earlier study. Since these electromorphs are typically found at higher frequencies in hawthorn flies, extending the overwintering period should favor “apple-fly alleles” in both races. The results from this “overwinter” experiment supported the diapause hypothesis. The anticipated genetic response was observed in both apple and hawthorn races, as allele frequencies became significantly more “apple-fly-like” in eclosing adults surviving longer chilling periods. This indicates that it is the combination of environmental conditions before and during winter that selects on the host races. Many tests for trade-offs fail to adequately consider the interplay between insect development, host plant phenology, and local climatic conditions. Our findings suggest that such oversight may help to explain the paucity of reported fitness trade-offs.  相似文献   

14.
Under field conditions, the cabbage butterfly, Pieris melete, displays a pupal summer diapause in response to relatively low daily temperatures and gradually increasing day-length during spring and a pupal winter diapause in response to the progressively shorter day-length. To determine whether photoperiod is 'more' important than temperature in the determination of summer and winter diapause, or vice versa, the effects of naturally changing day-length and temperature on the initiation of summer and winter diapause were systematically investigated under field conditions for five successive years. Field results showed that the incidence of summer diapause significantly declined with the naturally increasing temperature in spring and summer generations. Path coefficient analysis showed that the effect of temperature was much greater than photoperiod in the determination of summer diapause. In autumn, the incidence of diapause was extremely low when larvae developed under gradually shortening day-length and high temperatures. The incidence of winter diapause increased to 60-90% or higher with gradually shortening day-length combined with temperatures between 20.0°C and 22.0°C. Decreasing day-length played a more important role in the determination of winter diapause induction than temperature. The eco-adaptive significance of changing day-length and temperature in the determination of summer and winter diapause was discussed.  相似文献   

15.
16.
The gene encoding kumamolysin, a thermostable pepstatin-insensitive carboxyl proteinase, was cloned and expressed. (i) Kumamolysin was synthesized as a large precursor consisting of two regions: amino-terminal prepro (188 amino acids) and mature proteins (384 amino acids). (ii) The deduced amino acid sequence of the mature region exhibited high similarity to those of such bacterial pepstatin-insensitive enzymes as Pseudomonas carboxyl proteinase (PSCP; EC 3.4.23.37, identity = 37%), Xanthomonas carboxyl proteinase (XCP; EC 3.4.23.33, identity = 36%), and human CLN2 gene product (identity = 36%), which is related to a fatal neurodegenerative disease. (iii) The presumed catalytic triad, Glu78, Asp82, Ser278 [three-dimensional structure of PSCP: Wlodawer, A. et al. (2001) Nature Struct. Biol., 8, 442-446], was found to be conserved in the amino acid sequence of kumamolysin. (iv) Kumamolysin was inactivated by such aldehyde-type inhibitors as Ac-Ile-Pro-Phe-CHO (K(i) = 0.7 0.14 microM). In PSCP, it has been clarified that these inhibitors form a hemiacetal linkage with the catalytic serine residue and inactivate the enzyme. (v) Mutational analysis of the Ser278 residue revealed that the mutant lost both auto-processing activity and proteolytic activity. These results strongly suggest that kumamolysin has a unique catalytic triad consisting of Glu78, Asp82, and Ser278 residues, as previously observed for PSCP.  相似文献   

17.
18.
Sitodiplosis mosellana Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of hsp70, hsc70 and hsp90 from S. mosellana larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsps included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of hsp90 was consistent with the known classification of insects. Expression of hsp70 and hsp90 were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, hsp70 was more strongly expressed in summer than in winter whereas hsp90 displayed the opposite pattern. Abundance of hsc70 mRNA was comparable prior to and during diapauses and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae (⩾30 °C) or cold-stressed over-wintering larvae (⩽0 °C) could further elevate expression of these three genes, but temperature extremes i.e. as high as 45 °C or as low as −15 °C failed to trigger such expression patterns. Notably, hsp70 was most sensitive to heat stress and hsp90 was most sensitive to cold stress. These results suggested that hsp70 and hsp90 play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, hsc70 most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination.  相似文献   

19.
20.
In the cabbage butterfly, Pieris melete, summer and winter diapause are induced principally by long and short daylengths, respectively; the intermediate daylengths (12-13 h) permit pupae to develop without diapause. In this study, photoperiodic control of summer and winter diapause was systematically investigated in this butterfly by examining the photoperiodic response, the number of days required to induce 50% summer and winter diapause and the duration of diapausing pupae induced under different photoperiods. Photoperiodic response curves at 18 and 20 degrees C showed that all pupae entered winter diapause at short daylengths (8-11 h), the incidence of diapause dropped to 82.3-85.5% at 22 degrees C without showing a significant difference between short daylengths, whereas the incidence of summer diapause induced by different long daylengths (14-18 h) was varied and was obviously affected by temperature. By transferring from various short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) to an intermediate daylength (LD 12.5:11.5) at different times after hatching, the number of cycles required to induce 50% winter diapause (7.28 at LD 8:16, 7.16 at LD 9:15, 7.60 at LD 10:14 and 6.94 at LD 11:13) showed no significant difference, whereas by transferring from various long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) to an intermediate daylength (LD 12.5:11.5) at different times, the number of cycles required to induce 50% summer diapause (5.95 at LD 14:10, 8.02 at LD 15:9, 6.80 at LD 16:8, 7.64 at LD 17:7) were significantly different. The intensity of winter diapause induced under different short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) was not significantly different with an average diapause duration of 87 days at a constant temperature of 20 degrees C and 92 days at a mean daily temperature of 19.0 degrees C, whereas the intensity of summer diapause induced under different long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) was significantly different (the diapause duration ranged from 75 to 86 days at a constant temperature of 20 degrees C and from 76 to 88 days at a mean daily temperature of 19.0 degrees C). All results suggested that photoperiodic control of diapause induction and termination is significantly different between aestivation and hibernation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号