共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative damage to catalase induced by peroxyl radicals: functional protection by melatonin and other antioxidants 总被引:3,自引:0,他引:3
Thermal decomposition by the azo initiator 2,2' azobis-(2-amidinopropane) dihydrochloride (AAPH) has been widely used as a water-soluble source of free radical initiators capable of inducing lipid peroxidation and protein damage. Here, in a lipid-free system, AAPH alone (40 mM) rapidly induced protein modification and inactivation of the enzyme catalase (EC 1.11.1.6). Using SDS-PAGE, it was shown that protein band intensity is dramatically reduced after 4 h of incubation with AAPH, leading to protein aggregation. Several antioxidants including melatonin, glutathione (GSH) and trolox prevented catalase modification when used at a 250 μM concentration whereas ascorbate was only effective at 1 mM concentration. All the antioxidants tested reduced carbonyl formation although melatonin was the most effective in this regard. Enzyme inactivation caused by AAPH was also significantly reduced by the antioxidants and again melatonin was more efficient than the other antioxidants used in this study. Results shown here demonstrate that alkyl peroxyl radicals inactivate catalase and reduce the effectiveness of cells to defend against free radical damage; the damage to catalase can be prevented by antioxidants, especially melatonin. 相似文献
2.
A W Konings J Damen W B Trieling 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1979,35(4):343-350
Liposomes were prepared from phospholipids extracted from biological membranes. A comparison was made between the peroxidation rate in handshake liposomes and in sonicated liposomes. The smaller sonicated liposomes were more vulnerable to peroxidation, probably because of the smaller radius of curvature, which results in a less dense packing of lipid molecules in the bilayer and a facilitated action of water radicals produced by the X-irradiation. High oxygen enhancement ratios were obtained, especially at low dose rates, suggesting the operation of slowly progressing chain reactions initiated by ionizing radiation. Three compounds were tested for their ability to protect the liposomal membranes against lipid peroxidation. The naturally occurring compounds reduced glutathione (GSH) and vitamin E(alpha-T) and the powerful radiation protector cysteamine (MEA). All three molecules could protect the liposomes against peroxidation. The membrane-soluble compound vitamin E was by far the most powerful. About 50 per cent protection was achieved by using 5 X 10(-6) M alpha-T, 10(-4) M GSH and 5 X 10(-4) M MEA. The fatty acid composition of the lipids altered drastically as a result of the irradiation. Arachidonic acid and docosahexanoic acid were the most vulnerable of the fatty acids. Very efficient protection of these polyunsaturated fatty acids could be obtained with relatively low concentrations of vitamin E built into the membranes. 相似文献
3.
Jawahar Kalra Subrahmanyam V. Mantha Praveen Kumar Kailash Prasad 《Molecular and cellular biochemistry》1994,136(2):125-129
Lipid peroxidation of membranes by oxygen free radicals has been implicated in various disease states. Different antioxidants and iron chelators have been used to reduce lipid peroxidation. Lazaroids have been used for the acute treatment of central nervous system disorders such as trauma and ischemia wherein lipid peroxidative processes take place.In this study we evaluated the effect of lazaroids (U-785 18F and U-74389F) on the release of acid phosphatase activity and formation of malondialdehyde (MDA) in rat liver lyosomes subjected to exogenously generated oxygen free radicals. There was a significant increase in the acid phosphatase release and MDA formation in the presence of oxygen free radicals. This was prevented by both the lazaroids. In a separate study the effect of lazaroid U-74389F was seen on the zymosan-stimulated polymorphonuclear (PMN) leukocyte-derived chemiluminescence. The PMN leukocyte chemiluminescent activity was attenuated by the lazaroid in a dose-dependent manner. These studies suggest that lazaroids may inhibit lipid peroxidation and stabilize the membrane. 相似文献
4.
Alireza Shirazi Ehsan Mihandoost Mehran Mohseni Mahmoud Ghazi-Khansari Seied Rabie Mahdavi 《Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)》2013,29(1):65-74
During radiotherapy, ionizing irradiation interacts with biological systems to produce free radicals, which attacks various cellular components. The hematopoietic system is well-known to be radiosensitive and its damage may be life-threatening. Melatonin synergistically acts as an immunostimulator and antioxidant. In this study we used a total of 120 rats with 20 rats in each group. Group 1 did not receive melatonin or irradiation (Control group), Group 2 received only 10 mg/kg melatonin (Mel group), Group 3 exposed to dose of 2 Gy irradiation (2 Gy Rad group), Group 4 exposed to 8 Gy irradiation (8 Gy Rad group), Group 5 received 2 Gy irradiation plus 10 mg/kg melatonin (Mel +2 Gy Rad group) and Group 6 received 8 Gy irradiation plus 10 mg/kg melatonin (Mel+8 Gy Rad group). Following exposure to radiation, five rats from each group were sacrificed at 4, 24, 48 and 72 h. Exposure to different doses of irradiation resulted in a dose-dependent decline in the antioxidant enzymes activity and lymphocyte count (LC) and an increase in the nitric oxide (NO) levels of the serum. Pre-treatment with melatonin (10 mg/kg) ameliorates harmful effects of 2 and 8 Gy irradiation by increasing lymphocyte count(LC) as well as antioxidant enzymes activity and decreasing NO levels at all time-points. In conclusion 10 mg/kg melatonin is likely to be a threshold concentration for significant protection against lower dose of 2 Gy gamma irradiation compared to higher dose of 8 Gy. Therefore, it seems that radio-protective effects of melatonin are dose-dependent. 相似文献
5.
This study was undertaken to evaluate the protective effects of the soybean-derived Bowman-Birk inhibitor (BBI), BBI concentrate (BBIC) and/or antioxidants against the adverse biological effects induced by space radiation in cultured human epithelial cells. The effects of BBI, BBIC and a combination of ascorbic acid, co-enzyme Q10, L-selenomethionine (SeM) and vitamin E succinate on proton and HZE-particle [high-energy (high E) nuclei of heavier (high atomic number, Z) elements] radiation-induced cytotoxicity in MCF10 human breast epithelial cells and a phenotypic change associated with transformation in HTori-3 human thyroid epithelial cells were assessed with a clonogenic survival assay and a soft agar colony formation assay. The results demonstrate that BBIC and antioxidants are effective in protecting against space radiation-induced cytotoxicity in MCF10 cells and BBI, BBIC and antioxidants are effective in protecting against a space radiation-induced phenotypic change associated with transformation of HTori-3 cells. 相似文献
6.
A chemiluminescence (CL) method was developed for the evaluation of oxidative damage to biomolecules induced by singlet oxygen ((1)O(2)) and for the evaluation of the protective effects of antioxidants. The (1)O(2) was generated from the reaction of H(2)O(2)+OCl(-). Results showed that the CL signal from the reaction of H(2)O(2)+OCl(-) was weak, however, it was enhanced dose-dependently with the addition of DNA and unsaturated fatty acid, respectively. Spectra analysis indicated that the enhanced CL could be ascribed to the decay of triplet-excited carbonyl compounds, which were generated from the reaction of (1)O(2) plus the biomolecules. On the other hand, the enhanced CL produced in the above systems could be effectively inhibited by lycopene, beta-carotene, VC, and VE, but could not be inhibited by mannitol, SOD, and NaN(3). The mechanism therein was discussed. 相似文献
7.
O S León S Menéndez N Merino R Castillo S Sam L Pérez E Cruz V Bocci 《Mediators of inflammation》1998,7(4):289-294
There is some anecdotal evidence that oxygen-ozone therapy may be beneficial in some human diseases. However so far only a few biochemical and pharmacodynamic mechanisms have been elucidated. On the basis of preliminary data we postulated that controlled ozone administration would promote an oxidative preconditioning preventing the hepatocellular damage mediated by free radicals. Six groups of rats were classified as follows: (1) negative control, using intraperitoneal sunflower oil; (2) positive control using carbon tetrachloride (CCl4) as an oxidative challenge; (3) oxygen-ozone, pretreatment via rectal insufflation (15 sessions) and after it, CCl4; (4) oxygen, as group 3 but using oxygen only; (5) control oxygen-ozone, as group 3, but without CCl4; group (6) control oxygen, as group 5, but using oxygen only. We have evaluated critical biochemical parameters such as levels of transaminase, cholinesterase, superoxide dismutase, catalase, phospholipase A, calcium dependent ATPase, reduced glutathione, glucose 6 phosphate dehydrogenase and lipid peroxidation. Interestingly, in spite of CCl4 administration, group 3 did not differ from group 1, while groups 2 and 4 showed significant differences from groups 1 and 3 and displayed hepatic damage. To our knowledge these are the first experimental results showing that repeated administration of ozone in atoxic doses is able to induce an adaptation to oxidative stress thus enabling the animals to maintain hepatocellular integrity after CCl4 poisoning. 相似文献
8.
The ability of the redox cycling compound, diquat, to induce lipid peroxidation and oxidative damage was investigated using hepatic microsomes. Antioxidants, with demonstrated efficacy in physical models of oxidative stress, were examined in a diquat model. Diquat (10 microM-3 mM) induced lipid peroxidation (TBARS) in hepatic microsomes prepared from Fischer 344 rats. Diquat (1 mM) also increased protein carbonyl formation, NADPH oxidation and superoxide anion radical production (acetylated cytochrome c reduction). The novel antioxidants U-74,006F, U-78,517G and the known antioxidant, DPPD, decreased diquat-induced lipid peroxidation to levels below that of the control. These antioxidants also decreased protein carbonyl formation caused by diquat. U-74,006F and U-78,517G reduced NADPH oxidation slightly; although this inhibition was statistically significant, the biological significance is questionable. DPPD had no effect on this parameter. U-78,517G inhibited the reduction of acetylated cytochrome c slightly, whereas the other antioxidants had little effect. Thus overall, the increase in NADPH oxidation and the production of superoxide anion by redox cycling of diquat were not substantially affected by antioxidants. Neither did the test compounds show evidence of activity as iron chelators. This leads to the suggestion that antioxidants are preventing diquat-induced oxidative damage by scavenging lipid peroxyl radicals and preventing the propagation of the lipid peroxidation process. 相似文献
9.
80 rats, randomly selected, were divided into 3 treatment groups: pre-, co- and post-treatment; consisting of 6 sub-groups each (5 rats per sub-group): baseline, normal saline (2 mL), α-lipoic acid (20 mg/kg body weight), 200 mg/kg, 400 mg/kg or 800 mg/kg body weight Theobroma cacao stem bark aqueous extract (TCAE). All rats except for baseline group were intoxicated with 20 mg/kg body weight doxorubicin (DOX) intraperitoneally. The animals in pre- or post-treatment group received a single dose of DOX (20 mg/kg body weight) intraperitoneally 24 h before or after 7 days’ oral administration with TCAE respectively while those in co-treatment group were co-administered 2.86 mg/kg body weight of DOX with either normal saline, α- lipoic acid or TCAE orally for 7 days. Animals were sacrificed (pre- and post- treatment groups were sacrificed on the ninth day while the co-treatment group sacrificed on the 8th day). Brain and heart tissue samples were harvested for enzyme markers of toxicity, oxidative stress and histopathological examinations. DOX intoxication caused significant decrease in activities of LDH and ACP, and increase in γGT and ALP activities in brain tissues while causing a significant increase in LDH, ACP, γGT activities and decrease in ALP activity in the cardiac tissues. DOX intoxication caused a significant increase in concentrations of H2O2 generated, MDA and PC, XO, MPx and NOX activities with concomitant decrease in CAT, SOD, GPx and GST activities, and in concentrations of GSH, AsA and α-Toc in brain and cardiac tissues. Pre-, co- and post-treatment with TCAE at either 200 mg/kg, 400 mg/kg or 800 mg/kg body weight significantly reversed the oxidative damage to the organs induced by DOX-intoxication. The result affirmed that T. cacao stem bark aqueous extract protected against DOX induced oxidative damage in brain and cardiac tissues of experimental rats. 相似文献
10.
Inhibition of enzymes and oxidative damage of red blood cells induced by t-butylhydroperoxide-derived radicals 总被引:2,自引:0,他引:2
J Van der Zee J Van Steveninck J F Koster T M Dubbelman 《Biochimica et biophysica acta》1989,980(2):175-180
The effects of t-butylhydroperoxide (tBHP), its alkoxyl radical (tBuO.) and its peroxyl radical (tBuOO.) in model systems and on red blood cells were studied. Glyceraldehyde-3-phosphate dehydrogenase was strongly inhibited by tBHP via a direct reaction of the hydroperoxide with an essential sulfhydryl group in the enzyme molecule. Several other enzymes were unaffected by tBHP. Alcohol dehydrogenase was strongly inhibited by tBuO. but was much less sensitive to tBuOO.. Lysozyme, lactate dehydrogenase and trypsin, on the other hand, were very sensitive to the peroxyl and not, or much less, to the alkoxyl radical, whereas acetylcholinesterase was very sensitive to both radicals. tBuOO. caused covalent binding of tryptophan, tyrosine, histidine and methionine to serum albumin. The corresponding alkoxyl radical was ineffective in this respect. Conversely, tBuO. caused peroxidation of linolenic acid, whereas tBuOO. did not. Incubation of human erythrocytes with tBHP caused lipid peroxidation and K+ leakage. Both effects were caused by tBHP-derived radicals generated in a reaction of the hydroperoxide with hemoglobin. With radical scavengers it was possible to dissociate tBHP-induced lipid peroxidation and K+ leakage, demonstrating that these two processes are not causally related. Experimental results indicate that tBuO. causes lipid peroxidation, whereas tBuOO. is responsible for K+ leakage. 相似文献
11.
Stepanenko IIu Strakhovskaia MG Belenikina NS Nikolaev IuA Miliukin AL Kozlova AN Revina AA El'-Registan GI 《Mikrobiologiia》2004,73(2):204-210
The effects of C7-alkylhydroxybenzene (C7-AHB) and p-hydroxyethylphenol (tyrosol), chemical analogs of microbial anabiosis autoregulators, on the viability of yeast cells under oxidative stress were investigated. The stress was caused by reactive oxygen species (ROS) produced under gamma irradiation of cell suspensions using doses of 10-150 krad at an intensity of 194 rad/s or by singlet oxygen generated in cells photosensibilized with chlorin e6 (10 micrograms/l). C7-AHB was found to exert a protective effect. The addition of 0.05-0.16 vol% of C7-AHB to cell suspensions 30 min before irradiation protected yeast cells from gamma radiation (50 krad). The protective effect of C7-AHB manifested itself both in the preservation of cell viability during irradiation and in the recovery of their capacity to proliferate after irradiation. In our studies on photodynamic cell inactivation, the fact that the phenolic antioxidant C7-AHB protects cells from intracellular singlet oxygen was revealed for the first time. The analysis of difference absorption spectra of oxidized derivatives of C7-AHB demonstrated that the protective mechanism of C7-AHB involves the scavenging of ROS resulting from oxidative stress. The fact that tyrosol failed to perform a photoprotective function suggests that the antioxidant properties of microbial C7-AHB are not related to their chaperon functions. The results obtained make an important addition to the spectrum of known antioxidant and antistress effects of phenolic compounds. 相似文献
12.
Acutely administered melatonin reduces oxidative damage in lung and brain induced by hyperbaric oxygen 总被引:3,自引:0,他引:3
Pablos Marta I.; Reiter Russel J.; Chuang Jin-Ing; Ortiz Genaro G.; Guerrero Juan M.; Sewerynek Ewa; Agapito Maria T.; Melchiorri Daniela; Lawrence Richard; Deneke Susan M. 《Journal of applied physiology》1997,83(2):354-358
Pablos, Marta I., Russel J. Reiter, Jin-Ing Chuang, GenaroG. Ortiz, Juan M. Guerrero, Ewa Sewerynek, Maria T. Agapito, DanielaMelchiorri, Richard Lawrence, and Susan M. Deneke. Acutely administered melatonin reduces oxidative damage in lung and brain induced by hyperbaric oxygen. J. Appl.Physiol. 83(2): 354-358, 1997.Hyperbaric oxygenexposure rapidly induces lipid peroxidation and cellular damage in avariety of organs. In this study, we demonstrate that the exposure ofrats to 4 atmospheres of 100% oxygen for 90 min is associated withincreased levels of lipid peroxidation products [malonaldehyde(MDA) and 4-hydroxyalkenals (4-HDA)] and withchanges in the activities of two antioxidative enzymes[glutathione peroxidase (GPX) and glutathione reductase (GR)], as well as in the glutathione status in the lungs and in the brain. Products of lipid peroxidation increased after hyperbaric hyperoxia, both GPX and GR activities were decreased, and levels oftotal glutathione (reduced+oxidized) and glutathione disulfide (oxidized glutathione) increased in both lung and brain areas (cerebralcortex, hippocampus, hypothalamus, striatum, and cerebellum) but not inliver. When animals were injected with melatonin (10 mg/kg) immediatelybefore the 90-min hyperbaric oxygen exposure, all measurements ofoxidative damage were prevented and were similar to those in untreatedcontrol animals. Melatonin's actions may be related to a variety ofmechanisms, some of which remain to be identified, including itsability to directly scavenge free radicals and its induction ofantioxidative enzymes via specific melatonin receptors. 相似文献
13.
Protection against oxidative damage in cold-stored rabbit kidneys by desferrioxamine and indomethacin 总被引:2,自引:0,他引:2
The storage of rabbit kidneys in hypertonic citrate solution at 0 degree C for 48-72 hr of cold ischemia resulted in oxidative damage to membranes as measured by the in vitro formation of two markers of lipid peroxidation (Schiff's base and thiobarbituric acid (TBA)-reactive material). This damage was further increased when the organs were autografted and reperfused for 60 min. The intravenous (iv) administration of desferrioxamine (a powerful iron-chelating agent) prior to the removal of the kidneys reduced the production of Schiff's bases and TBA-reactive material to low levels in the cortex of stored kidneys and decreased these measures of lipid peroxidation in the medulla by approximately 50%. Intravenous administration of indomethacin (a cyclooxygenase inhibitor) had no effect on the rate of lipid peroxidation in the renal cortex, but significantly reduced the formation of TBA-reactive material and Schiff's bases in the medulla of kidneys following storage for 72 hr. The existence of two separate pathways of lipid peroxidation (one iron-catalyzed and the other cyclooxygenase-catalyzed) in the medulla of stored kidneys was further confirmed when administration of desferrioxamine and indomethacin together resulted in significantly greater protection against lipid peroxidation than when these compounds were administered singly. The value of this combination of agents for protecting kidneys against the damage due to cold ischemia followed by reperfusion was further suggested by a trend toward improved long-term survival of the animals following replantation of the stored kidneys. 相似文献
14.
15.
Ameliorative action of melatonin on oxidative damage induced by atrazine toxicity in rat erythrocytes 总被引:1,自引:0,他引:1
Excessive generation of reactive oxygen species (ROS) can induce oxidative damage to vital cellular molecules and structures including DNA, lipids, proteins, and membranes. Recently, melatonin has attracted attention because of their free radical scavenging and antioxidant properties. The aim of this study was to evaluate the possible protective role of melatonin against atrazine-induced oxidative stress in rat erythrocytes in vivo. Adult male albino rats of Wistar strain were randomly divided into four groups. Control group received isotonic saline; melatonin (10 mg/kg bw/day) group; atrazine (300 mg/kg of bw/day) group; atrazine + melatonin group. Oral administration of atrazine and melatonin was given daily for 21 days. Oxidative stress was assessed by determining the glutathione (GSH) and malondialdehyde (MDA) level, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G-6-PD) in the erythrocytes of normal and experimental animals. A significant increase in the MDA levels and decrease in the GSH was observed in the atrazine treated animals (P < 0.05). Also, significant increase in the activities of SOD, CAT, GPx, and GST were observed in atrazine treated group compared to controls (P < 0.05). Moreover, significant decrease in protein, total lipids, cholesterol, and phospholipid content in erythrocyte membrane were demonstrated in atrazine treated rats. Administration of atrazine significantly inhibits the activities of G-6-PD and membrane ATPases such as Na(+)/K(+)-ATPase, Mg(2+)-ATPase, and Ca(2+)-ATPase (P < 0.05). Scanning electron microscopic (SEM) examination of erythrocytes revealed morphological alterations in the erythrocytes of atrazine treated rats. Furthermore, supplementation of melatonin significantly modulates the atrazine-induced changes in LPO level, total lipids, total ATPases, GSH, and antioxidant enzymes in erythrocytes. In conclusion, the increase in oxidative stress markers and the concomitant alterations in antioxidant defense system indicate the role of oxidative stress in erythrocytes of atrazine-induced damage. Moreover, melatonin shows a protective role against atrazine-induced oxidative damage in rat erythrocytes. 相似文献
16.
Linoleic acid and antioxidants protect against DNA damage and apoptosis induced by palmitic acid 总被引:5,自引:0,他引:5
Beeharry N Lowe JE Hernandez AR Chambers JA Fucassi F Cragg PJ Green MH Green IC 《Mutation research》2003,530(1-2):27-33
Polyunsaturated fats are the main target for lipid peroxidation and subsequent formation of mutagenic metabolites, but diets high in saturated fats are more strongly associated with adverse health effects. We show that the common saturated fatty acid, palmitic acid, is a potent inducer of DNA damage in an insulin-secreting cell line, and in primary human fibroblasts. Damage is not associated with upregulation of inducible nitric oxide synthase, but is prevented by two different antioxidants, alpha-lipoic acid and 3,3'-methoxysalenMn(III) (EUK134), which also partly prevent palmitic acid-induced apoptosis and growth inhibition. Since mutagenic metabolites can be formed from peroxidation of polyunsaturated fatty acids, co-administration of palmitic and a polyunsaturated fatty acid might be particularly harmful. Palmitic acid-induced DNA damage is instead prevented by linoleic acid, which is acting here as a protective agent against oxidative stress, rather than as a source of mutagenic metabolites. These results illustrate the complexity of the relationship of dietary fat intake to genotoxicity. 相似文献
17.
Protective action of melatonin against oxidative DNA damage: chemical inactivation versus base-excision repair 总被引:2,自引:0,他引:2
Sliwinski T Rozej W Morawiec-Bajda A Morawiec Z Reiter R Blasiak J 《Mutation research》2007,634(1-2):220-227
Melatonin is a hormone-like substance that has a variety of beneficial properties as regulator of the circadian rhythm and as anti-inflammatory and anti-cancer agent. The latter activity can be linked with the ability of melatonin to protect DNA against oxidative damage. It may exert such action either by scavenging reactive oxygen species or their primary sources, or by stimulating the repair of oxidative damage in DNA. Since such type of DNA damage is reflected in oxidative base modifications that are primarily repaired by base-excision repair (BER), we tried to investigate in the present work whether melatonin could influence this DNA-repair system. We also investigated the ability of melatonin to inactivate hydrogen peroxide, a potent source of reactive oxygen species. Melatonin at 50 microM and its direct metabolite N(1)-acetyl-N(2)-formyl-5-methoxykynuramine reduced DNA damage induced by hydrogen peroxide at approximately the same ratio. Melatonin stimulated the repair of DNA damage induced by hydrogen peroxide, as assessed by the alkaline comet assay. However, melatonin at 50 microM had no impact on the activity in vitro of three glycosylases playing a pivotal role in BER: Endo III, Fpg and ANPG 80. On the other hand, melatonin chemically inactivated hydrogen peroxide, reducing its potential to damage DNA. And finally, melatonin did not influence the repair of an a-basic (AP) site by cellular extracts, as was evaluated by a functional BER assay in vitro. In conclusion, melatonin can have a protective effect against oxidative DNA damage by chemical inactivation of a DNA-damaging agent as well as by stimulating DNA repair, but key factors in BER, viz. glycosylases and AP-endonucleases, do not seem to be affected by melatonin. Further study with other components of the BER machinery and studies aimed at other DNA-repair systems are needed to clarify the mechanism underlying the stimulation of DNA repair by melatonin. 相似文献
18.
N E Polyakov T V Leshina T A Konovalova L D Kispert 《Free radical biology & medicine》2001,31(3):398-404
The spin trapping EPR technique was used to study the influence of carotenoids (beta-carotene, 8'-apo-beta-caroten-8'-al, canthaxanthin, and ethyl 8'-apo-beta-caroten-8'-oate) on the yield of free radicals in the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + .OH + -OH) in the organic solvents, DMSO, and methanol. DMPO and PBN were used as spin trapping agents. It was demonstrated that carotenoids could increase or decrease the total yield of free radicals depending on the oxidation potential of the carotenoids and the nature of the radicals. A reaction mechanism is suggested which includes the reduction of Fe(3+) to Fe(2+) by carotenoids. The effectiveness of this carotenoid-driven Fenton reaction increases with a decrease of the scavenging rates for free radicals and with decreasing oxidation potentials of carotenoids. 相似文献
19.
Karbownik M 《Neuro endocrinology letters》2002,23(Z1):39-44
The complex process of carcinogenesis is, to a large extent, due to oxidative stress. Numerous indicators of oxidative damage are enhanced in the result of the action of carcinogens. Several antioxidants protect, with different efficacy, against oxidative abuse, exerted by carcinogens. Recently, melatonin (N-acetyl-5-methoxytryptamine) and some other indoleamines have gained particular meaning in the defense against oxidative stress and, consequently, carcinogenesis. Some antioxidants, like ascorbic acid, play a bivalent role in the antioxidative defense, revealing, under specific conditions, prooxidative effects. Among known antioxidants, melatonin is particularly frequently applied in experimental models of anticarcinogenic action. In the numerous studies, examining several parameters of oxidative damage and using several in vitro and in vivo models, this indoleamine has been shown to protect DNA and cellular membranes from the oxidative abuse caused by carcinogens. When either preventing or decreasing the oxidative damage to macromolecules, melatonin also protects against the initiation of cancer. The protection provided by melatonin and some other antioxidants against cellular damage, due to carcinogens, make them potential therapeutic supplements in the conditions of increased cancer risk. 相似文献