首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolonged exercise induces left ventricular dysfunction in healthy subjects   总被引:2,自引:0,他引:2  
To determine the effects of a moderately prolonged exercise on left ventricular systolic performance, 23 healthy male subjects, aged 18 to 51 yr (mean 37 yr) were studied. The subjects exercised first on a treadmill (brief exercise) and completed, on a separate day, a 20-km run. M-mode, two-dimensional, and Doppler echocardiography, as well as calibrated carotid pulse tracings, were obtained at rest and immediately on completion of both brief and prolonged exercise. Left ventricular systolic function was assessed by end-systolic stress-shortening relationships. Heart rate increased similarly after brief and prolonged exercise (+30%). Mean arterial pressure decreased from 99 +/- 7 to 92 +/- 8 mmHg (P less than 0.001) after prolonged exercise, but it remained unchanged after brief exercise. Left ventricular end-diastolic volume was decreased after prolonged exercise (130 +/- 23 vs. 147 +/- 18 ml at rest, P less than 0.01). Both ejection fraction and rate-adjusted mean velocity of fiber shortening decreased after prolonged exercise [from 67 +/- 5 to 60 +/- 6% (P less than 0.001) and from 1.12 +/- 0.2 to 0.91 +/- 0.2 cm/s (P less than 0.001), respectively] despite a lower circumferential end-systolic wall stress (133 +/- 23 vs. 152 +/- 20 g/cm2). The relationship between ejection fraction (or mean velocity of fiber shortening adjusted for heart rate) and end-systolic wall stress was displaced downward on race finish (P less than 0.05). These changes were independent of the changes in left ventricular end-diastolic volume and hence those in preload. The data suggest that moderately prolonged exercise may result in depressed left ventricular performance in healthy normal subjects.  相似文献   

2.
J Ross 《Federation proceedings》1984,43(9):2418-2422
The usefulness of end-systolic measures of left ventricular performance as a load-independent method of assessing of ventricular contractility has been studied in intact, conscious dogs. The end-systolic pressure-chamber diameter (P-D) relation was shown to be linear, unaltered by preload changes, and shifted in a parallel fashion by inotropic stimulation, whereas the end-systolic pressure-volume relation appeared to increase in slope with increased contractility. A simplified measure of end-systolic relations that does not require measurement of chamber volume or diameter, the end-systolic pressure-wall thickness ( WTh ) relation, was also linear and shifted with acute changes in inotropic state. During regional ischemia, the regional end-systolic WTh relation also may provide a relatively load-independent means of detecting regional depression of myocardial contractility. With chronic pressure overload hypertrophy in dogs, the end-systolic P-D relation was markedly shifted upward and to the left, which indicates hyperfunction of the left ventricle; however, end-systolic wall stress-diameter relations were identical before and after the development of hypertrophy, which suggests that myocardial contractility was unaltered. These findings and clinical studies of mitral regurgitation imply that for assessing resting left ventricular contractility in certain chronic conditions, the use of wall stress rather than pressure may be appropriate in the end-systolic framework. Further experimental studies are needed in the intact circulation to better characterize end-systolic relations before their full potential in the clinical setting can be realized.  相似文献   

3.
The contractile indices Vmax (maximum shortening velocity of the contractile element) and ARPD (power averaged rate of power density generation) which have been shown to be unaffected by alterations in preload and afterload were computed from isovolumic left ventricular pressure data of dogs. The two indices were tested for their ability to detect changes in contractility induced by a positive inotropic drug (Isoprenalin). Whereas a good correlation was found between ARPD and Vmax (coefficient of correlation 0,895) the index ARPD was more sensitive to augmentation of myocardial contractility; also because it is simpler to obtain computationally and more appropriate for the intact heart from a theoretical point of view. ARPD should be useful especially for quantification of acute changes in myocardial contractility.  相似文献   

4.
Cardiovascular physiological studies in anesthetized animals may be confounded by the hemodynamic actions of the anesthetic agents themselves. To identify an anesthetic regimen that does not significantly influence cardiovascular physiology, the hemodynamic responses of 28 dogs were studied. Animals were equally divided among groups with 1) no anesthesia (i.e., trained conscious preparation), 2) pentobarbital sodium, 3) fentanyl citrate, and 4) a combination of morphine sulfate and alpha-chloralose. Anesthesia was maintained for 3 h. Data were acquired with the use of ultrasound imaging of the heart in conjunction with invasive pressure measurements. Left ventricular ejection phase indexes and end-systolic force-velocity relations were used to evaluate the effects of each anesthetic agent on overall systolic performance and myocardial contractility. Compared with the conscious animals, pentobarbital profoundly depressed systolic performance (P less than 0.05 vs. control) because of a reduction in myocardial contractility (P less than 0.01) and an increase in left ventricular afterload (end-systolic wall stress, P less than 0.05). Fentanyl increased myocardial contractility (P less than 0.05) but also tended to increase afterload with the net result that overall systolic performance remained unchanged. Morphine-chloralose did not affect overall ventricular systolic performance or its individual determinants. Pentobarbital and fentanyl also caused progressive time-dependent deteriorations in all parameters of systolic function during prolonged anesthesia. In contrast, cardiac function was stable for greater than or equal to 3 h after induction of morphine-chloralose anesthesia. The hemodynamic profile of dogs anesthetized with morphine-chloralose most closely resembled that of the conscious animals. Morphine-chloralose is recommended when prolonged anesthesia is required for studies of cardiovascular physiology.  相似文献   

5.
The systemic and inotropic properties of prostaglandin E1 (PGE1) were investigated in 20 unanesthetized dogs. Pairs of ultrasonic dimension gauges and a micromanometer were implanted in the subendocardium and the apex of the left ventricle (LV), respectively. Seven to ten days later, increasing doses of PGE1 were infused into the left atrium. To appreciate the inotropic effects of the agent, the heart rate was maintained constant at 150 beats/min in a subgroup of dogs while preload was modified by bleeding or saline infusion over matched ranges of end-diastolic segmental length (EDL) during placebo and PGE1 infusions (0.25 microgram . kg-1 . min-1). LV function curves (delta L: systolic segmental shortening versus EDL) were plotted. Increasing doses of PGE1 above 0.031 microgram . kg-1 . min-1 brought a progressive decrease of left ventricular end-diastolic pressure, EDL, delta L, and peak left ventricular systolic pressure. The heart rate increased significantly at dosages from 0.063 to 0.125 microgram . kg-1 . min-1, and peak positive dP/dt after an initial increase fell at the dose of 0.5 microgram . kg-1 . min-1. The LV function curves invariably showed a shift to the left when PGE1 was administered; as the basal EDL was restored during PGE1 infusion, delta L reached a 33% increase (p less than 0.001). Thus, in addition to its potent vasodilating properties that are more prominent on preload than afterload, PGE1 increases myocardial contractility in the conscious dog.  相似文献   

6.
Assessment of right ventricular (RV) contractility from end-systolic pressure-volume relationships (ESPVR) is difficult due to problems in measuring RV instantaneous volume and to effects of changes in RV preload or afterload. We therefore investigated in anesthetized dogs whether RV ESPVR and contractility can be determined without measuring RV volume and without changing RV preload or afterload. The maximal RV pressure of isovolumic beats (P(max)) was predicted from isovolumic portions of RV pressure during ejecting beats and compared with P(max) measured during the first beat after pulmonary artery clamping. In RV pressure-volume loops obtained from RV pressure and integrated pulmonary arterial flow, end-systolic elastance (E(es)) was assessed as the slope of P(max)-derived ESPVR, pulmonary artery effective elastance (E(a)) as the slope of end-diastolic to end-systolic relation, and coupling efficiency as the E(es)-to-E(a) ratio (E(es)/E(a)). Predicted P(max) correlated with observed P(max) (r = 0.98 +/- 0.02). Dobutamine increased E(es) from 1.07 to 2.00 mmHg/ml and E(es)/E(a) from 1.64 to 2.49, and propranolol decreased E(es)/E(a) from 1.64 to 0.91 (all P < 0.05). After adrenergic blockade, preload reduction did not affect E(es), whereas hypoxia and arterial constriction markedly increased E(a) and somewhat increased E(es) due to the Anrep effect. Low preload did not affect E(es)/E(a) and high afterload decreased E(es)/E(a). In conclusion, in the right ventricle 1) P(max) can be calculated from normal beats, 2) P(max) can be used to determine ESPVR without change in load, and 3) P(max)-derived ESPVR can be used to assess ventricular contractility and ventricular-arterial coupling efficiency.  相似文献   

7.
To determine whether histamine alters human left ventricular contractility we measured heart rate, calibrated carotid arterial pressure, and left ventricular dimensions (echocardiogram) in nine healthy volunteers. We assessed baseline contractility using the end-systolic pressure-dimension relationship and the end-systolic meridional wall stress-rate-corrected velocity of circumferential fiber shortening relationship determined over a wide range of afterloads using phenylephrine and nitroprusside infusions. We then infused histamine for 3-5 min at a dose predetermined to decrease mean arterial pressure by 20%, both before and after H1 receptor antagonist pretreatment (diphenhydramine 50 mg i.v.). Histamine decreased end-systolic pressure but, unlike an equally hypotensive infusion of nitroprusside, did not decrease end-systolic dimension or increase fractional shortening. Histamine also decreased velocity of circumferential fiber shortening at the same end-systolic meridional wall stress as controls (P < 0.05). These effects of histamine were inhibited by H1 antagonist pretreatment. We conclude that the dominant effect of histamine on the human heart is to decrease left ventricular contractility and that this decrease in contractility is dependent, at least partially, on H1-receptor activation.  相似文献   

8.
Aortic flow measurement with Doppler echocardiography has become a non-invasive technique in clinical practice. In the present animal study, we evaluated the flow-derived parameters such as peak velocity (PV) and its maximal acceleration (MA) as indices of ventricular contractility independent of the loading status. Eight pentobarbital-anesthetized cats were maintained with artificial ventilation. The chest was opened to place an electromagnetic flow probe around the ascending aorta for recording pulsatile aortic flow. PV and MA were measured from the flow tracing and on-line electronic differentiation. Intravenous infusions of dobutamine (DT), angiotensin II (AII) and dextran (DN) were used to alter the cardiac inotropism, afterload and preload, respectively. At a steady state (approximately 5 min after infusion), DT increased the PV from 56 +/- 9 to 78 +/- 14 cm/sec (p less than 0.05) and MA from 1302 +/- 108 to 1699 +/- 117 cm/sec2 (p less than 0.05). In response to AII infusion, PV was slightly reduced (60 +/- 7 to 55 +/- 6 cm/sec, p less than 0.05) while MA was also reduced mildly but significantly (1219 +/- 109 to 1099 +/- 109 cm/sec2, p less than 0.05). Dextran infusion produced a marked increase in PV (48 +/- 7 to 82 +/- 13 cm/sec, p less than 0.05) while the increase was slightly less for MA (1089 +/- 95 to 1604 +/- 109 cm/sec2). The results indicated that inotropic stimulation markedly increased both PV and MA. PV and MA responded slightly but significantly to afterload alterations. (8.3% vs 9.8%, respectively). Both PV and MA increased markedly to the preload increment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To investigate the role of hypertrophy of the right ventricle upon right heart performance and the significance of the peak systolic pressure/end-systolic volume (P/V) ratio in terms of right ventricular systolic performance, simultaneous measurements of radionuclide ventriculograms and central hemodynamics were done in 32 patients with chronic obstructive pulmonary disease. In 26 of the patients (80%) technically adequate two-dimensional echocardiograms could be performed. In the subset of patients with increased (greater than or equal to 6 mm) right ventricular end-diastolic wall thickness no relationship between pulmonary artery pressure and right ventricular ejection fraction (RVEF) existed in comparison with the remaining patients. P/V indices and cardiac output were not decreased. Considering the patients, whose P/V ratio did not increase from rest to exercise, RVEF decreased highly significantly more than in the remaining patients. The ratio of wall thickness and end-diastolic radius as determinant of peak systolic stress was significantly decreased in these patients compared with the remaining patients. In the patients with right ventricular hypertrophy despite significantly higher values of pulmonary artery pressures and resistances, the afterload in terms of systolic wall stress is markedly reduced. We conclude that in the hypertrophic state, right ventricular performance is not impaired despite decreased RVEF values. In the patients whose P/V ratio does not increase from rest to exercise, an inappropriate high peak systolic wall stress may exist both due to inadequate wall thickness and increased diameter of the right ventricle. The role of P/V in terms of prognosis and development of decompensated right heart failure remains undetermined.  相似文献   

10.
We studied the acute effect of high-intensity interval exercise on biventricular function using cardiac magnetic resonance imaging in nine patients [age: 49 ± 16 yr; left ventricular (LV) ejection fraction (EF): 35.8 ± 7.2%] with nonischemic mild heart failure (HF). We hypothesized that a significant impairment in the immediate postexercise end-systolic volume (ESV) and end-diastolic volume (EDV) would contribute to a reduction in EF. We found that immediately following acute high-intensity interval exercise, LV ESV decreased by 6% and LV systolic annular velocity increased by 21% (both P < 0.05). Thirty minutes following exercise (+30 min), there was an absolute increase in LV EF of 2.4% (P < 0.05). Measures of preload, left atrial volume and LV EDV, were reduced immediately following exercise. Similar responses were observed for right ventricular volumes. Early filling velocity, filling rate, and diastolic annular velocity remained unchanged, while LV untwisting rate increased 24% immediately following exercise (P < 0.05) and remained 18% above baseline at +30 min (P < 0.05). The major novel findings of this investigation are 1) that acute high-intensity interval exercise decreases the immediate postexercise LV ESV and increases LV EF at +30 min in patients with mild HF, and this is associated with a reduction in LV afterload and maintenance of contractility, and 2) that despite a reduction in left atrial volume and LV EDV immediately postexercise, diastolic function is preserved and may be modulated by enhanced LV peak untwisting rate. Acute high-intensity interval exercise does not impair postexercise biventricular function in patients with nonischemic mild HF.  相似文献   

11.
The clinical evaluation of right ventricular (RV) contractility is problematic because instantaneous RV volumetry is difficult to achieve. Our aim was to test whether global RV contractility can be assessed by using regional indexes in the longitudinal and/or circumferential axis. Six anesthetized adult ewes were instrumented with a RV conductance catheter and four RV free wall sonomicrometry crystals (interrogating the longitudinal and circumferential axes). Global and regional preload recruitable stroke work (PRSW) were measured by using acute vena cava occlusions at baseline, during esmolol and dobutamine infusion, and during stable low-preload and high-afterload conditions. The agreement between regional and global PRSW was assessed with regression and Bland-Altman analysis. Both regional PRSW indexes correlated well with global PRSW in baseline conditions, during inotropic modulation (R(2) = 0.83 and 0.74 for longitudinal and circumferential regional PRSW, respectively), and during preload reduction (R(2) = 0.62 and 0.83, respectively), but only longitudinal regional PRSW correlated with global PRSW in increased afterload conditions (R(2) = 0.59 and 0.13 for longitudinal and circumferential regional PRSW, respectively). We conclude that in the open-chest, open-pericardium animal model, deformation in the longitudinal axis accurately reflects global RV contractile function in baseline conditions and during acute load modulation, whereas circumferential motion is influenced by changes in afterload.  相似文献   

12.
Significant differences exist among textbook definitions for the terms preload and afterload, leading to confusion and frustration among students and faculty alike. Many faculty also chose to use in their teaching simple terms such as "end-diastolic volume" or "aortic pressure" as common-usage approximations of preload and afterload, respectively, but these are only partial representations of these important concepts. Straightforward definitions both of preload and afterload that are concise yet still comprehensive can be developed using the Law of LaPlace to describe the relationships among chamber pressure, chamber radius, and wall thickness. Within this context, the term "preload" can be defined as all of the factors that contribute to passive ventricular wall stress (or tension) at the end of diastole, and the term "afterload" can be defined as all of the factors that contribute to total myocardial wall stress (or tension) during systolic ejection. The inclusion of "wall stress" in both definitions helps the student appreciate both the complexities of cardiac pathophysiology and the rationale for therapeutic intervention.  相似文献   

13.
Surgical ventricular restoration (SVR) was designed to treat patients with aneurysms or large akinetic walls and dilated ventricles. Yet, crucial aspects essential to the efficacy of this procedure like optimal shape and size of the left ventricle (LV) are still debatable. The objective of this study is to quantify the efficacy of SVR based on LV regional shape in terms of curvedness, wall stress, and ventricular systolic function. A total of 40 patients underwent magnetic resonance imaging (MRI) before and after SVR. Both short-axis and long-axis MRI were used to reconstruct end-diastolic and end-systolic three-dimensional LV geometry. The regional shape in terms of surface curvedness, wall thickness, and wall stress indexes were determined for the entire LV. The infarct, border, and remote zones were defined in terms of end-diastolic wall thickness. The LV global systolic function in terms of global ejection fraction, the ratio between stroke work (SW) and end-diastolic volume (SW/EDV), the maximal rate of change of pressure-normalized stress (dσ*/dt(max)), and the regional function in terms of surface area change were examined. The LV end-diastolic and end-systolic volumes were significantly reduced, and global systolic function was improved in ejection fraction, SW/EDV, and dσ*/dt(max). In addition, the end-diastolic and end-systolic stresses in all zones were reduced. Although there was a slight increase in regional curvedness and surface area change in each zone, the change was not significant. Also, while SVR reduced LV wall stress with increased global LV systolic function, regional LV shape and function did not significantly improve.  相似文献   

14.
To better characterize the relationship between left ventricular volume response and improved ventricular ejection and output during supine exercise in normal subjects, 36 healthy asymptomatic volunteers (age 39 +/- 17 yr) were studied with radionuclide ventriculography during recumbent bicycle ergometry. Relative changes in left ventricular end-diastolic and end-systolic volume were measured at rest and during exercise by a modification of the radionuclide counts-based method that accounted for variability in stress blood pool counts. A biphasic response was noted in left ventricular end-diastolic volume with an initial increase in early exercise (8.5 +/- 11% at 200 kpm/min and 11 +/- 12% at 300 kpm/min) followed by a progressive and significant decline at peak exercise (-3.3 +/- 18% at 547 +/- 140 kpm/min; P < 0.05). There was substantial variation in end-diastolic volume response at peak exercise in the group as a whole, which could be more closely related to changes in end-systolic volume (r = 0.84, P < 0.0001) than in heart rate (r = -0.57, P < 0.01) or age (r = 0.36, P < 0.05) of the study subjects. Despite the decline in ventricular filling, systolic function appeared to improve dramatically at peak exercise (change in left ventricular ejection fraction 15.5 +/- 6.4, P < 0.0001). Although not directly related to increasing systolic ejection, end-diastolic volume was directly related to the percent change in stroke volume at peak exercise among the study subjects (r = 0.88, P < 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Ventricular loading conditions are crucial determinants of cardiac function and prognosis in heart failure. B-type natriuretic peptide (BNP) is mainly stored in the ventricular myocardium and is released in response to an increased ventricular filling pressure. We examined, therefore, the hypothesis that BNP serum concentrations are related to ventricular wall stress. Cardiac magnetic resonance imaging (MRI) was used to assess left ventricular (LV) mass and cardiac function of 29 patients with dilated cardiomyopathy and 5 controls. Left ventricular wall stress was calculated by using a thick-walled sphere model, and BNP was assessed by immunoassay. LV mass (r = 0.73, p < 0.001) and both LV end-diastolic (r = 0.54, p = 0.001) and end-systolic wall stress (r = 0.66, p < 0.001) were positively correlated with end-diastolic volume. LV end-systolic wall stress was negatively related to LV ejection fraction (EF), whereas end-diastolic wall stress was not related to LVEF. BNP concentration correlated positively with LV end-diastolic wall stress (r = 0.50, p = 0.002). Analysis of variance revealed LV end-diastolic wall stress as the only independent hemodynamic parameter influencing BNP (p < 0.001). The present approach using a thick-walled sphere model permits determination of mechanical wall stress in a clinical routine setting using standard cardiac MRI protocols. A correlation of BNP concentration with calculated LV stress was observed in vivo. Measurement of BNP seems to be sufficient to assess cardiac loading conditions. Other relations of BNP with various hemodynamic parameters (e.g., EF) appear to be secondary. Since an increased wall stress is associated with cardiac dilatation, early diagnosis and treatment could potentially prevent worsening of the outcome.  相似文献   

16.
To test the hypothesis that alterations in left ventricular (LV) mechanoenergetics and the LV inotropic response to afterload manifest early in the evolution of heart failure, we examined six anesthetized dogs instrumented with LV micromanometers, piezoelectric crystals, and coronary sinus catheters before and after 24 h of rapid ventricular pacing (RVP). After autonomic blockade, the end-systolic pressure-volume relation (ESPVR), myocardial O(2) consumption (MVO(2)), and LV pressure-volume area (PVA) were defined at several different afterloads produced by graded infusions of phenylephrine. Short-term RVP resulted in reduced preload with proportionate reductions in stroke work and the maximum first derivative of LV pressure but with no significant reduction in baseline LV contractile state. In response to increased afterload, the baseline ESPVR shifted to the left with maintained end-systolic elastance (E(es)). In contrast, after short-term RVP, in response to comparable increases in afterload, the ESPVR displayed reduced E(es) (P < 0.05) and significantly less leftward shift compared with control (P < 0.05). Compared with the control MVO(2)-PVA relation, short-term RVP significantly increased the MVO(2) intercept (P < 0.05) with no change in slope. These results indicate that short-term RVP produces attenuation of afterload-induced enhancement of LV performance and increases energy consumption for nonmechanical processes with maintenance of contractile efficiency, suggesting that early in the development of tachycardia heart failure, there is blunting of length-dependent activation and increased O(2) requirements for excitation-contraction coupling, basal metabolism, or both. Rather than being adaptive mechanisms, these abnormalities may be primary defects involved in the progression of the heart failure phenotype.  相似文献   

17.
In pentobarbital-anesthetized mongrel dogs the intravenous actions of 0.50 mg/kg molsidomine on pulmonary artery and left ventricular (LV) end-diastolic pressures and internal heart dimensions (preload), left ventricular systolic and peripheral blood pressures, and total peripheral resistance (afterload), as well as on heart rate, dP/dt, stroke volume, and cardiac output (heart performance) were studied for 2 h. Hemodynamic molsidomine effects were influenced by increasing amounts of intravenously infused dihydroergotamine solution (DHE, 1-64 micrograms X kg-1 X min-1). Molsidomine decreased preload, stroke volume, and cardiac output for over 2 h but decreased ventricular and peripheral pressures for 45 min. Systemic vascular resistance showed a tendency to decrease while heart rate and LV dP/dtmax were not altered. DHE infusion reversed molsidomine effects on the preload and afterload of the heart. The diminished stroke volume was elevated so that cardiac output also increased. Total peripheral resistance increased while heart rate fell in a dose-dependent fashion. The LV dP/dtmax remained unchanged until the highest dose of 64 micrograms X kg-1 X min-1 DHE elevated the isovolumic myocardial contractility. These experiments indicate that DHE can reverse the intravenous molsidomine effects on hemodynamics. Most likely, this is mediated through peripheral vasoconstriction of venous capacitance vessels, thereby affecting molsidomine's action on postcapillary beds of the circulation.  相似文献   

18.
心室压力瞬时加速度的测定及其意义   总被引:2,自引:0,他引:2  
呙中茂  黄定洪 《生理学报》1989,41(1):102-110
本工作对国产SJ-42型四道生理记录仪进行改进,增加了记录压力二阶微分曲线的功能。经比较研究家兔左心室压力一阶微分与二阶微分指标后发现,(d~2p/dt~2)max对心肌变力作用的敏感性比(dp/dt)max高出1/3左右,两项指标对心脏前后负荷和心率均具有一定的依赖性,但两者间无明显差异,提示用心室压力瞬时加速度指标评价心脏收缩性能比用压力瞬时速率指标更为灵敏可靠。  相似文献   

19.
To analyse the role of changes in structure and function of the left ventricle in determining cardiac function at rest and during exercise, several two-dimensional and Doppler echocardiographic measurements were performed on 11 healthy subjects immediately before an Himalayan expedition (Nun, 7135 m), during acclimatization (3 weeks) and 14 days after the return. At rest decreases were found in cardiac index (CI) (3.23 l.min-1.m-2, SD 0.4 vs 3.82 l.min-1.m-2, SD 0.58, P less than 0.01), left ventricular mass (55.3 g.m-2, SD 9.4 vs 65.2 g.m-2, SD 13.5, P less than 0.005) and left ventricular end-diastolic volume (LVEDV) (53.9 ml.m-2, SD 6.9 vs 64.8 ml.m-2, SD 9.1, P less than 0.001) after acclimatization; by contrast the coefficient of peak arterial pressure to left ventricular end-systolic volume (PAP/ESV) (7.8, SD 1.6 vs 6.0, SD 1.8, P less than 0.005) and mean wall stress [286 kdyn.cm-2, SD 31 vs 250 kdyn.cm-2, SD 21 (2.86 N.cm-2, SD 0.31 vs 2.50 N.cm-2, SD 0.21), P less than 0.005] increased. After return to sea level, low values of CI and mass persisted despite a return to normal of LVEDV and preload. A reduction of PAP/ESV was also observed. At peak exercise, PAP/ESV (8.7, SD 2.4 vs 12.8, SD 2.0, P less than 0.0025), CI (9.8 l.min-1.m-2, SD 2.5 vs 11.6 l.min-1.m-2, SD 1.6, P less than 0.05) and the ejection fraction (69%, SD 6 vs 76%, SD 4, P less than 0.05) were lower after return to sea level than before departure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
After acquisition of a digital equilibrium gamma-angiocardiographie, circumferential analysis of end-diastolic and end-systolic frames gives 120 points diastolic and systolic curves. Their difference represents systolic volume and leads to regional left ventricular ejection fraction assessment at the considered radius level. The circumferential analysis evolute gives the regional left ventricular ejection fraction representative curves which allows especially differential diagnosis between left ventricular akinesia and dyskinesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号