首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular lipase gene from Yarrowia lipolytica (YlLip2) was cloned into the pPICZalphaA and integrated into the genome of the methylotrophic yeast Pichia pastoris X-33. The lipase was successfully expressed and secreted with an apparent molecular weight of 39kDa using Saccharomyces cerevisiae secretion signal peptide (alpha-factor) under the control of the methanol inducible promoter of the alcohol oxidase 1 gene (AOX1). The lipase activity of 12,500,000U/l (2.10g total protein and 0.63g lipase per liter) was obtained in a fed-batch cultivation, where methanol feeding was linked to the dissolved oxygen content after initial glycerol culture. After fermentation, the supernatant was concentrated by ultrafiltration with a 10kDa cut off membrane and purified with ion exchange chromatography using Q Sepharose FF. Deglycosylation showed that the recombinant lipase is a glycoprotein which contains the same content of sugar (about 12%) as the native lipase from Y. lipolytica. The optimum temperature and pH of the recombinant lipase was 40 degrees C and 8.0, respectively. The lipase showed high activity toward long-chain fatty acid methyl esters (C12-C16).  相似文献   

2.
The endo-1,4-β-xylanase gene xyn11a from Fusarium oxysporum, member of the fungal glycosyl hydrolase (GH) family 11, was cloned and expressed in Pichia pastoris. The mature xylanase gene, which generates after the excision of one intron and the secreting signal peptide, was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPICZαC. The final construction was integrated into the genome of the methylotrophic yeast P. pastoris X33 and the ability to produce xylanase activity was evaluated in flask cultures. Recombinant P. pastoris efficiently secreted xylanase into the medium and produced high level of enzymatic activity (110 U/ml) after 216 hours of growth, under methanol induction. To achieve higher enzyme production, the influence of initial pH, methanol concentration, agitation and flask design was evaluated. Under optimum culture conditions, production of the recombinant xylanase increased by 50%, reaching a final yield of 170 U/ml, underpinning aeration as the most important factor in improving enzyme production.  相似文献   

3.
Expression of recombinant galactose oxidase by Pichia pastoris   总被引:5,自引:0,他引:5  
Galactose oxidase catalyzes the oxidation of a variety of primary alcohols, producing hydrogen peroxide as a product. Among hexose sugars, the enzyme exhibits a high degree of specificity for the C6-hydroxyl of galactose and its derivatives, underlying a number of important bioanalytical applications. Galactose oxidase cDNA has been cloned for expression in Pichia pastoris both as the full-length native sequence and as a fusion with the glucoamylase signal peptide. Expression of the full-length native sequence results in a mixture of partly processed and mature galactose oxidase. In contrast, the fusion construct directs efficient secretion of correctly processed galactose oxidase in high-density, methanol-induced fermentation. Culture conditions (including induction temperature and pH) have been optimized to improve the quality and yield (500 mg/L) of recombinant enzyme. Lowering the temperature from 30 to 25 degrees C during the methanol induction phase results in a fourfold increase in yield. A simple two-step purification and one-step activation produce highly active galactose oxidase suitable for a wide range of biomedical and bioanalytical applications.  相似文献   

4.
根据Thermomyces lanuginosus热稳定几丁质酶Chit的N-端氨基酸序列和同源保守序列设计简并引物,通过RT-PCR及快速扩增cDNA末端(RACE)的方法,克隆了该几丁质酶的编码基因chit,全长cDNA为1500bp,包含一个由442个氨基酸组成的开放阅读框。该基因已在GenBank中注册,登录号为DQ092332。将成熟肽几丁质酶Chit阅读框与酵母表达载体pPIC9K连接,构建重组质粒pPIC9K/chit,转化毕赤酵母GS115,在甲醇的诱导下,成功地分泌出具生物活性的几丁质酶,诱导6d后酶活性达2.261U/mL,酶蛋白表达量为0.36mg/mL。该酶的最适反应温度和pH值分别为60℃和5.5,该酶在50℃以下稳定;65℃的半衰期为40min。  相似文献   

5.
By screening for bacteriocin-producing lactic acid bacteria of 1,428 strains isolated from authentic Bulgarian dairy products, Lb. bulgaricus BB18 strain obtained from kefir grain was selected. Out of 11 yogurt starters containing Lb. bulgaricus BB18 and S. thermophilus strains resistant to bacteriocin secreted by Lb. bulgaricus BB18 a yogurt culture (S. thermophilus 11A+Lb. bulgaricus BB18) with high growth and bacteriocinogenic activity in milk was selected. Continuous (pH-stat 5.7) prefermentation processes were carried out in milk at 37 degrees C in a 2l MBR bioreactor (MBR AG, Zurich, Switzerland) with an IMCS controller for agitation speed, temperature, dissolved oxygen, CO2 and pH. Prefermented milk with pH 5.7 coagulated in a thermostat at 37 degrees C until pH 4.8-4.9. S. thermophilus 11A and Lb. bulgaricus BB18 grew independently in a continuous mode at similar and sufficiently high-dilution rates (D=1.83 h(-1)-S. thermophilus 11A; D=1.80 h(-1)-Lb. bulgaricus BB18). The yogurt cultures developed in a stream at a high-dilution rate (D=2.03-2.28 h(-1)). The progress of both processes (growth and bacteriocin production) depended on the initial ratio between the two microorganisms. The continuous prefermentation process promoted conditions for efficient fermentation and bacteriocinogenesis of the starter culture during the batch process: strong reduction of the times for bacteriocin production and coagulation of milk (to 4.5-5.0 h); high cell productivity (lactobacilli-4x10(12) CFU ml(-1), streptococci-6x10(12) CFU ml(-1)); high productivity of bacteriocins (4,500 BU ml(-1))-1.7 times higher than the bacteriocinogenic activity of the batch starter culture.  相似文献   

6.
旨在探讨毕赤酵母生产猪α干扰素过程的代谢产能规律及其对发酵性能的影响。在10 L罐下,开展了不同诱导条件下的毕赤酵母高效发酵生产猪α干扰素过程的代谢酶学和能量再生分析研究。结果表明:甲醇单独诱导条件下、将诱导温度从30℃降低到20℃,胞内醇氧化酶(AOX)、甲醛脱氢酶(FLD)和甲酸脱氢酶(FDH)的比活性增加显著,细胞的甲醇代谢和甲醛异化产能能力、猪α干扰素抗病毒活性大幅提高,最高抗病毒活性达到1.4×106IU/mL,约为30℃诱导条件下的10倍。30℃、甲醇/山梨醇共混流加下,主要供能途径由甲醇单独诱导时的甲醛异化代谢转向TCA循环,甲醛异化供能途径被弱化、毒副产物甲醛的生成积累得到抑制,走向目标蛋白合成途径的甲醇分配比例得到提高。此时,最高抗病毒活性达到1.8×107IU/mL,是30℃甲醇单独诱导下最高活性的100倍以上。更加重要的是,共混流加诱导可以在常温、使用空气供氧的条件下进行,发酵成本明显下降、整体发酵性能改善显著。  相似文献   

7.
Fibronectin splice variant ED B (extracellular domain B) is a promising marker for angiogenesis in growing solid tumors. Currently, recombinant antibodies against ED B are being investigated concerning their potential use, for either therapeutic or diagnostic purposes. Single-chain antibody fragments directed against the ED B can be efficiently expressed in Pichia pastoris; thus, a recombinant strain of the methylotropic yeast P. pastoris was used for this work. Three different forms of scFv antibody fragment are found in the supernatant from this fermentation: covalent homodimer, associative homodimer, and monomer. Both homodimeric forms can be converted to the monomeric form (under reducing conditions) and be efficiently radiolabeled, whereas the monomeric form of scFv already present in the supernatant cannot. It was also found that the fraction of protein in the monomeric form is highly dependent on the mode of induction rather than scFv concentration. This suggests that the monomeric form of the scFv present in the supernatant might be a result of events occurring at the expression, secretion, or folding level. A high cell density fermentation protocol was developed by optimizing methanol induction, yielding the highest scFv antibody fragment production rate and product quality; cell concentration at the induction point and specific methanol uptake rate were found to be the most important control variables. A decrease in specific methanol uptake rate led to a higher specific production rate for the scFv antibody fragment (5.4 microg g(cell) h(-1)). Product quality, i.e., percentage of product in a homodimeric form, also increased with the decrease in methanol uptake rate. Furthermore, the volumetric productivity depended on cell concentration at the induction point, increasing with the increase of cell concentration up to 320 g L(-1) wet cell weight (WCW). The reduction of the methanol feeding rate for induction, and consequently of the oxygen uptake rate, have important consequences for optimizing product titers and quality and thus on the scale-up of this production process; hence one of the major limitations upon high cell density cultivation in bioreactors is keeping the high oxygen transfer rate required. From the results obtained, a scale-up strategy was developed based on the available oxygen transfer rates at larger scales, allowing the definition of the optimum biomass concentration for induction and methanol feeding strategy for maximization of product titer and quality.  相似文献   

8.
Pseudomonas aeruginosa PR3 (NRRL B-18602) converts oleic acid to a novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). Parameters that included medium volume, cell growth time, gyration speed, pH, substrate concentration, and dissolved oxygen concentration were evaluated for a scale-up production of DOD in batch cultures using Fernbach flasks and a bench-top bioreactor. Maximum production of about 2 g DOD (38% yield) was attained in Fernbach flasks containing 500 ml medium when cells were grown at 28 degrees C and 300 rpm for 16-20 h and the culture was adjusted to pH 7 prior to substrate addition. Increases of medium volume and substrate concentration failed to enhance yield. When batch cultures were initially conducted in a reactor, excessive foaming occurred that made the bioconversion process inoperable. This was overcome by a new aeration mechanism that provided adequate dissolved oxygen to the fermentation culture. Under the optimal conditions of 650 rpm, 28 degrees C, and 40-60% dissolved oxygen concentration, DOD production reached about 40 g (40% yield) in 4.5 L culture medium using a 7-L reactor vessel. This is the first report on a successful scale-up production of DOD.  相似文献   

9.
毕赤酵母高密度发酵工艺的研究   总被引:9,自引:0,他引:9  
高密度发酵是毕赤酵母提高蛋白表达量的一种重要策略,发酵工艺是高密度发酵的一个重要因素。采用下列措施均可以有效地提高表达水平:调节基础培养基,采用变pH和变温发酵,提高DO,选择最适的诱导前菌体密度和比生长速率并降低甘油初始浓度和采用分段式指数流加进行调控。选择合适的甲醇补料策略:甲醇限制补料(MLFB)、氧气限制补料(OLFB)、甲醇不限制补料(MNLFB)和温度限制补料(TLFB)。采用两种方式调控补料:诱导阶段菌体生长时,甲醇比消耗速率(qMeOH)为0.02-0.03gg-1h-1,而菌体不生长时,qMeOH采用较高值。  相似文献   

10.
可溶性TRAIL蛋白的高密度培养及补料策略研究   总被引:3,自引:0,他引:3  
采用分批补料的方法高密度培养重组大肠杆菌C600/PbvTRAIL制备人可溶性TRAIL蛋白,优化发酵工艺,探索简单高效的分离纯化方法并测定蛋白生物活性。通过比较几种不同的补料策略:间歇流加、Dostat、pHstat,摸索了一种流加策略,即DOstatpHstat组合流加,有效的避免了发酵过程中,尤其是诱导表达阶段乙酸积累的增加,使TRAIL蛋白在高密度培养条件下,得到高效表达。菌体密度最终达到300g/L(WCW)以上,可溶性TRAIL蛋白占菌体总蛋白的4.2%,含量为1.1g/L。在整个发酵过程中,乙酸浓度接近于0,且未使用任何特殊手段,如纯氧、加压等,简化了发酵工艺,降低了发酵成本,为TRAIL的工业化生产创造了条件。  相似文献   

11.
采用逐步回归、主成分分析和灰色关联度分析等方法,研究不同产地野生玉竹的有效成分(多糖、水溶物和醇提物)含量和抗氧化活性与主要生态因子的相关性.结果表明: 1月均温、7月均温、年降水量、无霜期、土壤pH和全钾含量是影响玉竹有效成分含量的主要生态因子,对玉竹有效成分含量变化的影响程度占99.0%.与土壤因子相比,气候因子对3种有效成分含量的影响较大;土壤全钾含量是对玉竹有效成分含量直接影响最大的因素,年降水量是最主要的决策因素,1月均温是最主要的限制因素.多糖和水溶物含量是影响玉竹抗氧化活性的主要因子,玉竹对DPPH自由基的清除能力随多糖和水溶物含量的增加而增大.  相似文献   

12.
孙风敏  韩焱  李文利 《微生物学通报》2014,41(11):2198-2207
【目的】提高蛋白酶K在毕赤酵母中的表达产量,建立分离纯化方法。【方法】首先对蛋白酶K密码子进行优化,将其导入毕赤酵母GS115中实现分泌表达。然后对甲醇浓度、发酵温度和p H等表达条件进行优化,再对硫酸铵沉淀、亲和层析等纯化工艺进行比对分析。【结果】蛋白酶K密码子优化后实现了在毕赤酵母中的高效表达。在甲醇量0.75%、温度25°C和p H 7.0条件下进行发酵罐培养,蛋白酶K表达量达到2.2 g/L。采用Ni-NTA亲和柱对发酵液进行纯化可以得到较好的纯化效果。【结论】密码子优化后的蛋白酶K在毕赤酵母中高效表达并可以利用Ni-NTA亲和柱进行有效分离纯化。  相似文献   

13.
金针菇漆酶基因的克隆及其在毕赤酵母中的表达研究   总被引:13,自引:0,他引:13  
综合运用cDNA末端快速扩增 (RapidAmplificationofcDNAEnds ,RACE )和基因组步行等技术克隆到一个金针菇 (Flammulinavelutipes)的漆酶结构基因和其对应的全长cDNA ,经测序和BLAST比对分析表明该基因属于多铜氧化酶基因家族 ,与已发表的漆酶基因 (AF176 2 30 )的同源性最高 ,在氨基酸水平为 72 %。该结构基因命名为gl ccFv,cDNA命名为lccFv ,其序列提交GenBank ,登录号分别为AY4 85 82 6和AY4 5 0 4 0 6。将lccFv的开放阅读框克隆到毕赤酵母表达载体pHBM90 6 ,转化毕赤酵母GS115且实现了分泌表达。将重组毕赤酵母GS115 (pHBM5 6 5 )诱导产酶 ,在培养温度 2 0℃、甲醇流加量为 1 0 % (V V)的情况下 ,其分泌表达的LCCFv的最高酶活为 0 10 70U mL ,最适反应温度为 4 5℃ ,最适反应pH值为 3 9,在最适反应条件下其热稳定性和pH值稳定性均较好  相似文献   

14.
【目的】对转棘孢木霉几丁质酶基因tachi1的毕赤酵母工程菌GS-tachi1-K进行诱导表达,研究重组几丁质酶Tachi1的酶学性质,优化表达条件。【方法】对GS-tachi1-K进行甲醇诱导培养,纯化目的蛋白Tachi1进行几丁质酶酶学性质的研究;通过单因素和正交试验对GS-tachi1-K菌株产几丁质酶Tachi1表达条件进行优化。【结果】GS-tachi1-K表达的几丁质酶Tachi1表观分子量约为44 kDa,酶反应最适的温度和pH分别为50℃和5.5,具有较宽的温度、pH适用范围;50℃以下保持较高的酶活力,在碱性条件下稳定性较差;受Ag+、Hg2+、Cu2+、Fe2+和高浓度的SDS及β-巯基乙醇强烈抑制。该菌株的最佳表达条件为:pH为6.5,甲醇诱导浓度为0.5%,起始细胞浓度为OD600=2,甲醇诱导时间为180 h;几丁质酶Tachi1活力可达17.93 U/mL,蛋白表达量为6.19 g/L。【结论】成功实现了棘孢木霉新几丁质酶基因tachi1的毕赤酵母高效分泌表达,工程菌GS-tachi1-K具有高表达量和表达产物酶活性高两个特点,明确了几丁质酶Tachi1的酶学性质和最佳诱导表达条件,为该几丁质酶及其基因的深入研究和开发利用奠定了基础。  相似文献   

15.
A DO-stat control strategy for two variables was introduced to the rGuamerin production process in Pichia pastoris and applied to repeated fed-batch culture. Two interrelated variables, namely the ratio of partial pressure of pure O2 in the inlet air-stream and the methanol feed rate, were controlled simultaneously. By using this control strategy, methanol feeding for induction could be controlled automatically while efficiently controlling the dissolved oxygen level. As a result, the cell concentration reached more than 140 g l(-1) and rGuamerin expression level 450 iu l(-1). rGuamerin was secreted into the culture medium and reached a level that was 40% higher than achieved in a fed-batch process using manual control of the methanol feeding rate. Repeated rGuamerin induction was achieved by repeating the methanol feeding and withdrawing the culture broth during extended production. During more than 250 h of culture, expression of rGuamerin was maintained at an average of about 430 iu l(-1 )(473 mg l(-1)), without causing the cell density to decrease. In addition to the rGuamerin production process, the proposed control system might be applied to cultivation of other methylotrophic yeasts in the production of therapeutic proteins.  相似文献   

16.
平菇漆酶基因在毕赤酵母中的分泌表达及酶学性质研究   总被引:5,自引:0,他引:5  
采用RTPCR技术克隆到一个平菇(Pleurotusostreatus)漆酶基因的全长cDNA,命名为lccPo1,其序列提交GenBank,登录号为AY450404。将其ORF克隆到毕赤酵母表达载体pHBM906,转化3株毕赤酵母GS115、KM71和SMD1168,该漆酶基因在3种毕赤酵母菌株中均实现了分泌表达。3种摇瓶培养条件①25℃,1.0%(VV)甲醇;②20℃,1.0%(VV)甲醇;③20℃,0.5%(VV)甲醇,进行比较研究后发现适当提高甲醇浓度有利于漆酶在低温条件下表达,而降低培养温度到20℃则可以提高漆酶的产量2~6倍。3株重组毕赤酵母在其最适反应条件下测得三者粗酶液最高漆酶酶活分别为3.19UmL[GS115(pHBM565)]、2.56UmL[KM71(pHBM565)]和2.49UmL[SMD1168(pHBM565)]。对重组酶进行相关的酶学性质分析表明,三者的最适反应pH值约为4.2,最适反应温度约为60℃。重组毕赤酵母GS115(pHBM565)所产酶的热稳定性稍好,在pH稳定性方面三者没有太大差异。  相似文献   

17.
The degradation of methanethiol (MT) at 30 degrees C under saline-alkaline (pH 8-10, 0.5M Na(+)) conditions was studied in a lab-scale Upflow Anaerobic Sludge Blanket (UASB) reactor inoculated with estuarine sediment from the Wadden Sea (The Netherlands). At a sodium concentration of 0.5M and a pH between 8 and 9 complete MT degradation to sulfide, methane and carbon dioxide was possible at a maximum loading rate of 22mmolMTL(-1)day(-1) and a hydraulic retention time of 6h. The presence of yeast extract (100mg/L) in the medium was essential for complete MT degradation. 16S rRNA based DGGE and sequence analysis revealed that species related to the genera Methanolobus and Methanosarcina dominated the archaeal community in the reactor sludge. Their relative abundance fluctuated in time, possibly as a result of the changing operational conditions in the reactor. The most dominant MT-degrading archaeon was enriched from the reactor and obtained in pure culture. This strain WR1, which was most closely related to Methanolobus taylorii, degraded MT, dimethyl sulfide (DMS), methanol and trimethylamine. Its optimal growth conditions were 0.2M NaCl, 30 degrees C and pH 8.4. In batch and reactor experiments operated at pH 10, MT was not degraded.  相似文献   

18.
阿特拉津降解菌SA1的分离鉴定及其降解特性研究   总被引:4,自引:0,他引:4  
为进行阿特拉津(AT)污染的生物修复,从AT降解混合菌群中,经长期的交替液体摇瓶培养和平板划线分离,筛选到一株能完全降解AT的菌株SA1。经生理生化特征及16S rDNA序列分析,将该菌鉴定为假单胞菌属(Pseudomonas sp.)。与已报道的AT降解菌Pseudomonas sp.ADP不同,SA1能以AT为唯一碳源、氮源和能源生长,培养基中添加铵盐不抑制SA1的降解功能,而添加葡萄糖时,累积的氰尿酸会被快速降解。SA1生长的最适温度为37℃,最适pH值为7.0。SA1的静息细胞在10℃~40℃或pH值4~11时均能高效降解AT,比ADP降解具有更广的pH和温度范围,表明SA1降解菌株具有广阔的应用前景。SA1中AT降解基因为保守的atzABCD,并含有IS1071的tnpA基因片段,传代过程中降解基因会以一定频率丢失。  相似文献   

19.
To investigate the expression and purification of an unstable heterologous protein in Pichia pastoris, the cDNA of H5-lysozyme, a hen egg lysozyme mutant with a hydrophobic pentapeptide (Phe-Phe-Val-Ala-Pro) fused to the carboxyl terminus, was integrated into the genome of P. pastoris. It was found that medium composition, induction time, and fermenter type were important factors for the expression of H5-lysozyme. Substantially active H5-lysozyme was secreted by induction with methanol when the prepro-sequence of alpha-factor was used as secretion signal sequence. The amount secreted was 422-fold greater than that observed with Saccharomyces cerevisiae. Recombinant H5-lysozyme was recovered and purified by cation-exchange chromatography directly from fermentation broth. The mutant lysozyme showed bactericidal activity against Gram-positive as well as Gram-negative bacteria.  相似文献   

20.
采用谷氨酸棒杆菌S9114和枯草芽胞杆菌NTG-4在10 L自控发酵罐上进行混菌发酵,探索混菌发酵生产γ-聚谷氨酸的可行性并进行工艺优化。结果表明:温度、接种量、pH及溶氧对聚谷氨酸发酵有较大影响,发酵前期维持32℃,6 h提温至37℃变温控制,谷氨酸棒杆菌和枯草芽胞杆菌接种量分别为5%和0.5%,pH 7.0,溶氧20%最有利于γ-聚谷氨酸发酵,在此条件下发酵32 hγ-聚谷氨酸最高产量为38.3 g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号