首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ALFEERI, MARGARET AH, JOCELINE POMERLEAU, D MICHAEL GRACE AND LORRAINE ANDERSON. Fiber intake of normal weight, moderately obese and severely obese subjects. Obes Res. The lack of dietary fiber may be a contributing factor in obesity. This study examined the fiber intake of three weight groups: normal (20.0≤BMI≤27.0), moderately obese (27.1≤BMI≤39.9) and severely obese (BMI≥40.0). Each group contained 50 subjects. Detailed 3-day food records were used to gather the nutritional data. Fiber intake in the normal weight group was 18.8 ± 9.3 grams, the moderately obese consumed 13.3 ± 5.8 grams of fiber and the severely obese 13.7 ± 5.7 grams. Total fiber intake in grams was found to be significantly higher in the lean group (p<0.05) and was positively associated with sex and education level with men and more highly educated individuals consuming more fiber. Using regression analysis total fiber in grams and fiber in g/1000 kcalories was inversely associated with BMI after adjusting for sex, age, education level and income (p<0.01). A high fiber diet may help to promote a negative energy balance by causing early satiety secondary to gastric distention. Dietitians and physicians need to emphasize the importance of a high fiber diet to their obese patients.  相似文献   

2.
The effects of a high-fat diet supplying a constant energy/protein ratio, with and without overeating, on energy intake and expenditure was studied in mature male rats. A control group (LF) received ad libitum access to a low-fat diet. Body weight gain, efficiency of food utilization, and dietary-induced thermogenesis were increased relative to controls in a group with ad libitum access to the high-fat diet (HF-A), but not in a group which was pair fed the diet (HF-P) in amounts (kcal) equal to that of LF animals. However, the individual variability within the HF-A group was high for each measure. An arbitrary separation of that group into 2 subgroups (based on high vs low weight gain) produced one subgroup with increased efficiency, greater weight gain and no change in dietary-induced thermogenesis (HF-AH), and another with no difference in efficiency or in weight gain from the LF group but which had higher dietary-induced thermogenesis (HF-AL). Food intake was slightly, but not significantly, greater for the HF-AH subgroup than for the HF-AL subgroup. We conclude that rats can increase thermogenesis in response to overeating but that the increase is highly variable. The thermogenic response appears to be related to the overeating rather than to the fat content of the diet.  相似文献   

3.
The protein leverage model of obesity posits that decreasing the protein fraction of the diet leads to compensatory increases in total energy intake in an attempt to maintain a target amount of absolute protein consumed. The resulting increased energy intake thereby causes weight gain. According to food balance sheets published by the Food and Agriculture Organization of the United Nations, while the absolute protein content of the US food supply has increased since the early 1970s, the fraction of available calories from protein has decreased by ~1% because of greater increases in available carbohydrate and fat. Counterintuitively, even such a small decrease in the protein fraction of the food supply has the potential to result in relatively large increases in energy intake according to the protein leverage model. Therefore, while the protein leverage effect is unlikely to fully explain the obesity epidemic, its potential contribution should not be ignored.  相似文献   

4.
能量代谢的适应性调节是小型哺乳动物应对环境季节性变化的主要策略之一。为探讨不同温度下动物在代谢产热能量支出与脂肪累积之间的权衡策略,以成年雄性黑线仓鼠为研究对象开展了3 个实验:实验1 将动物驯化于高脂和低脂食物;实验2 将动物暴露于低温(5℃)和暖温(30℃);实验3 将饲喂高脂食物的动物暴露于低温。以食物平衡法测定摄食量、摄入能和消化率,以开放式氧气分析仪测定代谢产热,以索氏抽提法测定脂肪含量。结果发现,取食高脂食物的黑线仓鼠摄食量显著减少,但脂肪累积显著增加;暖温下摄食量显著减少,但体脂含量显著增加,低温下摄食量显著升高,但体脂含量显著减少;饲喂高脂食物的黑线仓鼠在低温下摄入能显著增加,非颤抖性产热增强,但体脂含量显著降低。结果表明高脂食物对黑线仓鼠体脂累积的影响与环境温度有关,低温诱导脂肪动员,暖温促进脂肪贮存;低温下黑线仓鼠增加能量摄入不能完全补偿用于产热的能量支出,导致脂肪动员增加;暖温下代谢产热降低是脂肪累积的主要因素;与能量摄入相比代谢产热的能量支出在体脂累积的适应性变化中发挥更重要的作用。  相似文献   

5.
High-protein diets are effective in achieving weight loss which is mainly explained by increased satiety and thermogenic effects. Recent studies suggest that the effects of protein-rich diets on satiety could be mediated by amino acids like leucine or arginine. Although high-protein diets require increased intestinal amino acid absorption, amino acid and peptide absorption has not yet been considered to contribute to satiety effects. We here demonstrate a novel finding that links intestinal peptide transport processes to food intake, but only when a protein-rich diet is provided. When mice lacking the intestinal peptide transporter PEPT1 were fed diets containing 8 or 21 energy% of protein, no differences in food intake and weight gain were observed. However, upon feeding a high-protein (45 energy%) diet, Pept1(-/-) mice reduced food intake much more pronounced than control animals. Although there was a regain in food consumption after a few days, no weight gain was observed which was associated with a reduced intestinal energy assimilation and increased fecal energy losses. Pept1(-/-) mice on high-protein diet displayed markedly reduced plasma leptin levels during the period of very low food intake, suggesting a failure of leptin signaling to increase energy intake. This together with an almost two-fold elevated plasma arginine level in Pept1(-/-) but not wildtype mice, suggests that a cross-talk of arginine with leptin signaling in brain, as described previously, could cause these striking effects on food intake.  相似文献   

6.
Macronutrient composition of diets can influence body-weight development and energy balance. We studied the short-term effects of high-protein (HP) and/or high-fat (HF) diets on energy expenditure (EE) and uncoupling protein (UCP1-3) gene expression. Adult male rats were fed ad libitum with diets containing different protein-fat ratios: adequate protein-normal fat (AP-NF): 20% casein, 5% fat; adequate protein-high fat (AP-HF): 20% casein, 17% fat; high protein-normal fat (HP-NF): 60% casein, 5% fat; high protein-high fat (HP-HF): 60% casein, 17% fat. Wheat starch was used for adjustment of energy content. After 4 days, overnight EE and oxygen consumption, as measured by indirect calorimetry, were higher and body-weight gain was lower in rats fed with HP diets as compared with rats fed diets with adequate protein content (P<.05). Exchanging carbohydrates by protein increased fat oxidation in HF diet fed groups. The UCP1 mRNA expression in brown adipose tissue was not significantly different in HP diet fed groups as compared with AP diet fed groups. Expression of different homologues of UCPs positively correlated with nighttime oxygen consumption and EE. Moreover, dietary protein and fat distinctly influenced liver UCP2 and skeletal muscle UCP3 mRNA expressions. These findings demonstrated that a 4-day ad libitum high dietary protein exposure influences energy balance in rats. A function of UCPs in energy balance and dissipating food energy was suggested. Future experiments are focused on the regulation of UCP gene expression by dietary protein, which could be important for body-weight management.  相似文献   

7.
The present study was aimed at studying energy balance in mice fed a high-fat diet. Albino mice were divided into three groups. One group had free access to the stock diet, whereas the two other groups consumed a high-fat diet. One of the high-fat fed groups was fed ad libitum, whereas the other was offered a restricted amount of the same diet so that its energy intake was comparable to the group of mice given the stock diet. Energy balance measurements, which included indirect calorimetry and carcass analysis, were performed. Brown adipose tissue (BAT) properties were also investigated. The results show that gains in both body weight and fat were higher in mice that had free access to high-fat diet than in mice fed the stock diet. In animals given a restricted amount of the high-fat diet, fat gain increased, whereas protein gain was reduced in comparison with animals fed the stock diet. Unrestricted access to the high-fat diet led to an increase in both energy intake and energy gain. As revealed by both slaughter and indirect calorimetry techniques energy expenditure was, in high-fat fed mice, 40% higher than in animals fed either stock or a restricted amount of high-fat diet. Nadolol was shown to suppress a large part of the elevated metabolic rate seen in mice fed an unrestricted high-fat diet. In those mice, BAT mitochondrial GDP binding was also increased. In summary, the present results confirm that adaptive diet-induced thermogenesis (DIT) develops in mice made hyperphagic by an energy-dense palatable diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.  相似文献   

9.
The maintenance of body weight at a stable level for an adult man requires the involvement of mechanisms which should adapt energy intake to energy expenditure (or vice versa). Energy balance is thus maintained near equilibrium. However, the nature of these mechanisms is poorly understood. The control of food intake has been studied often and will not be discussed in this presentation. This paper concerns the control of energy expenditure, particularly the control of nutrient-induced thermogenesis. The recent interest in this field has arisen following the demonstration of the role of nutrient-induced thermogenesis in rats and mice having free access to the "cafeteria diet". Under these conditions, these animals overeat, but the major part of the excess energy intake above maintenance, is dissipated as heat through the sympathetic activation of brown adipose tissue. By contrast, a thermogenic defect in brown adipose tissue is involved in the development of genetic or hypothalamic obesity in rats and mice. In man, diet-induced thermogenesis seems to play a smaller role in the control of energy balance than in small mammals. This is probably related to the partial atrophy of brown adipose tissue in adult man. Studies on thermogenesis induced by the intravenous infusion of glucose and insulin (euglycemic hyperinsulinemic clamp technique) in man have allowed us to identify two components: the first, the obligatory thermogenesis is due to the energetic cost of glucose storage (which mainly occurs as glycogen); the second has been called facultative thermogenesis, and is dependent upon stimulation of the sympathetic nervous system. Facultative thermogenesis can be suppressed by propranolol, a drug which blocks the beta-receptors of the sympathetic nervous system. The effector tissue which is responsible for the facultative thermogenesis in man is unknown. Overfeeding studies with carbohydrates in man have also shown the occurrence of facultative thermogenesis. The contribution of a thermogenesis defect to the development of obesity in predisposed individuals is shown by studies using the technique of the respiration chamber. About one third of obese subjects who have been studied in the chamber have shown a decreased postprandial thermogenic response. A thermogenic defect could explain a weight gain of about 10 kg. Other mechanisms which include eating behaviour and low physical activity are needed to explain weight gains greater than 10 kg.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Objective: This study investigated which aspect of energy balance was responsible for the decrease in body fat content of rats fed a high‐calcium, high—dairy protein diet. Research Methods and Procedures: Male Wistar rats were fed a control diet (25% kcal fat, 14% kcal protein from casein, 0.4% by weight calcium) or high‐calcium diet (25% kcal fat, 7% kcal protein from nonfat dry milk, 7% kcal protein from casein, 2.4% calcium) for 85 days. Body weights, digestible energy intakes, energy expenditures, rectal temperatures, body composition, and serum glucose, insulin, free fatty acids, triglycerides, and 1, 25‐dihydroxyvitamin D were measured. Results: Rats fed high‐calcium diet gained significantly less weight than controls and had 29% less carcass fat. Gross energy intake was not significantly different between groups, but digestible energy was 90% of gross energy in the high‐calcium diet compared with 94% in the control diet because of increased fecal excretion of dietary lipid. The difference in digestible energy intake accounted for differences in carcass energy. Body temperatures and energy expenditures of the rats were not different. The high‐calcium diet reduced serum triglycerides by 23% and serum 1, 25‐dihydroxyvitamin D by 86%. Discussion: These results confirm that a high‐calcium diet decreases body weight and fat content due to a lower digestible energy intake caused by increased fecal lipid and a nonsignificant reduction in gross energy intake.  相似文献   

11.
A very-low-calorie conventional Japanese diet of 370 kcal/day has been shown to be useful for weight reduction and its long-term maintenance. Sources of the diet were mainly from chicken fillet, egg white, fish white-meat, mushroom, seaweed and low-or non-calorie fiber-rich vegetable, and contained 4.4g fat, 38.1g protein, 45.2g carbohydrate and essential minerals and vitamins. However, metabolic and neural implications of a commercial very-low-calorie liquid formula diet have rarely been investigated from the view point of food intake and appetite regulation. Animal studies have demonstrated the rationale for efficacy of the very-low calorie conventional Japanese diet as follows: (1)Increased hypothalamic histamine suppressed food intake through H1-receptors in the ventromedial hypothalamus (VMH) and paraventricular nucleus, the satiety centers. (2) Low energy intake enhanced satiety and decreased food intake through histaminergic activation of VMH neurons. (3) Mastication activated afferent signal transmission from proprioceptors in the oral cavity to the mesencephalic trigeminal nucleus(Me5). Histaminergic systems in the hypothalamus were activated by mastication and low energy supply, which was accompanied by satiation through the action of histamine in the VMH. Usefulness of the very-low-calorie conventional Japanese diet derives from utilization of conventional Japanese food stuffs as a fiber rich, low energy food source, and from enhancement of satiation by increased mastication required of the diet. The properties of the diet seemed to effect a closed positive feedback loop between histaminergic activation in hypothalamic satiety centers and behavioral changes to enhance satiation and cause feeding suppression.  相似文献   

12.
为了研究光周期和高脂食物对小型哺乳动物能量代谢和产热的影响,将成年雌性高山姬鼠分别驯化于长光照低脂、高脂食物和短光照低脂、高脂食物条件下,7周后测定动物的体重、能量摄入、产热、身体组成、血清瘦素浓度以及体脂含量等参数。结果发现:1)短光照抑制体重增长,降低血清瘦素浓度,增加非颤抖性产热;2)高脂食物使摄入能减少,消化率和体脂含量提高,但未显著影响体重、基础代谢率、非颤抖性产热和血清瘦素浓度;3)血清瘦素浓度与摄入能不相关,但与体脂重量正相关。结果暗示:短光照下瘦素作用敏感性增加和产热能力增强,可能介导了抵抗高脂食物诱导的肥胖。在野外条件下,高山姬鼠能通过能量代谢和产热的适应性调节避免体重的过度增长,有利于降低捕食风险,增强生存能力。  相似文献   

13.
Brown adipose tissue (BAT) thermogenesis is an uncoupled ATPase-independent thermogenic mechanism. Ion transport by the Na,K pump is an ATPase- dependent thermogenic mechanism. Both have been proposed as mechanisms of altered energy expenditure during states of dietary energy surfeit and deficit. Our aim was to study these mechanisms during diet-induced obesity and weight loss. Over 36 weeks rats were fed lard- or tallow-based diets (63% energy as fat), or a control diet (12% energy as fat). During periods of restriction rats were fed 50% of the energy intake of controls in the form of a control diet. Several components of thermogenic response increased in rats eating high fat diets and decreased following dietary restriction. BAT activation occurred, particularly with a lard-based diet, as indicated by increased GDP binding and uncoupling protein (UCP) content. Na,K pump activity in thymocytes increased with the feeding of both high fat diets at some time points. Plasma T3 level increased in rats eating the lard-based diet and decreased with dietary restriction regardless of previous diet. Resting metabolic rate (RMR) of the animals was unchanged despite increases in these thermogenic components and was decreased in all groups following dietary restriction. Our results indicate a lack of any major role for activated BAT thermogenesis in mitigating the extent of the obesity induced by the high fat diets. The reasons for the differences in response to the two different sources of saturated fat, lard, and tallow, are not clear.  相似文献   

14.

Objective:

Protein leverage plays a role in driving increased energy intakes that may promote weight gain. The influence of the protein to carbohydrate ratio (P:C) in diets of C57BL/6J mice on total energy intake, fat storage, and thermogenesis was investigated.

Design and Methods:

Male mice (9 weeks old) were provided ad libitum access to one of five isocaloric diets that differed in P:C. Food intake was recorded for 12 weeks. After 16 weeks, white adipose tissue (WAT) and brown adipose tissue (BAT) deposits were dissected, weighed, and the expression levels of key metabolic regulators were determined in BAT. In a separate cohort, body surface temperature was measured in response to 25 diets differing in protein, fat, and carbohydrate content.

Results:

Mice on low P:C diets (9:72 and 17:64) had greater total energy intake and increased WAT and BAT stores. Body surface temperature increased with total energy intake and with protein, fat, and carbohydrate, making similar contributions per kJ ingested. Expression of three key regulators of thermogenesis were downregulated in BAT in mice on the lowest P:C diet.

Conclusions:

Low‐protein diets induced sustained hyperphagia and a generalized expansion of fat stores. Increased body surface temperature on low P:C diets was consistent with diet‐induced thermogenesis (DIT) as a means to dissipate excess ingested energy on such diets, although this was not sufficient to prevent development of increased adiposity. Whether BAT was involved in DIT is not clear. Increased BAT mass on low P:C diets might suggest so, but patterns of thermogenic gene expression do not support a role for BAT in DIT, although they might reflect failure of thermogenic function with prolonged exposure to a low P:C diet.  相似文献   

15.
Human epidemiological studies have supported the hypothesis that a dairy food-rich diet is associated with lower fat accumulation, although prospective studies and intervention trials are not so conclusive and contradictory data exist in animal models. The purpose of this study was to assess the effects on body weight and fat depots of dairy calcium (12 g/kg diet) in wild-type mice under ad libitum high-fat (43%) and normal-fat (12%) diets and to gain comprehension on the underlying mechanism of dairy calcium effects. Our results show that calcium intake decreases body weight and body fat depot gain under high-fat diet and accelerates weight loss under normal-fat diet, without differences in food intake. No differences in gene or protein expression of UCP1 in brown adipose tissue or UCP2 in white adipose tissue were found that could be related with calcium feeding, suggesting that calcium intake contributed to modulate body weight in wild-type mice by a mechanism that is not associated with activation of brown adipose tissue thermogenesis. UCP3 protein but not gene expression increased in muscle due to calcium feeding. In white adipose tissue there were effects of calcium intake decreasing the expression of proteins related to calcium signalling, in particular of stanniocalcin 2. CaSR levels could play a role in decreasing cytosolic calcium in adipocytes and, therefore, contribute to the diminution of fat accretion. Results support the anti-obesity effect of dietary calcium in male mice and indicate that, at least at the time-point studied, activation of thermogenesis is not involved.  相似文献   

16.
It has long been known that central opioid systems play an important role in certain aspects of appetite and food intake, particularly with regard to the hedonic or rewarding impact of calorically dense food, such as fat and sugar. Ventral striatal enkephalin may be a key component of this system, as infusions of mu-opiate agonists into this region strongly increase feeding, whereas infusions of opiate antagonists decrease food intake. While pharmacological analysis has consistently supported such a role, direct measurement of enkephalin gene expression in relation to differing food motivational conditions has not been examined. In this study, the effects of a restricted laboratory chow diet (resulting in negative energy balance) as well has recent consumption of chow (short-term satiety) on striatal preproenkephalin (PPE) and prodynorphin (PD) mRNA expression were measured in rats, using both Northern blot analysis and in situ hybridization methods. As a comparison, hypothalamic (arcuate nucleus) neuropeptide Y (NPY) was also measured in these conditions. PPE expression was broadly downregulated throughout the striatum in animals that had recently consumed a meal, whereas it was unaffected by negative energy balance. Expression of an additional striatal peptide gene, PD, did not follow this pattern, although diet restriction caused a decrease in accumbens core dynorphin mRNA. Conversely, as expected, arcuate nucleus NPY mRNA expression was markedly upregulated by negative energy balance, but was unchanged by recent food consumption. This double dissociation between striatal and hypothalamic peptide systems suggests a specific role for striatal PPE in relatively short-term food motivational states, but not in long-term metabolic responses to diet restriction.  相似文献   

17.
Objective: Investigation of the effect of a green tea‐caffeine mixture on weight maintenance after body weight loss in moderately obese subjects in relation to habitual caffeine intake. Research Methods and Procedures: A randomized placebo‐controlled double blind parallel trial in 76 overweight and moderately obese subjects, (BMI, 27.5 ± 2.7 kg/m2) matched for sex, age, BMI, height, body mass, and habitual caffeine intake was conducted. A very low energy diet intervention during 4 weeks was followed by 3 months of weight maintenance (WM); during the WM period, the subjects received a green tea‐caffeine mixture (270 mg epigallocatechin gallate + 150 mg caffeine per day) or placebo. Results: Subjects lost 5.9 ±1.8 (SD) kg (7.0 ± 2.1%) of body weight (p < 0.001). At baseline, satiety was positively, and in women, leptin was inversely, related to subjects’ habitual caffeine consumption (p < 0.01). High caffeine consumers reduced weight, fat mass, and waist circumference more than low caffeine consumers; resting energy expenditure was reduced less and respiratory quotient was reduced more during weight loss (p < 0.01). In the low caffeine consumers, during WM, green tea still reduced body weight, waist, respiratory quotient and body fat, whereas resting energy expenditure was increased compared with a restoration of these variables with placebo (p < 0.01). In the high caffeine consumers, no effects of the green tea‐caffeine mixture were observed during WM. Discussion: High caffeine intake was associated with weight loss through thermogenesis and fat oxidation and with suppressed leptin in women. In habitual low caffeine consumers, the green tea‐caffeine mixture improved WM, partly through thermogenesis and fat oxidation.  相似文献   

18.
Food quality and availability play an important role in an animal's life history. The aim of this study was to examine the effect of diet quality [high-fiber diet (HF) or low-fiber diet (LF)] on energy budgets and thermogenesis in Brandt's voles (Lasiopodomys (Microtus) brandtii). Dry matter intake and gross energy intake increased and digestibility decreased in HF voles compared with LF voles, while the digestible energy intake was similar for both HF and LF voles. Nonshivering thermogenesis (NST) decreased in HF voles, while LF voles kept stable; no significant differences were detected in basal metabolic rate (BMR), BAT uncoupling protein 1 (UCP1) content and the levels of serum thyroid hormones (T3 and T4) between HF and LF voles. Although there were no differences in body fat content and serum leptin concentrations between HF and LF voles, serum leptin concentrations in HF voles were reduced to nearly half as those seen in LF voles after 4-weeks acclimation. These results support the hypothesis that Brandt's voles can compensate the poor quality diet physiologically by the means of increasing food intake and decreasing thermogenesis.  相似文献   

19.
Obligatory thermogenesis is a necessary accompaniment of all metabolic processes involved in maintenance of the body in the living state, and occurs in all organs. It includes energy expenditure involved in ingesting, digesting, and processing food (thermic effect of food (TEF]. At certain life stages extra energy expenditure for growth, pregnancy, or lactation would also be obligatory. Facultative thermogenesis is superimposed on obligatory thermogenesis and can be rapidly switched on and rapidly suppressed by the nervous system. Facultative thermogenesis is important in both thermal balance, in which control of thermoregulatory thermogenesis (shivering in muscle, nonshivering in brown adipose tissue (BAT] balances neural control of heat loss mechanisms, and in energy balance, in which control of facultative thermogenesis (exercise-induced in muscle, diet-induced thermogenesis (DIT) in BAT) balances control of energy intake. Thermal balance (i.e., body temperature) is much more stringently controlled than energy balance (i.e., body energy stores). Reduced energy expenditure for thermogenesis is important in two types of obesity in laboratory animals. In the first type, deficient DIT in BAT is a prominent feature of altered energy balance. It may or may not be associated with hyperphagia. In a second type, reduced cold-induced thermogenesis in BAT as well as in other organs is a prominent feature of altered thermal balance. This in turn results in altered energy balance and obesity, exacerbated in some examples by hyperphagia. In some of the hyperphagic obese animals it is likely that the exaggerated obligatory thermic effect of food so alters thermal balance that BAT thermogenesis is suppressed. In all obese animals, deficient hypothalamic control of facultative thermogenesis and (or) food intake is implicated.  相似文献   

20.
This study aimed to evaluate the weight loss and hunger motivation effects of an energy‐restricted high‐protein (HP) diet in overweight and obese children. In total, 95 overweight and obese children attended an 8‐week (maximum) program of physical activity, reduced‐energy intake, and behavior change education. Children were randomly assigned to one of two isoenergetic diets (standard (SP): 15% protein; HP: 25% protein), based on individually estimated energy requirements. Anthropometry and body composition were assessed at the start and end of the program and appetite and mood ratings completed on the first 3 consecutive weekdays of each week children attended camp. The HP diet had no greater effect on weight loss, body composition, or changes in appetite or mood when compared to the SP diet. Overall, campers lost 5.2 ± 3.0 kg in body weight and reduced their BMI standard deviation score (sds) by 0.25. Ratings of desire to eat increased significantly over the duration of the intervention, irrespective of diet. This is the third time we have reported an increase in hunger motivation in weight‐loss campers and replicates our previous failure to block this with a higher protein diet. Further work is warranted into the management of hunger motivation as a result of negative energy balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号