首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In arthropods, annelids and chordates, segmentation of the body axis encompasses both ectodermal and mesodermal derivatives. In vertebrates, trunk mesoderm segments autonomously and induces segmental arrangement of the ectoderm-derived nervous system. In contrast, in the arthropod Drosophila melanogaster, the ectoderm segments autonomously and mesoderm segmentation is at least partially dependent on the ectoderm. While segmentation has been proposed to be a feature of the common ancestor of vertebrates and arthropods, considering vertebrates and Drosophila alone, it is impossible to conclude whether the ancestral primary segmented tissue was the ectoderm or the mesoderm. Furthermore, much of Drosophila segmentation occurs before gastrulation and thus may not accurately represent the mechanisms of segmentation in all arthropods. To better understand the relationship between segmented germ layers in arthropods, we asked whether segmentation is an intrinsic property of the ectoderm and/or the mesoderm in the crustacean Parhyale hawaiensis by ablating either the ectoderm or the mesoderm and then assaying for segmentation in the remaining tissue layer. We found that the ectoderm segments autonomously. However, mesoderm segmentation requires at least a permissive signal from the ectoderm. Although mesodermal stem cells undergo normal rounds of division in the absence of ectoderm, they do not migrate properly in respect to migration direction and distance. In addition, their progeny neither divide nor express the mesoderm segmentation markers Ph-twist and Ph-Even-skipped. As segmentation is ectoderm-dependent in both Parhyale and holometabola insects, we hypothesize that segmentation is primarily a property of the ectoderm in pancrustacea.  相似文献   

2.
Ten years ago we showed for the first time that Notch signalling is required in segmentation in spiders, indicating the existence of similar mechanisms in arthropod and vertebrate segmentation. However, conflicting results in various arthropod groups hampered our understanding of the ancestral function of Notch in arthropod segmentation. Here we fill a crucial data gap in arthropods and analyse segmentation in a crustacean embryo. We analyse the expression of homologues of the Drosophila and vertebrate segmentation genes and show that members of the Notch signalling pathway are expressed at the same time as the pair-rule genes. Furthermore, inactivation of Notch signalling results in irregular boundaries of the odd-skipped-like expression domains and affects the formation of segments. In severe cases embryos appear unsegmented. We suggest two scenarios for the function of Notch signalling in segmentation. The first scenario agrees with a segmentation clock involving Notch signalling, while the second scenario discusses an alternative mechanism of Notch function which is integrated into a hierarchical segmentation cascade.  相似文献   

3.
4.
Heart development exhibits some striking similarities between vertebrates and arthropods, for example in both cases the heart develops as a linear tube from mesodermal cells. Furthermore, the underlying molecular pathways exhibit a significant number of similarities between vertebrates and the fruit fly Drosophila, suggesting a common origin of heart development in the last common ancestor of flies and vertebrates. However, there is hardly any molecular data from other animals. Here we show that many of the key genes are also active in heart development in the spider Cupiennius salei. Spiders belong to the chelicerates and are distantly related to insects with respect to the other arthropods. The tinman/Nkx2.5 ortholog is the first gene to be specifically expressed in the presumptive spider heart, like in flies and vertebrates. We also show that tinman is expressed in a similar way in the beetle Tribolium castaneum. Taken together this demonstrates that tinman has a conserved role in the specification of the arthropod heart. In addition, we analyzed the expression of other heart genes (decapentaplegic, Wnt5, H15, even-skipped, and Mef2 ) in Cupiennius. The expression of these genes suggests that the genetic pathway of heart development may be largely conserved among arthropods. However, a major difference is seen in the earlier expression of the even-skipped gene in the developing spider heart compared with Drosophila, implying that the role of even-skipped in heart formation might have changed during arthropod evolution. The most striking finding, however, is that in addition to the dorsal tissue of the fourth walking leg segment and the opisthosomal segments, we discovered tinman-expressing cells that arise from a position dorsal to the cephalic lobe and that contribute to the anterior dorsal vessel. In contrast to the posterior heart tissue, these cells do not express the other heart genes. The spider heart thus is composed of two distinct populations of cells.  相似文献   

5.
It has been shown that segmentation in the short-germ insects proceeds by a two-step mechanism. The anterior region is simultaneously segmented in a manner similar to that in Drosophila, which is apparently unique to insects, and the rest of the posterior region is segmented sequentially by a mechanism involving a segmentation clock, which is derived from the common ancestor of arthropods. In order to propose the evolutionary scenario of insect segmentation, we examined segmentation in the jumping bristletail, the basalmost extant insect. Using probes for engrailed-family genes for in situ hybridization, we found no sign of simultaneous segmentation in the anterior region of the jumping bristletail embryos. All segments except the anteriormost segment are formed sequentially. This condition shown in the jumping bristletail embryos may represent the primitive pattern of insect segmentation. The intercalating formation of the intercalary segment is assumed to be a synapomorphic trait shared among all insects after the branching of the jumping bristletail.  相似文献   

6.
Arthropods and vertebrates display a segmental body organisation along all or part of the anterior-posterior axis. Whether this reflects a shared, ancestral developmental genetic mechanism for segmentation is uncertain. In vertebrates, segments are formed sequentially by a segmentation 'clock' of oscillating gene expression involving Notch pathway components. Recent studies in spiders and basal insects have suggested that segmentation in these arthropods also involves Notch-based signalling. These observations have been interpreted as evidence for a shared, ancestral gene network for insect, arthropod and bilaterian segmentation. However, because this pathway can play multiple roles in development, elucidating the specific requirements for Notch signalling is important for understanding the ancestry of segmentation. Here we show that Delta, a ligand of the Notch pathway, is not required for segment formation in the cricket Gryllus bimaculatus, which retains ancestral characteristics of arthropod embryogenesis. Segment patterning genes are expressed before Delta in abdominal segments, and Delta expression does not oscillate in the pre-segmental region or in formed segments. Instead, Delta is required for neuroectoderm and mesectoderm formation; embryos missing these tissues are developmentally delayed and show defects in segment morphology but normal segment number. Thus, what initially appear to be 'segmentation phenotypes' can in fact be due to developmental delays and cell specification errors. Our data do not support an essential or ancestral role of Notch signalling in segment generation across the arthropods, and show that the pleiotropy of the Notch pathway can confound speculation on possible segmentation mechanisms in the last common bilaterian ancestor.  相似文献   

7.
The Wnt genes encode secreted glycoprotein ligands that regulate many developmental processes from axis formation to tissue regeneration [1]. In bilaterians, there are at least 12 subfamilies of Wnt genes [2]. Wnt3 and Wnt8 are required for somitogenesis in vertebrates [3-7] and are thought to be involved in posterior specification in deuterostomes in general [8]. Although TCF and beta-catenin have been implicated in the posterior patterning of some short-germ insects [9, 10], the specific Wnt ligands required for posterior specification in insects and other protostomes remained unknown. Here we investigated the function of Wnt8 in a chelicerate, the common house spider Achaearanea tepidariorum[11]. Knockdown of Wnt8 in Achaearanea via parental RNAi caused misregulation of Delta, hairy, twist, and caudal and resulted in failure to properly establish a posterior growth zone and truncation of the opisthosoma (abdomen). In embryos with the most severe phenotypes, the entire opisthosoma was missing. Our results suggest that in the spider, Wnt8 is required for posterior development through the specification and maintenance of growth-zone cells. Furthermore, we propose that Wnt8, caudal, and Delta/Notch may be parts of an ancient genetic regulatory network that could have been required for posterior specification in the last common ancestor of protostomes and deuterostomes.  相似文献   

8.
Repeated body segments are a key feature of arthropods. The formation of body segments occurs via distinct developmental pathways within different arthropod clades. Although some species form their segments simultaneously without any accompanying measurable growth, most arthropods add segments sequentially from the posterior of the growing embryo or larva. The use of Notch signaling is increasingly emerging as a common feature of sequential segmentation throughout the Bilateria, as inferred from both the expression of proteins required for Notch signaling and the genetic or pharmacological disruption of Notch signaling. In this study, we demonstrate that blocking Notch signaling by blocking γ‐secretase activity causes a specific, repeatable effect on segmentation in two different anostracan crustaceans, Artemia franciscana and Thamnocephalus platyurus. We observe that segmentation posterior to the third or fourth trunk segment is arrested. Despite this marked effect on segment addition, other aspects of segmentation are unaffected. In the segments that develop, segment size and boundaries between segments appear normal, engrailed stripes are normal in size and alignment, and overall growth is unaffected. By demonstrating Notch involvement in crustacean segmentation, our findings expand the evidence that Notch plays a crucial role in sequential segmentation in arthropods. At the same time, our observations contribute to an emerging picture that loss‐of‐function Notch phenotypes differ significantly between arthropods suggesting variability in the role of Notch in the regulation of sequential segmentation. This variability in the function of Notch in arthropod segmentation confounds inferences of homology with vertebrates and lophotrochozoans.  相似文献   

9.
Segmentation, i.e. the subdivision of the body into serially homologous units, is one of the hallmarks of the arthropods. Arthropod segmentation is best understood in the fly Drosophila melanogaster. But different from the situation in most arthropods in this species all segments are formed from the early blastoderm (so called long-germ developmental mode). In most other arthropods only the anterior segments are formed in a similar way (so called short-germ developmental mode). Posterior segments are added one at a time or in pairs of two from a posterior segment addition zone. The segmentation mechanisms are not universally conserved among arthropods and only little is known about the genetic patterning of the anterior segments. Here we present the expression patterns of the insect head patterning gene orthologs hunchback (hb), orthodenticle (otd), buttonhead-like (btdl), collier (col), cap-n-collar (cnc) and crocodile (croc), and the trunk gap gene Krüppel (Kr) in the myriapod Glomeris marginata. Conserved expression of these genes in insects and a myriapod suggests that the anterior segmentation system may be conserved in at least these two classes of arthropods. This finding implies that the anterior patterning mechanism already existed in the last common ancestor of insects and myriapods.  相似文献   

10.
Polychaete annelids and arthropods are both segmented protostome invertebrates. To investigate whether the segmented body plan of these two phyla share a common molecular ground pattern, we report the developmental expression of orthologues of the arthropod segment polarity genes engrailed (en), hedgehog (hh), and wingless (wg/Wnt1) in larval and juvenile stages of the polychaete annelid Capitella sp. I and en in a second polychaete, Hydroides elegans. Temporally, neither Wnt1 nor hh are detected in the segmented region of the larval body until after morphological segmentation is apparent. Expression of CapI-Wnt1 is limited to a ring of ectoderm marking the future anus during larval segmentation. CapI-hh is expressed in a ring of the hindgut internal to that of CapI-Wnt1, as well as in a subset of ventral nerve cord neurons, anterior gut tissue, and mesoderm. In both H. elegans and Capitella sp. I, en is expressed in a spatially and temporally dynamic manner in segmentally iterated structures as well as a population of cells that migrate internally from ectoderm to mesoderm, possibly representing a population of ecto-mesodermal precursors. Significantly, the expression patterns we report for wg, en, and hh orthologues in Capitella sp. I and for en in larval development of H. elegans are not comparable to the highly conserved ectodermal segment polarity pattern observed in arthropods at any life history stage, consistent with distinct origins of segmentation between annelids and arthropods.  相似文献   

11.
The Notch signaling pathway is critical in cell fate specification throughout development. In the developing wing disc, single sensory organ precursors (SOPs) are selected from proneural clusters via a process of lateral inhibition mediated by the Notch signaling pathway. The epidermal growth factor receptor (EGFR) pathway has also been implicated in SOP formation. Here, we describe the Drosophila melanogaster gene friend of echinoid (fred), a paralogue of echinoid (ed), a gene recently identified as a negative regulator of the EGFR pathway. fred function was examined in transgenic flies by using inducible RNA interference (RNAi). Suppression of fred in developing wing discs results in specification of ectopic SOPs, additional microchaeta, and cell death. In eye-antennal discs, fred suppression causes a rough eye phenotype. These phenotypes are suppressed by overexpression of Notch, Suppressor of Hairless [Su(H)], and Enhancer of split m7. In contrast, overexpression of Hairless, a negative regulator of the Notch pathway, and decreased Su(H) activity enhance these phenotypes. Thus, fred acts in close concert with the Notch signaling pathway. Dosage-sensitive genetic interaction also suggests a close relationship between fred and ed.  相似文献   

12.
Segment formation is critical to arthropod development, yet there is still relatively little known about this process in most arthropods. Here, we present the expression patterns of the genes even-skipped (eve), engrailed, and wingless in a centipede, Lithobius atkinsoni. Despite some differences when compared with the patterns in insects and crustaceans, the expression of these genes in the centipede suggests that their basic roles are conserved across the mandibulate arthropods. For example, unlike the seven pair-rule stripes of eve expression in the Drosophila embryonic germband, the centipede eve gene is expressed strongly in the posterior of the embryo, and in only a few stripes between newly formed segments. Nonetheless, this pattern likely reflects a conserved role for eve in the process of segment formation, within the different context of a short-germband mode of embryonic development. In the centipede, the genes wingless and engrailed are expressed in stripes along the middle and posterior of each segment, respectively, similar to their expression in Drosophila. The adjacent expression of the engrailed and wingless stripes suggests that the regulatory relationship between the two genes may be conserved in the centipede, and thus this pathway may be a fundamental mechanism of segmental development in most arthropods.  相似文献   

13.
14.
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped anteriorly through a tube termed the aorta. Since we have previously shown that the posterior part of the aorta is specified during embryogenesis to form the adult heart during metamorphosis, we determined if the embryonic aorta is also patterned by the function of Hox segmentation genes. Using gain- and loss-of-function experiments, we demonstrate that the three Hox genes expressed in the posterior aorta and heart are sufficient to confer heart or posterior aorta fate throughout the dorsal vessel. Additionally, we demonstrate that Ultrabithorax and abd-A, but not Antennapedia, function to control cell number in the dorsal vessel. These studies add robustness to the model that homeotic selector genes pattern the Drosophila dorsal vessel, and further extend our understanding of how the cardiac tube is patterned in animal models.  相似文献   

15.
Segmentation is unquestionably a major factor in the evolution of complex body plans, but how this trait itself evolved is unknown. Approaching this problem requires comparing the molecular mechanisms of segmentation in diverse segmented and unsegmented taxa. Notch/Hes signaling is involved in segmentation in sequentially segmenting vertebrates and arthropods, as judged by patterns of expression of one or more genes in this network and by the disruption of segmental patterning when Notch/Hes signaling is disrupted. We have previously shown that Notch and Hes homologs are expressed in the posterior progress zone (PPZ), from which segments arise, in the leech Helobdella robusta, a sequentially segmenting lophotrochozoan (phylum Annelida). Here, we show that disrupting Notch/Hes signaling disrupts segmentation in this species as well. Thus, Notch/Hes functions in either the maintenance of the PPZ and/or the patterning processes of segmentation in representatives of all three superphyla of bilaterally symmetric animals. These results are consistent with two evolutionary scenarios. In one, segmentation was already present in the ancestor of all three superphyla. In the other, Notch/Hes signaling functioned in axial growth by terminal addition in an unsegmented bilaterian ancestor, and was subsequently exapted to function in segmentation as that process evolved independently in two or more taxa.  相似文献   

16.
Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.  相似文献   

17.
Summary Drosophila embryos, exposed to ether between 1 and 4 h after oviposition, develop defects ranging from the complete lack of segmentation to isolated gaps in single segments. Between these extremes are varying extents of incomplete and abnormal segmentation. On the basis of both their temporal and spatial characteristics, five major phenotype classes may be distinguished: headless — unsegmented or incompletely segmented anteriorly; gap — interruptions of segmentation not obviously periodic; alternating segment gaps — interruptions with double segment periodicities; fused segments; and short segments — truncations with single segment periodicities. Many defects resemble known mutant phenotypes. The disturbances in segmentation are predominantly global and frequently accompanied by alterations in segment specification, such that the segments obtained show no resemblance to the normal homologues. These features, together with the distinctive spatiotemporal characteristics of the defects, all point to segmentation as a dynamic process. The regular spacing of the segments and the fact that the entire range of defects is inducible by ether are further consistent with the hypothesis that at least part of the segmentation process may consist of physicochemical reactions coordinated over the whole body. The relationship between our data and data from genetic and other analyses are briefly discussed.  相似文献   

18.
19.
20.
Diplopods (millipedes) are known for their irregular body segmentation. Most importantly, the number of dorsal segmental cuticular plates (tergites) does not match the number of ventral structures (e.g., sternites). Controversial theories exist to explain the origin of this so-called diplosegmentation. We have studied the embryology of a representative diplopod, Glomeris marginata, and have analyzed the segmentation genes engrailed (en), hedgehog (hh), cubitus-interruptus (ci), and wingless (wg). We show that dorsal segments can be distinguished from ventral segments. They differ not only in number and developmental history, but also in gene expression patterns. engrailed, hedgehog, and cubitus-interruptus are expressed in both ventral and dorsal segments, but at different intrasegmental locations, whereas wingless is expressed only in the ventral segments, but not in the dorsal segments. Ventrally, the patterns are similar to what has been described from Drosophila and other arthropods, consistent with a conserved role of these genes in establishing parasegment boundaries. On the dorsal side, however, the gene expression patterns are different and inconsistent with a role in boundary formation between segments, but they suggest that these genes might function to establish the tergite borders. Our data suggest a profound and rather complete decoupling of dorsal and ventral segmentation leading to the dorsoventral discrepancies in the number of segmental elements. Based on gene expression, we propose a model that may resolve the hitherto controversial issue of the correlation between dorsal tergites and ventral leg pairs in basal diplopods (e.g., Glomeris) and is suggestive also for derived, ring-forming diplopods (e.g., Juliformia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号