首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
Genes, diet and inflammatory bowel disease   总被引:2,自引:0,他引:2  
Inflammatory bowel disease (IBD) arises in part from a genetic predisposition, through the inheritance of a number of contributory genetic polymorphisms. These variant forms of genes may be associated with an abnormal response to normal luminal bacteria. A consistent observation across most populations is that any of three polymorphisms of the Caspase-activated recruitment domain (CARD15) gene are more prevalent in IBD patients as compared with unaffected controls. Similar aberrant responses to bacteria are associated with variants in Autophagy-related 16-like 1 (ATG16L1) and human defensin (HBD-2, -3 and -4) genes. The defective bacterial signal in turn leads to an excessive immune response, presenting as chronic gut inflammation in susceptible individuals. Inconsistent population reports implicate the major histocompatability complex (MHC), that encodes a number of human leukocyte antigens (HLA), MHC class I chain-related gene A (MICA) or cytokines, such as tumour necrosis factor-alpha (TNF-alpha). Toll-like receptors encoded by the TLR4 or TLR9 genes may also play a role. Recent whole genome scans suggest that a rare variant in the interleukin-23 receptor (IL23R) gene may actually protect against IBD. Other implicated genes may affect mucosal cell polarity (Drosophila discs large homologue 5, DLG5) or mucosal transporter function (sodium dependent organic cation transporters, SLC22A4 and SLC22A5). A variant in ABCB1 (ATP-binding cassette subfamily B member 1) may be especially associated with increased risk of UC. While pharmacogenetics is increasingly being used to predict and optimise clinical response to therapy, nutrigenetics may have even greater potential. In many cases, IBD can be controlled through prescribing an elemental diet, which appears to act through modulating cytokine response and changing the gut microbiota. More generally, no single group of dietary items is beneficial or detrimental to all patients, and elimination diets have been used to individualise dietary requirements. However, recognising the nature of the genes involved may suggest a more strategic approach. Pro- or prebiotics will directly influence the microbial flora, while immunonutrition, including omega-3 fatty acids and certain polyphenols, may reduce the symptoms of gut inflammation. The expression of gut transporters may be modulated through various herbal remedies including green tea polyphenols. Such approaches would require that the gene of interest is functioning normally, other than its expression being up or down-regulated. However, new approaches are being developed to overcome the effects of polymorphisms that affect the function of a gene. A combination of human correlation studies with experimental models could provide a rational strategy for optimising nutrigenetic approaches to IBD.  相似文献   

2.
Intestinal inflammation is characterized by epithelial disruption, leading to the loss of barrier function, recruitment of immune cells, and host immune responses to gut microbiota. PepT1, a di/tripeptide transporter that uptakes bacterial products, is up-regulated in inflamed colon tissue, which implies its role in bacterium-associated intestinal inflammation. Although microRNA (miRNA)-mediated gene regulation has been found to be involved in various processes of inflammatory bowel disease (IBD), the biological function of miRNAs in the pathogenesis of IBD remains to be explored. In this study we detected miRNA expression patterns in colon tissues during colitis and investigated the mechanism underlying the regulation of colonic PepT1 by miRNAs. We observed an inverse correlation between PepT1 and miR-193a-3p in inflamed colon tissues with active ulcerative colitis, and we further demonstrated that miR-193a-3p reduced PepT1 expression and activity as a target gene and subsequently suppressed the NF-κB pathway. Intracolonic delivery of miR-193a-3p significantly ameliorated dextran sodium sulfate-induced colitis, whereas the overexpression of colonic PepT1 via PepT1 3′-untranslated region mutant lentivirus vector abolished the anti-inflammatory effect of miR-193a-3p. Furthermore, antibiotic treatment eliminated the difference in the dextran sodium sulfate-induced inflammation between the presence and absence of miR-193a-3p. These findings suggest that miR-193a-3p regulation of PepT1 mediates the uptake of bacterial products and is a potent mechanism during the colonic inflammation process. Overall, we believe miR-193a-3p may be a potent regulator of colonic PepT1 for maintaining intestinal homeostasis.  相似文献   

3.
4.
Increasing evidence has confirmed that the antimicrobial and anti-inflammatory effects of cinnamon essential oil (CEO) contribute to protection against inflammatory bowel disease (IBD). The dextran sodium sulfate (DSS)-induced colitis mouse model was established to investigate the correlation between the protective effects of CEO and the regulation of intestinal microflora. The symptoms of IBD were assessed by measuring the hemoglobin content, myeloperoxidase activity, histopathological observation, cytokines, and toll-like receptor (TLR4) expression. The alteration of the fecal microbiome composition was analyzed by 16S rRNA gene sequencing. The results indicated that the oral administration of CEO enriched with cinnamaldehyde effectively alleviated the development of DSS-induced colitis. In contrast to the inability of antibiotics to regulate flora imbalance, the mice fed with CEO had an improved diversity and richness of intestinal microbiota, and a modified community composition with a decrease in Helicobacter and Bacteroides and an increase in Bacteroidales_S24-7 family and short-chain fatty acids (SCFA)-producing bacteria (Alloprevotella and Lachnospiraceae_NK4A136_group). Moreover, the correlation analysis showed that TLR4 and tumor necrosis factor-α was positively correlated with Helicobacter, but inversely correlated with SCFA-producing bacteria. These findings indicated from a new perspective that the inhibitory effect of CEO on IBD was closely related to improving the intestinal flora imbalance.  相似文献   

5.
Inflammatory bowel disease (IBD) are characterized recurrent inflammation of gastrointestinal tract. The etiology and pathogenesis this disease is currently unclear, but it has become evident that immune and genetic factors are involved in this process. The aim of this study was to determine whether gene polymorphisms: MIF-173 G/C; CXCL12-801 G/A and CXCR4 C/T exon 2 position of rs2228014 is associated with susceptibility to IBD. A total of 286 patients were examined with IBD, including 152 patients with ulcerative colitis and 134 with Crohn’s disease (CD) and 220 healthy subjects were recruited from the Polish population. Genotyping for polymorphisms in CXCL12/CXCR4 and MIF was performed by RFLP-PCR. Statistical significance was found for polymorphisms CXCR4, a receptor gene for CXCL12 genotypes and alleles in CD and for genotype C/T and T allele in ulcerative colitis with respect to control. This confirms the effect of CXCL12 gene. The interplay between CXCL12 and its receptor CXCR4 affects homeostasis and inflammation in the intestinal mucosa. Three-gene analysis in CD confirmed the association of genotype GGGGCT. Statistical analysis of clinical data of patients with ulcerative colitis showed significant differences in the distribution of genotype C/T and T allele for CXCR4 in the left-side colitis. Having CXCR4/CXCL12 chemokine axis polymorphisms may predispose to the development of IBD. Activation can also be their defensive reaction to the long-lasting inflammation.  相似文献   

6.
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease, is a chronic and recurrent inflammatory disorder of the intestinal tract. Since the precise pathogenesis of IBD remains unclear, it is important to investigate the pathogenesis of IBD and to evaluate new anti-inflammatory strategies. Recent evidence suggests that heme oxygenase-1 (HO-1) plays a critical protective role during the development of intestinal inflammation. In fact, it has been demonstrated that the activation of HO-1 may act as an endogenous defensive mechanism to reduce inflammation and tissue injury in various animal intestinal injury models induced by ischemia-reperfusion, indomethacin, lipopolysaccharide-associated sepsis, trinitrobenzene sulfonic acid or dextran sulfate sodium. In addition, carbon monoxide (CO) derived from HO-1 has been shown to be involved in the regulation of intestinal inflammation. Furthermore, administration of a low concentration of exogenous CO has a protective effect against intestinal inflammation. These data suggest that HO-1 and CO may be novel therapeutic molecules for patients with gastrointestinal inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 and CO in intestinal inflammation.  相似文献   

7.
Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that affects millions of people worldwide. Although the etiology of IBD is not clear, it is known that products from stressed cells and enteric microbes promote intestinal inflammation. High mobility group box 1 (HMGB1), originally identified as a nuclear DNA binding protein, is a cytokine-like protein mediator implicated in infection, sterile injury, autoimmune disease, and IBD. Elevated levels of HMGB1 have been detected in inflamed human intestinal tissues and in feces of IBD patients and mouse models of colitis. Neutralizing HMGB1 activity by administration of anti-HMGB1 antibodies or HMGB1-specific antagonist improves clinical outcomes in animal models of colitis. Since HMGB1 binds to DNA with high affinity, here we developed a novel strategy to sequester HMGB1 using DNA immobilized on sepharose beads. Screening of DNA-bead constructs revealed that B2 beads, one linear form of DNA conjugated beads, bind HMGB1 with high affinity, capture HMGB1 ex vivo from endotoxin-stimulated RAW 264.7 cell supernatant and from feces of mice with colitis. Oral administration of B2 DNA beads significantly improved body weight, reduced colon injury, and suppressed colonic and circulating cytokine levels in mice with spontaneous colitis (IL-10 knockout) and with dextran sulfate sodium-induced colitis. Thus, DNA beads reduce inflammation by sequestering HMGB1 and may have therapeutic potential for the treatment of IBD.  相似文献   

8.
Studies in recent years have identified a pivotal role of the cytokine IL-23 in the pathogenesis of inflammatory bowel diseases (IBD: Crohn´s disease, ulcerative colitis) and colitis-associated colon cancer. Genetic studies revealed that subgroups of IBD patients have single nucleotide polymorphisms in the IL-23R gene suggesting that IL-23R signaling affects disease susceptibility. Furthermore, increased production of IL-23 by macrophages, dendritic cells or granulocytes has been observed in various mouse models of colitis, colitis-associated cancer and IBD patients. Moreover, in several murine models of colitis, suppression of IL-12/IL-23 p40, IL-23 p19 or IL-23R function led to marked suppression of gut inflammation. This finding was associated with reduced activation of IL-23 target cells such as T helper 17 cells, innate lymphoid cells type 3, granulocytes and natural killer cells as well as with impaired production of proinflammatory cytokines. Based on these findings, targeting of IL-23 emerges as important concept for suppression of gut inflammation and inflammation-associated cancer growth. Consistently, neutralizing antibodies against IL-12/IL-23 p40 and IL-23 p19 have been successfully used in clinical trials for therapy of Crohn´s disease and pilot studies in ulcerative colitis are ongoing. These findings underline the crucial regulatory role of IL-23 in chronic intestinal inflammation and colitis-associated cancer and indicate that therapeutic strategies aiming at IL-23 blockade may be of key relevance for future therapy of IBD patients.  相似文献   

9.
10.
Inflammatory bowel disease (IBD) is a group of disorders that are characterized by chronic, uncontrolled inflammation in the intestinal mucosa. Although the aetiopathogenesis is poorly understood, it is widely believed that IBD stems from a dysregulated immune response towards otherwise harmless commensal bacteria. Chemokines induce and enhance inflammation through their involvement in cellular trafficking. Reducing or limiting the influx of these proinflammatory cells has previously been demonstrated to attenuate inflammation. CXCR3, a chemokine receptor in the CXC family that binds to CXCL9, CXCL10 and CXCL11, is strongly overexpressed in the intestinal mucosa of IBD patients. We hypothesised that CXCR3 KO mice would have impaired cellular trafficking, thereby reducing the inflammatory insult by proinflammatory cell and attenuating the course of colitis. To investigate the role of CXCR3 in the progression of colitis, the development of dextran sulfate sodium (DSS)-induced colitis was investigated in CXCR3−/− mice over 9 days. This study demonstrated attenuated DSS-induced colitis in CXCR3−/− mice at both the macroscopic and microscopic level. Reduced colitis correlated with lower recruitment of neutrophils (p = 0.0018), as well as decreased production of IL-6 (p<0.0001), TNF (p = 0.0038), and IFN-γ (p = 0.0478). Overall, our results suggest that CXCR3 plays an important role in recruiting proinflammatory cells to the colon during colitis and that CXCR3 may be a therapeutic target to reduce the influx of proinflammatory cells in the inflamed colon.  相似文献   

11.
Inflammatory bowel disease (IBD), encompassing Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic intestinal inflammatory condition with increasing incidence worldwide and whose pathogenesis remains largely unknown. The collected evidence indicates that genetic, environmental and microbial factors and a dysregulated immune response are responsible for the disease. IBD has an early onset and long term sufferers present a higher risk of developing colitis associated cancer (CAC). The carcinoembryonic antigen-related adhesion molecules (CEACAM) are a subgroup of the CEA family, found in a range of different cell types and organs including epithelial cells in the intestine. They can act as intercellular adhesions molecules for e.g. bacteria and soluble antigens. CEACAMs are involved in a number of different processes including cell adhesion, proliferation, differentiation and tumour suppression. Some CEACAMs such as CEACAM1, CEACAM5 and CEACAM6 are highly associated with cancer and are even recognised as valid clinical markers for certain cancer forms. However, their role in IBD pathogenesis is less understood. The purpose of this review is to provide a comprehensive summary of published literature on CEACAMs and intestinal inflammation (IBD). The interactions between CEACAMs and bacteria adhesion in relation to IBD pathophysiology will be addressed and potential new therapeutic and diagnostic opportunities will be identified.  相似文献   

12.
Ulcerative colitis and colonic Crohn's disease (together known as inflammatory bowel disease or IBD) are both associated with increased risk for colorectal cancer. Although it is customary to emphasize differences in the biology of IBD-associated and sporadic colon cancer, we believe these are far outweighed by the similarities. These similarities suggest that they might have similar pathogenic mechanisms. Because the normal colon is arguably in a continual state of low-grade inflammation in response to its microbial flora, it is reasonable to speculate that both IBD-associated and sporadic colon cancer might be the consequence of bacteria-induced inflammation.  相似文献   

13.
LP Hale  PK Greer 《PloS one》2012,7(7):e41797
Mutations that increase susceptibility to inflammatory bowel disease (IBD) have been identified in a number of genes in both humans and mice, but the factors that govern how these mutations contribute to IBD pathogenesis and result in phenotypic presentation as ulcerative colitis (UC) or Crohn disease (CD) are not well understood. In this study, mice deficient in both TNF and IL-10 (T/I mice) were found to spontaneously develop severe colitis soon after weaning, without the need for exogenous triggers. Colitis in T/I mice had clinical and histologic features similar to human UC, including a markedly increased risk of developing inflammation-associated colon cancer. Importantly, development of spontaneous colitis in these mice was prevented by antibiotic treatment. Consistent with the known role of Th17-driven inflammation in response to bacteria, T/I mice had elevated serumTh17-type cytokines when they developed spontaneous colitis and after systemic bacterial challenge via NSAID-induced degradation of the mucosal barrier. Although TNF production has been widely considered to be be pathogenic in IBD, these data indicate that the ability to produce normal levels of TNF actually protects against the spontaneous development of colitis in response to intestinal colonization by bacteria. The T/I mouse model will be useful for developing new rationally-based therapies to prevent and/or treat IBD and inflammation-associated colon cancer and may further provide important insights into the pathogenesis of UC in humans.  相似文献   

14.

Background  

Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD). Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s) involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies.  相似文献   

15.
Werner T  Haller D 《Mutation research》2007,622(1-2):42-57
Advancing knowledge regarding the cellular mechanisms of intestinal inflammation has led to a better understanding of the disease pathology in patients with inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis. It has become clear from numerous studies that enteric bacteria are a critical component in the development and prevention/treatment of chronic intestinal inflammation. An emerging new paradigm suggests that changes in the homeostasis of bacteria- and host-derived signal transduction at the intestinal epithelial cell (IEC) level may lead to a break in barrier function and the development of adaptive immune disturbances. The functional loss of anti-inflammatory host-derived signals in the gut including the immunosuppressive cytokines Interleukin 10 (IL-10) and transforming growth factor (TGF)-beta are of high relevance to the pathogenesis of IBD. The development of analytical tools including two-dimensional (2D) high-resolution protein separation techniques and peptide mass fingerprinting via high-sensitivity mass-spectrometers (MS) allows the quantitative assessment of protein expression changes in disease-relevant cell types. By using these advanced methods, the characterization of the epithelial cell proteome from murine models of experimental colitis and human IBD patients identified novel disease-related mechanisms with respect to the regulation of the glucose-regulated endoplasmic reticulum stress response protein 78 (grp-78). In conclusion, the identification and functional analysis of differentially expressed proteins in purified intestinal target cell types will help to add important insights to the understanding of the molecular pathogenesis of these immune-mediated chronic intestinal disorders.  相似文献   

16.
Angiogenesis is now understood to play a major role in the pathology of chronic inflammatory diseases and is indicated to exacerbate disease pathology. Recent evidence shows that angiogenesis is crucial during inflammatory bowel disease (IBD) and in experimental models of colitis. Examination of the relationship between angiogenesis and inflammation in experimental colitis shows that initiating factors for these responses simultaneously increase as disease progresses and correlate in magnitude. Recent studies show that inhibition of the inflammatory response attenuates angiogenesis to a similar degree and, importantly, that inhibition of angiogenesis does the same to inflammation. Recent data provide evidence that differential regulation of the angiogenic mediators involved in IBD-associated chronic inflammation is the root of this pathological angiogenesis. Many factors are involved in this phenomenon, including growth factors/cytokines, chemokines, adhesion molecules, integrins, matrix-associated molecules, and signaling targets. These factors are produced by various vascular, inflammatory, and immune cell types that are involved in IBD pathology. Moreover, recent studies provide evidence that antiangiogenic therapy is a novel and effective approach for IBD treatment. Here we review the role of pathological angiogenesis during IBD and experimental colitis and discuss the therapeutic avenues this recent knowledge has revealed.  相似文献   

17.

Background

In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn’s disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns.

Methods

Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores.

Results

Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls.

Conclusions

There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology.  相似文献   

18.
19.
Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are chronic inflammatory diseases with unsolved pathogenesis. Imbalanced Th1/Th2 may play a role in the sustained inflammation of IBD. In China, CD is rare but the incidence of UC has been rising steadily in the last two decades. We investigated the expression of IL-12 (p40) and IFN-γ, and the activational state of Stat4 signaling in mucosal tissues at the site of disease from 30 active UC patients in comparison with 30 healthy controls. RT-PCR analyses revealed increased mRNA expression of IL-12 (p40) but not IFN-γ in UC patients. Western blot analyses discovered, for the first time, increased levels of constitutive Stat4 in the cytoplasm and phosphorylated Stat4 in the nucleus of mucosal cells from UC patients. We conclude that a heightened, perhaps persistent, activational state of IL-12/Stat4, and/or IL-23/Stat4 signaling may be present in active Chinese UC patients, and possibly involved in chronic inflammation in UC.  相似文献   

20.
Inflammatory bowel disease (IBD) results from a chronic intestinal inflammation and tissue destruction via an aberrant immune-driven inflammatory response towards an altered gut microbiota. Dietary intervention is becoming an attractive avenue for the therapy of colitis because diet is a key determinant of the mucosal immune response. Quercetin (QCN) is the most common in nature and the major representative of dietary antioxidant flavonoids, which has been demonstrated to influence the progression of colitis. However, the underlying mechanism of QCN on intestinal immunomodulation remains unclear. Here, our study demonstrated dietary QCN could ameliorate experimental colitis in part by modulating the anti-inflammatory effects and bactericidal capacity of macrophages via Heme oxygenase-1 (Hmox1, HO-1) dependent pathway. It suggested that QCN might restore the proper intestinal host-microbe relationship to ameliorate the colitis via rebalancing the pro-inflammatory, anti-inflammatory and bactericidal function of enteric macrophages. Hence, modulating the function of intestinal macrophages with dietary administration of QCN to restore the immunological hemostasis and rebalance the enteric commensal flora is a potential and promising strategy for IBD therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号