首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinases in control of the centrosome cycle.   总被引:8,自引:0,他引:8  
The centrosome is the major microtubule nucleating center of the animal cell and forms the two poles of the mitotic spindle upon which chromosomes are segregated. During the cell division cycle, the centrosome undergoes a series of major structural and functional transitions that are essential for both interphase centrosome function and mitotic spindle formation. The localization of an increasing number of protein kinases to the centrosome has revealed the importance of protein phosphorylation in controlling many of these transitions. Here, we focus on two protein kinases, the polo-like kinase 1 and the NIMA-related kinase 2, for which recent data indicate key roles during the centrosome cycle.  相似文献   

2.
Centrosomes and cancer.   总被引:6,自引:0,他引:6  
The centrosome functions as the major microtubule organizing center (MTOC) of the cell and as such it determines the number, polarity, and organization of interphase and mitotic microtubules. Cytoplasmic organization, cell polarity and the equal partition of chromosomes into daughter cells at the time of cell division are all dependent on the normal function of the centrosome and on its orderly duplication, once and only once, in each cell cycle. Malignant tumor cells show characteristic defects in cell and tissue architecture and in chromosome number that can be attributed to inappropriate centrosome behavior during tumor progression. In this review, we will summarize recent observations linking centrosome defects to disruption of normal cell and tissue organization and to chromosomal instability found in malignant tumors.  相似文献   

3.
4.
Zhang  Fengxia  Wei  Mingxuan  Chen  Haoran  Ji  Liting  Nie  Yan  Kang  Jungseog 《Cell division》2022,17(1):1-13

The centrosome is a multifunctional organelle that is known primarily for its microtubule organising function. Centrosomal defects caused by changes in centrosomal structure or number have been associated with human diseases ranging from congenital defects to cancer. We are only beginning to appreciate how the non-microtubule organising roles of the centrosome are related to these clinical conditions. In this review, we will discuss the historical evidence that led to the proposal that the centrosome participates in cell cycle regulation. We then summarize the body of work that describes the involvement of the mammalian centrosome in triggering cell cycle progression and checkpoint signalling. Then we will highlight work from the fission yeast model organism, revealing the molecular details that explain how the spindle pole body (SPB, the yeast functional equivalent of the centrosome), participates in these cell cycle transitions. Importantly, we will discuss some of the emerging questions from recent discoveries related to the role of the centrosome as a cell cycle regulator.

  相似文献   

5.
Centrosome positioning is tightly controlled throughout the cell cycle and probably shares common regulatory mechanisms with spindle-pole positioning. In this article, we detail the possible mechanisms controlling centrosome and spindle positioning in various organisms both in interphase and mitotic cells, and discuss recent findings showing how microtubule plus-end-associated proteins interact with the cell cortex. We suggest that microtubule plus-end complexes simultaneously regulate microtubule dynamics and microtubule anchoring at the cell periphery to allow proper centrosome and spindle-pole positioning.  相似文献   

6.
Centrosomes organize microtubule structures in animal cells. The centrosome duplicates once per cell cycle in most dividing cells via a pathway that relies on a pre-existing centrosome. The molecular mechanism of this 'once and only once' control is not understood, and recent results show that centrosomes can also be assembled by a de novo pathway that bypasses this control. These results require a rethinking of how proper centrosome number is maintained. We propose that the engagement of centrioles with each other normally blocks centrosome re-duplication, and that disengagement of centrioles from each other at the end of mitosis licenses them for duplication in the subsequent cell cycle.  相似文献   

7.
The centrosome is the major microtubule-organizing center in animal cells but is dispensable for proper microtubule spindle formation in many biological contexts and is thus thought to fulfill additional functions. Recent observations suggest that the centrosome acts as a scaffold for proteasomal degradation in the cell to regulate a variety of biological processes including cell fate acquisition, cell cycle control, stress response, and cell morphogenesis. Here, we review the body of studies indicating a role for the centrosome in promoting proteasomal degradation of ubiquitin-proteasome substrates and explore the functional relevance of this system in different biological contexts. We discuss a potential role for the centrosome in coordinating local degradation of proteasomal substrates, allowing cells to achieve stringent spatiotemporal control over various signaling processes.  相似文献   

8.
Nigg EA  Stearns T 《Nature cell biology》2011,13(10):1154-1160
Centrosomes are microtubule-organizing centres of animal cells. They influence the morphology of the microtubule cytoskeleton, function as the base for the primary cilium and serve as a nexus for important signalling pathways. At the core of a typical centrosome are two cylindrical microtubule-based structures termed centrioles, which recruit a matrix of associated pericentriolar material. Cells begin the cell cycle with exactly one centrosome, and the duplication of centrioles is constrained such that it occurs only once per cell cycle and at a specific site in the cell. As a result of this duplication mechanism, the two centrioles differ in age and maturity, and thus have different functions; for example, the older of the two centrioles can initiate the formation of a ciliary axoneme. We discuss spatial aspects of the centrosome duplication cycle, the mechanism of centriole assembly and the possible consequences of the inherent asymmetry of centrioles and centrosomes.  相似文献   

9.
The centrosome, which consists of two centrioles and the surrounding pericentriolar material, is the primary microtubule-organizing center (MTOC) in animal cells. Like chromosomes, centrosomes duplicate once per cell cycle and defects that lead to abnormalities in the number of centrosomes result in genomic instability, a hallmark of most cancer cells. Increasing evidence suggests that the separation of the two centrioles (disengagement) is required for centrosome duplication. After centriole disengagement, a proteinaceous linker is established that still connects the two centrioles. In G2, this linker is resolved (centrosome separation), thereby allowing the centrosomes to separate and form the poles of the bipolar spindle. Recent work has identified new players that regulate these two processes and revealed unexpected mechanisms controlling the centrosome cycle.  相似文献   

10.
An essential role for katanin in severing microtubules in the neuron   总被引:15,自引:0,他引:15  
Several lines of evidence suggest that microtubules are nucleated at the neuronal centrosome, and then released for transport into axons and dendrites. Here we sought to determine whether the microtubule-severing protein known as katanin mediates microtubule release from the neuronal centrosome. Immunomicroscopic analyses on cultured sympathetic neurons show that katanin is present at the centrosome, but is also widely distributed throughout the neuron. Microinjection of an antibody that inactivates katanin results in a dramatic accumulation of microtubules at the centrosome, indicating that katanin is indeed required for microtubule release from the centrosome. However, the antibody also causes an inhibition of axon outgrowth that is more immediate than expected on this basis alone. It may be that katanin severs microtubules throughout the cell body to keep them sufficiently short to be efficiently transported into developing processes. Consistent with this idea, there were significantly fewer free ends of microtubules in the cell bodies of neurons that had been injected with the katanin antibody compared with controls. These results indicate that microtubule-severing by katanin is essential for releasing microtubules from the neuronal centrosome, and also for regulating the length of the microtubules after their release.  相似文献   

11.
Microtubule nucleation and release from the neuronal centrosome   总被引:12,自引:7,他引:5       下载免费PDF全文
We have proposed that microtubules (MTs) destined for axons and dendrites are nucleated at the centrosome within the cell body of the neuron, and are then released for translocation into these neurites (Baas, P. W., and H. C. Joshi. 1992. J. Cell Biol. 119:171-178). In the present study, we have tested the capacity of the neuronal centrosome to act as a generator of MTs for relocation into other regions of the neuron. In cultured sympathetic neurons undergoing active axonal outgrowth, MTs are present throughout the cell body including the region around the centrosome, but very few (< 10) are directly attached to the centrosome. These results indicate either that the neuronal centrosome is relatively inactive with regard to MT nucleation, or that most of the MTs nucleated at the centrosome are rapidly released. Treatment for 6 h with 10 micrograms/ml nocodazole results in the depolymerization of greater than 97% of the MT polymer in the cell body. Within 5 min after removal of the drug, hundreds of MTs have assembled in the region of the centrosome, and most of these MTs are clearly attached to the centrosome. A portion of the MTs are not attached to the centrosome, but are aligned side-by-side with the attached MTs, suggesting that the unattached MTs were released from the centrosome after nucleation. In addition, unattached MTs are present in the cell body at decreasing levels with increasing distance from the centrosome. By 30 min, the MT array of the cell body is indistinguishable from that of controls. The number of MTs attached to the centrosome is once again diminished to fewer than 10, suggesting that the hundreds of MTs nucleated from the centrosome after 5 min were subsequently released and translocated away from the centrosome. These results indicate that the neuronal centrosome is a highly potent MT- nucleating structure, and provide strong indirect evidence that MTs nucleated from the centrosome are released for translocation into other regions of the neuron.  相似文献   

12.
Centrosomes contain a pair of centrioles that duplicate once during the cell cycle togive rise to two mitotic spindle poles, each containing one old and one newcentriole. Centrosome duplication initiates at the G1/S transition in mammaliancells, and is completed during S and G2 phase. The localization of a number ofprotein kinases to the centrosome has revealed the importance of proteinphosphorylation in controlling the centrosome duplication cycle. Recent studieshave shown that polo-like kinase-2 is required for centriole duplication inmammalian cells. In this article I discuss the implication of these findings to ourcurrent understanding of centrosome duplication.  相似文献   

13.
The centrosome is a subcellular organelle from which a cilium assembles. Since centrosomes function as spindle poles during mitosis, they have to be present as a pair in a cell. How the correct number of centrosomes is maintained in a cell has been a major issue in the fields of cell cycle and cancer biology. Centrioles, the core of centrosomes, assemble and segregate in close connection to the cell cycle. Abnormalities in centriole numbers are attributed to decoupling from cell cycle regulation. Interestingly, supernumerary centrioles are commonly observed in cancer cells. In this review, we discuss how supernumerary centrioles are generated in diverse cellular conditions. We also discuss how the cells cope with supernumerary centrioles during the cell cycle.  相似文献   

14.
Hu antigen R (HuR) is an mRNA-binding protein belonging to the ELAV family. It is highly expressed in cancer and involved in cell survival and proliferation. The impact of post-translational regulation of HuR and resulting cellular effects are poorly understood. In the current report, we describe a direct interaction between HuR and Cdk5 in glioma. We determined that Cdk5 specifically phosphorylates HuR at the serine 202 residue in the unique hinge region. The molecular consequences of this interaction are an altered HuR ability to bind, stabilize, and promote translation of mRNAs. At the cellular level, the anomalous HuR phosphorylation at this site evokes robust defects in centrosome duplication and cohesion as well as arrest of cell cycle progression. Subcellular fractionation and immunofluorescence technique confirm a direct integration of HuR and Cdk5 with centrosomes. We propose that HuR stores mRNA in the centrosome and that HuR phosphorylation by Cdk5 controls de novo protein synthesis in near proximity to centrosomes and, thus, impacts centrosome function.  相似文献   

15.
The Cyclin-Dependent Kinase (CDK)-activating phosphatase CDC25B, localises to the centrosomes where its activity is both positively and negatively regulated by several kinases including Aurora A and CHK1. Our recent data also demonstrate a role for CDC25B in the centrosome duplication cycle and microtubule nucleation in interphase that appears to involve the recruitment of γ-tubulin to the centrosomes. In the present study, we report that CDC25B, along with CHK1, CDK1 and WEE1, localise asymmetrically around the mother centrosome from S to G2-phases, and gradually become evenly distributed to the two centrosomes by late G2 phase, concomitant with centrosome maturation. We further demonstrate that siRNA inhibition of CDC25B results in an accumulation of cells in G2 phase with two separated centrosomes, each containing only a single centriole, suggesting a requirement for CDC25B in centriole duplication. We propose that the localisation of key cell cycle regulators to the mother centrosome ensures synchrony between the centrosome duplication and cell division cycles.  相似文献   

16.
Previous evidence has indicated that an intact centrosome is essential for cell cycle progress and that elimination of the centrosome or depletion of individual centrosome proteins prevents the entry into S phase. To investigate the molecular mechanisms of centrosome-dependent cell cycle progress, we performed RNA silencing experiments of two centrosome-associated proteins, pericentriolar material 1 (PCM-1) and pericentrin, in primary human fibroblasts. We found that cells depleted of PCM-1 or pericentrin show lower levels of markers for S phase and cell proliferation, including cyclin A, Ki-67, proliferating cell nuclear antigen, minichromosome maintenance deficient 3, and phosphorylated retinoblastoma protein. Also, the percentage of cells undergoing DNA replication was reduced by >50%. At the same time, levels of p53 and p21 increased in these cells, and cells were predisposed to undergo senescence. Conversely, depletion of centrosome proteins in cells lacking p53 did not cause any cell cycle arrest. Inhibition of p38 mitogen-activated protein kinase rescued cell cycle activity after centrosome protein depletion, indicating that p53 is activated by the p38 stress pathway.  相似文献   

17.
Toxoplasma gondii is a unicellular eukaryotic pathogen that belongs to the Apicomplexa phylum, which encompasses some of the deadliest pathogens of medical and veterinary importance. The centrosome is key to the organisation and coordination of the cell cycle and division of apicomplexan parasites. The T. gondii centrosome possesses a particular bipartite structure (outer and inner cores). One of the main roles of the centrosome is to ensure proper coordination of karyokinesis. However, how these 2 events are coordinated is still unknown in T. gondii, for which the centrosome components are poorly described. To gain more insights into the biology and the composition of the T. gondii centrosome, we characterised a protein that resides at the interface of the outer and inner core centrosomes. TgCep530 is a large coiled‐coil protein with an essential role in the survival of the parasite. Depletion of this protein leads to the accumulation of parasites lacking nuclei and disruption of the normal cell cycle. Lack of TgCep530 results in a discoordination between the nuclear cycle and the budding cycle that yields fully formed parasites without nuclei. TgCep530 has a crucial role in the coordination of karyokinesis and cytokinesis.  相似文献   

18.
Wnt signaling cascade has developed together with multicellularity to orchestrate the development and homeostasis of complex structures. Wnt pathway components – such as β-catenin, Dishevelled (DVL), Lrp6, and Axin-- are often dedicated proteins that emerged in evolution together with the Wnt signaling cascade and are believed to function primarily in the Wnt cascade. It is interesting to see that in recent literature many of these proteins are connected with cellular functions that are more ancient and not limited to multicellular organisms – such as cell cycle regulation, centrosome biology, or cell division. In this review, we summarize the recent literature describing this crosstalk. Specifically, we attempt to find the answers to the following questions: Is the response to Wnt ligands regulated by the cell cycle? Is the centrosome and/or cilium required to activate the Wnt pathway? How do Wnt pathway components regulate the centrosomal cycle and cilia formation and function? We critically review the evidence that describes how these connections are regulated and how they help to integrate cell-to-cell communication with the cell and the centrosomal cycle in order to achieve a fine-tuned, physiological response.  相似文献   

19.
The reproduction, or duplication, of the centrosome is an important event in a cell's preparation for mitosis. We sought to determine if centrosome reproduction is regulated by the synthesis and accumulation of cyclin proteins and/or the synthesis of centrosome-specific proteins at each cell cycle. We continuously treat sea urchin eggs, starting before fertilization, with a combination of emetine and anisomycin, drugs that have separate targets in the protein synthetic pathway. These drugs inhibit the postfertilization incorporation of [35S]methionine into precipitable material by 97.3-100%. Autoradiography of SDS-PAGE gels of drug-treated zygotes reveals that [35S]methionine incorporates exclusively into material that does not enter the gel and material that runs at the dye front; no other labeled bands are detected. Fertilization events and syngamy are normal in drug-treated zygotes, but the cell cycle arrests before first mitosis. The sperm aster doubles once in all zygotes to yield two asters. In a variable but significant percentage of zygotes, the asters continue to double. This continued doubling is slower than normal, asynchronous between zygotes, and sometimes asynchronous within individual zygotes. High voltage electron microscopy of serial semithick sections from drug-treated zygotes reveals that 90% of the daughter centrosomes contain two centrioles of normal appearance. From these results, we conclude that centrosome reproduction in sea urchin zygotes is not controlled by the accumulation of cyclin proteins or the synthesis of centrosome-specific proteins at each cell cycle. New centrosomes are assembled from preexisting pools of ready-to-use subunits. Furthermore, our results indicate that centrosomal and nuclear events are regulated by separate pathways.  相似文献   

20.
The anchoring of microtubules (MTs) to subcellular structures is critical for cell shape, polarity, and motility. In mammalian cells, the centrosome is a prominent MT anchoring structure. A number of proteins, including ninein, p150Glued, and EB1, have been implicated in centrosomal MT anchoring, but the process is far from understood. Here we show that CAP350 and FOP (FGFR1 oncogene partner) form a centrosomal complex required for MT anchoring. We show that the C-terminal domain of CAP350 interacts directly with FOP and that both proteins localize to the centrosome throughout the cell cycle. FOP also binds to EB1 and is required for localizing EB1 to the centrosome. Depletion of either CAP350, FOP, or EB1 by siRNA causes loss of MT anchoring and profound disorganization of the MT network. These results have implications for the mechanisms underlying MT anchoring at the centrosome and they attribute a key MT anchoring function to two novel centrosomal proteins, CAP350 and FOP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号