共查询到20条相似文献,搜索用时 15 毫秒
1.
Newcastle disease virus (NDV) belongs to serotype 1 of the avian paramyxoviruses (APMV-1) and causes severe disease in chickens. Current live attenuated NDV vaccines are not fully satisfactory. An alternative is to use a viral vector vaccine that infects chickens but does not cause disease. APMV serotype 3 infects a wide variety of avian species but does not cause any apparent disease in chickens. In this study, we constructed a reverse-genetics system for recovery of infectious APMV-3 strain Netherlands from cloned cDNAs. Two recombinant viruses, rAPMV3-F and rAPMV3-HN, were generated expressing the NDV fusion (F) and hemagglutinin-neuraminidase (HN) proteins, respectively, from added genes. These viruses were used to immunize 2-week-old chickens by the oculonasal route in order to evaluate the contribution of each protein to the induction of NDV-specific neutralizing antibodies and protective immunity. Each virus induced high titers of NDV-specific hemagglutination inhibition and serum neutralizing antibodies, but the response to F protein was greater. Protective immunity was evaluated by challenging the immunized birds 21 days later with virulent NDV via the oculonasal, intramuscular, or intravenous route. With oculonasal or intramuscular challenge, all three recombinant viruses (rAPMV3, rAPMV3-F, and rAPMV3-HN) were protective, while all unvaccinated birds succumbed to death. These results indicated that rAPMV3 alone can provide cross-protection against NDV challenge. However, with intravenous challenge, birds immunized with rAPMV3 were not protected, whereas birds immunized with rAPMV3-F alone or in combination with rAPMV3-HN were completely protected, and birds immunized with rAPMV3-HN alone were partially protected. These results indicate that the NDV F and HN proteins are independent neutralization and protective antigens, but the contribution by F is greater. rAMPV3 represents an avirulent vaccine vector that can be used against NDV and other poultry pathogens. 相似文献
2.
Quantitative measurement of paramyxovirus fusion: differences in requirements of glycoproteins between simian virus 5 and human parainfluenza virus 3 or Newcastle disease virus. 总被引:3,自引:10,他引:3
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
To compare the requirements for paramyxovirus-mediated cell fusion, the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins of simian virus 5 (SV5), human parainfluenza virus 3 (HPIV-3), and Newcastle disease virus (NDV) were expressed individually or coexpressed in either homologous or heterologous combinations in CV-1 or HeLa-T4 cells, using the vaccinia virus-T7 polymerase transient expression system. The contribution of individual glycoproteins in virus-induced membrane fusion was examined by using a quantitative assay for lipid mixing based on the relief of self-quenching (dequenching) of fluorescence of the lipid probe octadecyl rhodamine (R18) and a quantitative assay for content mixing based on the cytoplasmic activation of a reporter gene, beta-galactosidase. In these assays, expression of the individual F glycoproteins did not induce significant levels of cell fusion and no cell fusion was observed in experiments when cells individually expressing homologous F or HN proteins were mixed. However, coexpression of homologous F and HN glycoproteins resulted in extensive cell fusion. The kinetics of fusion were found to be very similar for all three paramyxoviruses studied. With NDV and HPIV-3, no cell fusion was detected when F proteins were coexpressed with heterologous HN proteins or influenza virus hemagglutinin (HA). In contrast, SV5 F protein exhibited a considerable degree of fusion activity when coexpressed with either NDV or HPIV-3 HN or with influenza virus HA, although the kinetics of fusion were two- to threefold higher when the homologous SV5 F and HN proteins were coexpressed. Thus, these data indicate that among the paramyxoviruses tested, SV5 has different requirements for cell fusion. 相似文献
3.
Requirements for budding of paramyxovirus simian virus 5 virus-like particles 总被引:1,自引:0,他引:1
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Enveloped viruses are released from infected cells after coalescence of viral components at cellular membranes and budding of membranes to release particles. For some negative-strand RNA viruses (e.g., vesicular stomatitis virus and Ebola virus), the viral matrix (M) protein contains all of the information needed for budding, since virus-like particles (VLPs) are efficiently released from cells when the M protein is expressed from cDNA. To investigate the requirements for budding of the paramyxovirus simian virus 5 (SV5), its M protein was expressed in mammalian cells, and it was found that SV5 M protein alone could not induce vesicle budding and was not secreted from cells. Coexpression of M protein with the viral hemagglutinin-neuraminidase (HN) or fusion (F) glycoproteins also failed to result in significant VLP release. It was found that M protein in the form of VLPs was only secreted from cells, with an efficiency comparable to authentic virus budding, when M protein was coexpressed with one of the two glycoproteins, HN or F, together with the nucleocapsid (NP) protein. The VLPs appeared similar morphologically to authentic virions by electron microscopy. CsCl density gradient centrifugation indicated that almost all of the NP protein in the cells had assembled into nucleocapsid-like structures. Deletion of the F and HN cytoplasmic tails indicated an important role of these cytoplasmic tails in VLP budding. Furthermore, truncation of the HN cytoplasmic tail was found to be inhibitory toward budding, since it prevented coexpressed wild-type (wt) F protein from directing VLP budding. Conversely, truncation of the F protein cytoplasmic tail was not inhibitory and did not affect the ability of coexpressed wt HN protein to direct the budding of particles. Taken together, these data suggest that multiple viral components, including assembled nucleocapsids, have important roles in the paramyxovirus budding process. 相似文献
4.
Functional interaction of paramyxovirus glycoproteins: identification of a domain in Sendai virus HN which promotes cell fusion. 总被引:4,自引:14,他引:4
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The cell fusion activity of most paramyxoviruses requires coexpression of a fusion protein (F) and a hemagglutinin-neuraminidase protein (HN) which are derived from the same virus type. To define the domain of the HN protein which interacts with the F protein in a type-specific manner a series of chimeric HN proteins between two different paramyxoviruses, Sendai virus (SN) and human parainfluenza virus type 3 (PI3), was constructed and coexpressed with the SN-F protein by using the vaccinia virus T7 RNA polymerase transient-expression system. Quantitative assays were used to evaluate cell surface expression as well as fusion-promoting activities of the chimeric HN molecules. A chimeric HN protein [SN(140)] containing 140 N-terminal amino acids derived from SN-HN and the remainder (432 amino acids) derived from PI3-HN was found to promote cell fusion with the SN-F protein. In contrast, a second chimeric HN with 137 amino acids from SN-HN at the N terminus could not promote fusion with SN-F, even though the protein was expressed on the cell surface. A construct in which the PI3-HN cytoplasmic tail and transmembrane domain were substituted for those of SN in the SN(140) chimera still maintained the ability to promote cell fusion. These results indicate that a region including only 82 amino acids in the extracellular domain, adjacent to the transmembrane domain of the SN-HN protein, is important for interaction with the SN-F protein and promotion of cell fusion. 相似文献
5.
Infection of cells by many viruses affects the cell division cycle of the host cell to favor viral replication. We examined the ability of the paramyxovirus simian parainfluenza virus 5 (SV5) to affect cell cycle progression, and we found that SV5 slows the rate of proliferation of HeLa T4 cells. The SV5-infected cells had a delayed transition from G(1) to S phase and prolonged progression through S phase, and some of the infected cells were arrested in G(2) or M phase. The levels of p53 and p21(CIP1) were not increased in SV5-infected cells compared to mock-infected cells, suggesting that the changes in the cell cycle occur through a p53-independent mechanism. However, the phosphorylation of the retinoblastoma protein (pRB) was delayed and prolonged in SV5-infected cells. The changes in the cell cycle were also observed in cells expressing the SV5 V protein but not in the cells expressing the SV5 P protein or the V protein lacking its unique C terminus (VDeltaC). The unique C terminus of the V protein of SV5 was shown previously to interact with DDB1, which is the 127-kDa subunit of the multifunctional damage-specific DNA-binding protein (DDB) heterodimer. The coexpression of DDB1 with V can partially restore the changes in the cell cycle caused by expression of the V protein. 相似文献
6.
A chimeric respiratory syncytial virus fusion protein functionally replaces the F and HN glycoproteins in recombinant Sendai virus
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Zimmer G Bossow S Kolesnikova L Hinz M Neubert WJ Herrler G 《Journal of virology》2005,79(16):10467-10477
Entry of most paramyxoviruses is accomplished by separate attachment and fusion proteins that function in a cooperative manner. Because of this close interdependence, it was not possible with most paramyxoviruses to replace either of the two protagonists by envelope glycoproteins from related paramyxoviruses. By using reverse genetics of Sendai virus (SeV), we demonstrate that chimeric respiratory syncytial virus (RSV) fusion proteins containing either the cytoplasmic domain of the SeV fusion protein or in addition the transmembrane domain were efficiently incorporated into SeV particles provided the homotypic SeV-F was deleted. In the presence of SeV-F, the chimeric glycoproteins were incorporated with significantly lower efficiency, indicating that determinants in the SeV-F ectodomain exist that contribute to glycoprotein uptake. Recombinant SeV in which the homotypic fusion protein was replaced with chimeric RSV fusion protein replicated in a trypsin-independent manner and was neutralized by antibodies directed to RSV-F. However, replication of this virus also relied on the hemagglutinin-neuraminidase (HN) as pretreatment of cells with neuraminidase significantly reduced the infection rate. Finally, recombinant SeV was generated with chimeric RSV-F as the only envelope glycoprotein. This virus was not neutralized by antibodies to SeV and did not use sialic acids for attachment. It replicated more slowly than hybrid virus containing HN and produced lower virus titers. Thus, on the one hand RSV-F can mediate infection in an autonomous way while on the other hand it accepts support by a heterologous attachment protein. 相似文献
7.
Nucleotide sequence of the bovine parainfluenza 3 virus genome: the genes of the F and HN glycoproteins. 总被引:3,自引:0,他引:3
下载免费PDF全文
![点击此处可从《Nucleic acids research》网站下载免费的PDF全文](/ch/ext_images/free.gif)
By analysing complementary DNA clones constructed from genomic RNA of bovine parainfluenza 3 virus (BPIV3), we determined the nucleotide sequence of the region containing the entire F and HN genes. Their deduced amino acid sequences showed about 80% homologies with those of human parainfluenza 3 virus (HPIV3), about 45% with those of Sendai virus, and about 20% with those of SV5 and Newcastle disease virus (NDV), indicating, together with the results described in the preceding paper on the NP, P, C and M proteins of BPIV3, that BPIV3, HPIV3 and Sendai virus constitute a paramyxovirus subgroup, and that BPIV3 and HPIV3 are very closely related. The F and HN proteins of all these viruses, including SV5 and NDV, however, were shown to have protein-specific structures as well as short but well-conserved amino acid sequences, suggesting that these structures and sequences are related to the activities of these glycoproteins. 相似文献
8.
Drastic immunoreactivity changes between the immature and mature forms of the Sendai virus HN and F0 glycoproteins. 总被引:2,自引:4,他引:2
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The immunoreactivity of the Sendai virus HN and F0 glycoproteins was shown to mature before reaching the final form exhibited by the native mature proteins. The maturation process differed for the two proteins. The native F0 immunoreactivity was shown to be defined cotranslationally, and the addition of high-mannose sugar residues may represent the final step in defining the maturation of immunoreactivity. On the other hand, native HN immunoreactivity was slowly fashioned during the hour after the completion of protein synthesis. Although addition of high-mannose sugar could constitute a necessary step in this slow maturation process, it was shown not to be sufficient. Processing of high-mannose sugars and HN self-association in homodimers and homotetramers were investigated as possible steps involved in the slow maturation of HN immunoreactivity. They were found not to play a significant role. On the other hand, conformational changes presumably took place during the maturation of HN immunoreactivity. Drastic immunoreactivity differences were also demonstrated between the native and denatured forms of the glycoproteins. Possible implications of these results in defining the pathways of glycoprotein synthesis are discussed. 相似文献
9.
Immunogenicity of herpes simplex virus glycoproteins gC and gB and their role in protective immunity. 总被引:4,自引:15,他引:4
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The relative antigenicity of the individual herpes simplex virus type 1 (KOS) glycoproteins gC and gB was analyzed in BALB/c mice by using KOS mutants altered in their ability to present these antigens on cell surface membranes during infection. The mutants employed were as follows: syn LD70 , a non-temperature-sensitive mutant defective in the synthesis of cell surface membrane gC; tsF13 , a temperature-sensitive mutant defective in the processing of the precursor form of gB to the mature cell surface form at 39 degrees C; and ts606 , an immediate early temperature-sensitive mutant defective in the production of all early and late proteins including the glycoproteins. By comparing the relative susceptibility to immunolysis of mouse 3T3 cells infected at 39 degrees C with wild-type virus, presenting the full complement of the glycoprotein antigens, gC, gB, and gD, with target cells infected with mutants presenting only subsets of these antigens, we determined that a major portion of cytolytic antibody contained in hyperimmune anti-herpes simplex virus type 1 (KOS) mouse antiserum was directed against glycoproteins gC and gB. The relative immunogenicity of wild-type and mutant virus-infected cells also was compared in BALB/c mice. Immunogen lacking the mature form of gB induced a cytolytic antibody titer comparable to that of the wild-type virus, whereas that lacking the mature form of gC showed a 70% reduction in titer. The absence of the mature cell surface forms of gB and gC in immunogen preparations resulted in a 4- to 15-fold reduction in in virus neutralizing titer. Animals immunized with ts606 -infected cells (39 degrees C) induced relatively little virus-specific cytolytic and neutralizing antibody. Analysis of the glycoprotein specificities of these antisera by radioimmunoprecipitation showed that the antigens immunoprecipitated reflected the viral plasma membrane glycoprotein profiles of the immunogens. The absence of the mature forms of gC or gB in the immunizing preparation did not appreciably affect the immunoprecipitating antibody response to other antigens. Mice immunized with wild-type and mutant virus-infected cells were tested for their resistance to intracranial and intraperitoneal challenge with the highly virulent WAL strain of herpes simplex virus type 1. Despite the observed alterations in serum virus-specific antibody induced with the individual immunogens, all animals survived an intraperitoneal challenge of 10 50% lethal doses. However, differences in the survival of animals were obtained upon intracranial challenge.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
10.
Expression of the F and HN glycoproteins of human parainfluenza virus type 3 by recombinant vaccinia viruses: contributions of the individual proteins to host immunity. 总被引:4,自引:15,他引:4
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
M K Spriggs B R Murphy G A Prince R A Olmsted P L Collins 《Journal of virology》1987,61(11):3416-3423
cDNA clones containing the complete coding sequences for the human parainfluenza virus type 3 (PIV3) fusion (F) and hemagglutinin-neuraminidase (HN) glycoprotein genes were inserted into the thymidine kinase gene of vaccinia virus (WR strain) under the control of the P7.5 early-late vaccinia virus promotor. The recombinant vaccinia viruses, designated vaccinia-F and vaccinia-HN, expressed glycoproteins in cell culture that appeared to be authentic with respect to glycosylation, disulfide linkage, electrophoretic mobility, cell surface expression, and, in the case of the HN protein, biological activity. Cotton rats inoculated intradermally with vaccinia-HN developed serum neutralizing antibody titers equal to that induced by respiratory tract infection with PIV3, whereas animals receiving vaccinia-F had threefold lower neutralizing antibody titers. A single immunization with either recombinant vaccinia virus induced nearly complete resistance in the lower respiratory tract of these animals. With regard to protection in the upper respiratory tract, animals immunized with vaccinia-HN or vaccinia-F exhibited reductions in PIV3 replication of greater than 3,000-fold and 6-fold, respectively. This large difference (greater than 500-fold) in reduction of PIV3 replication in the upper respiratory tract was in contrast to the relatively modest difference (3-fold) in serum neutralizing antibody titers induced by vaccinia-HN versus vaccinia-F. This dissociation between the level of neutralizing antibodies and protection suggested that immunity to PIV3 is complex, and that immune mechanisms other than serum neutralizing antibodies make important contributions to resistance to infection. Overall, under these experimental conditions, vaccinia-HN induced a substantially more protective immune response than did vaccinia-F. 相似文献
11.
12.
Roles for the cytoplasmic tails of the fusion and hemagglutinin-neuraminidase proteins in budding of the paramyxovirus simian virus 5
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The efficient release of many enveloped viruses from cells involves the coalescence of viral components at sites of budding on the plasma membrane of infected cells. This coalescence is believed to require interactions between the cytoplasmic tails of surface glycoproteins and the matrix (M) protein. For the paramyxovirus simian virus 5 (SV5), the cytoplasmic tail of the hemagglutinin-neuraminidase (HN) protein has been shown previously to be important for normal virus budding. To investigate a role for the cytoplasmic tail of the fusion (F) protein in virus assembly and budding, we generated a series of F cytoplasmic tail-truncated recombinant viruses. Analysis of these viruses in tissue culture indicated that the cytoplasmic tail of the F protein was dispensable for normal virus replication and budding. To investigate further the requirements for assembly and budding of SV5, we generated two double-mutant recombinant viruses that lack 8 amino acids of the predicted 17-amino-acid HN protein cytoplasmic tail in combination with truncation of either 10 or 18 amino acids from the predicted 20-amino-acid F protein cytoplasmic tail. Both of the double mutant recombinant viruses displayed a replication defect in tissue culture and a budding defect, the extent of which was dependent on the length of the remaining F cytoplasmic tail. Taken together, this work and our earlier data on virus-like particle formation (A. P. Schmitt, G. P. Leser, D. L. Waning, and R. A. Lamb, J. Virol. 76:3953-3964, 2002) suggest a redundant role for the cytoplasmic tails of the HN and F proteins in virus assembly and budding. 相似文献
13.
Watts AM Shearer MH Pass HI Bright RK Kennedy RC 《Cancer immunology, immunotherapy : CII》1999,47(6):343-351
In this report we examine the ability of a recombinant tumor antigen preparation to prevent the establishment of experimental
pulmonary metastasis. Baculovirus-derived recombinant simian virus 40 (SV40) large tumor antigen (T-Ag) was injected into
BALB/c mice followed by challenge with an intravenous injection of syngeneic SV40-transformed tumorigenic cells. The experimental
murine pulmonary metastasis model allows for the accurate measurement of metastatic lessions in the lungs at various times
after the challenge, using computer-assisted video image analysis. Following challenge, lung metastasis and survival data
for the groups of mice were obtained. Animals immunized with recombinant SV40 T-Ag showed no detectable sign of lung metastasis
and survived for more than 120 days after challenge. Antibodies specific for SV40 T-Ag were detected in the serum of immunized
mice by enzyme-linked immunosorbent assay. Splenocytes obtained from mice immunized with recombinant SV40 T-Ag did not lyse
syngeneic tumor cells, indicating that no cytotoxic T lymphocyte response was induced. Control mice developed extensive lung
metastasis and succumbed to lethal tumor within 4 weeks after challenge. These data indicate that immunization with the recombinant
SV40␣T-Ag induces protective, T-Ag-specific immunity in an experimental pulmonary tumor metastasis model.
Received: 20 August 1998 / Accepted: 25 November 1998 相似文献
14.
Identification and predicted sequence of a previously unrecognized small hydrophobic protein, SH, of the paramyxovirus simian virus 5. 总被引:3,自引:8,他引:3
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
A previously unrecognized gene (SH) has been identified on the virion RNA of the paramyxovirus simian virus 5 between the genes for the fusion protein and the hemagglutinin-neuraminidase. An SH mRNA of 292 nucleotides (plus polyadenylate residues), transcribed from the SH gene, has been identified. The SH mRNA contains a single open reading frame which encodes a polypeptide of 44 amino acids with a molecular weight of 5,012. The SH polypeptide is predicted to contain an extensive hydrophobic region. This protein has been identified in simian virus 5-infected cells, and it has been shown to be encoded by the SH mRNA by in vitro translation of size-fractionated mRNAs, hybrid-arrest translation, and hybrid-selection translation. 相似文献
15.
A biotinylation assay was used to detect the envelope glycoprotein of the simian immunodeficiency virus (SIV) envelope glycoprotein expressed by a recombinant vaccinia virus on the surface of HeLa T4 cells. The relationship between the detection of the envelope glycoprotein on the cell surface and its secretion from the cell was examined. It was found that much more gp120 was released into the culture medium than could be accounted for by shedding of the biotinylated SIV envelope protein from the cell surface. Treatment with the ionophore monensin showed that this drug did not block the secretion of gp120 into the culture medium even though the expression of gp120 on the cell surface was strongly downregulated. Similar results were observed for the secretion of gp120 in HUT78 cells infected with SIVmac251 virus. Brefeldin A, on the other hand, inhibited both the detection of gp120 on the cell surface and its secretion into the culture medium. On the basis of these results, we propose that gp120 can be secreted into the culture medium via at least two pathways. One pathway involves the dissociation of gp120 from membrane-associated gp41-gp120 complexes on the cell surface. However, the major pathway involves the secretion of gp120 without its transitory appearance on the cell surface as part of a gp41-gp120 complex. 相似文献
16.
Deletion of the cytoplasmic tail of the fusion protein of the paramyxovirus simian virus 5 affects fusion pore enlargement
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The fusion (F) protein of the paramxyovirus simian parainfluenza virus 5 (SV5) promotes virus-cell and cell-cell membrane fusion. Previous work had indicated that removal of the SV5 F protein cytoplasmic tail (F Tail- or FDelta19) caused a block in fusion promotion at the hemifusion stage. Further examination has shown that although the F Tail- mutant is severely debilitated in promotion of fusion as measured by using two reporter gene assays and is debilitated in the formation of syncytia relative to the wild-type F protein, the F Tail- mutant is capable of promoting the transfer of small aqueous dyes. These data indicate that F Tail- is fully capable of promoting formation of small fusion pores. However, enlargement of fusion pores is debilitated, suggesting that either the cytoplasmic tail of the F protein plays a direct role in pore expansion or that it interacts with other components which control pore growth. 相似文献
17.
Conserved cysteine-rich domain of paramyxovirus simian virus 5 V protein plays an important role in blocking apoptosis 总被引:3,自引:0,他引:3
下载免费PDF全文
![点击此处可从《Journal of virology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Sun M Rothermel TA Shuman L Aligo JA Xu S Lin Y Lamb RA He B 《Journal of virology》2004,78(10):5068-5078
The paramyxovirus family includes many well-known human and animal pathogens as well as emerging viruses such as Hendra virus and Nipah virus. The V protein of simian virus 5 (SV5), a prototype of the paramyxoviruses, contains a cysteine-rich C-terminal domain which is conserved among all paramyxovirus V proteins. The V protein can block both interferon (IFN) signaling by causing degradation of STAT1 and IFN production by blocking IRF-3 nuclear import. Previously, it was reported that recombinant SV5 lacking the C terminus of the V protein (rSV5VDeltaC) induces a severe cytopathic effect (CPE) in tissue culture whereas wild-type (wt) SV5 infection does not induce CPE. In this study, the nature of the CPE and the mechanism of the induction of CPE were investigated. Through the use of DNA fragmentation, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, and propidium iodide staining assays, it was shown that rSV5VDeltaC induced apoptosis. Expression of wt V protein prevented apoptosis induced by rSV5VDeltaC, suggesting that the V protein has an antiapoptotic function. Interestingly, rSV5VDeltaC induced apoptosis in U3A cells (a STAT1-deficient cell line) and in the presence of neutralizing antibody against IFN, suggesting that the induction of apoptosis by rSV5VDeltaC was independent of IFN and IFN-signaling pathways. Apoptosis induced by rSV5VDeltaC was blocked by a general caspase inhibitor, Z-VAD-FMK, but not by specific inhibitors against caspases 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 13, suggesting that rSV5VDeltaC-induced apoptosis can occur in a caspase 12-dependent manner. Endoplasmic reticulum stress can lead to activation of caspase 12; compared to the results seen with mock and wt SV5 infection, rSV5VDeltaC infection induced ER stress, as demonstrated by increased expression levels of known ER stress indicators GRP 78, GRP 94, and GADD153. These data suggest that rSV5VDeltaC can trigger cell death by inducing ER stress. 相似文献
18.
Viral fusogenic membrane proteins have been proposed as tools to increase the potency of oncolytic viruses, but there is a need for mechanisms to control the spread of fusogenic viruses in normal versus tumor cells. We have previously shown that a mutant of the paramyxovirus simian virus 5 (SV5) that harbors mutations in the P/V gene from the canine parainfluenza virus (P/V-CPI−) is a potent inducer of type I interferon (IFN) and apoptosis and is restricted for spread through normal but not tumor cells in vitro. Here, we have used the cytopathic P/V-CPI− as a backbone vector to test the hypothesis that a virus expressing a hyperfusogenic glycoprotein will be a more effective oncolytic vector but will retain sensitivity to IFN. A P/V mutant virus expressing an F protein with a glycine-to-alanine substitution in the fusion peptide (P/V-CPI−-G3A) was more fusogenic than the parental P/V-CPI− mutant. In two model prostate tumor cell lines which are defective in IFN production (LNCaP and DU145), the hyperfusogenic P/V-CPI−-G3A mutant had normal growth properties at low multiplicities of infection and was more effective than the parental P/V-CPI− mutant at cell killing in vitro. However, in PC3 cells which produce and respond to IFN, the hyperfusogenic P/V-CPI−-G3A mutant was attenuated for growth and spread. Killing of PC3 cells was equivalent between the parental P/V-CPI− mutant and the hyperfusogenic P/V-CPI−-G3A mutant. In a nude mouse model using LNCaP cells, the hyperfusogenic P/V-CPI−-G3A mutant was more effective than P/V-CPI− at reducing tumor burden. In the case of DU145 tumors, the two vectors based on P/V-CPI− were equally effective at limiting tumor growth. Together, our results provide proof of principle that a cytopathic SV5 P/V mutant can serve as an oncolytic virus and that the oncolytic effectiveness of P/V mutants can be enhanced by a fusogenic membrane protein without compromising sensitivity to IFN. The potential advantages of SV5-based oncolytic vectors are discussed. 相似文献
19.
Sequence determination of the Sendai virus HN gene and its comparison to the influenza virus glycoproteins 总被引:26,自引:0,他引:26
The nucleotide sequence of the Sendai virus (SV) HN (hemagglutinin-neuraminidase) gene was determined. The deduced primary structure of the protein showed only one hydrophobic domain likely to represent the transmembrane region, but at its N terminus. Since the SV F protein is anchored in the membrane at its C terminus, the two SV glycoproteins are thus membrane-anchored in opposite orientations, similar to the two influenza virus (FLU) glycoproteins. Amino acid sequence comparisons of the SV HN and the FLU HA and NA proteins revealed homologies between 100 amino acids of the hemagglutinin region of the FLU HA protein and the C terminus of the SV HN, and between 200 amino acids of the neuraminidase region of the FLU NA and the central region of SV HN. Alignment of the neuraminidase, hemagglutinin, and fusion regions shared by these glycoproteins suggest the structure of a possible ancestral gene. 相似文献