首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of growth cone actin filaments by guidance cues   总被引:16,自引:0,他引:16  
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dynamic actin filaments of growth cones are frequently targets of this regulatory signaling. Rho GTPases are key mediators of signaling by guidance cues, although much remains to be learned about how growth cone responses are orchestrated by Rho GTPase signaling to change the dynamics of polymerization, transport, and disassembly of actin filaments. Binding of neurotrophins to Trk and p75 receptors on growth cones triggers changes in actin filament dynamics to regulate several aspects of growth cone behaviors. Activation of Trk receptors mediates local accumulation of actin filaments, while neurotrophin binding to p75 triggers local decrease in RhoA signaling that promotes lengthening of filopodia. Semaphorin IIIA and ephrin-A2 are guidance cues that trigger avoidance or repulsion of certain growth cones, and in vitro responses to these proteins include growth cone collapse. Dynamic changes in the activities of Rho GTPases appear to mediate responses to these cues, although it remains unclear what the changes are in actin filament distribution and dynamic reorganization that result in growth cone collapse. Growth cones in vivo simultaneously encounter positive and negative guidance cues, and thus, growth cone behaviors during axonal pathfinding reflect the complex integration of multiple signaling activities.  相似文献   

2.
Directed outgrowth of neural processes must involve transmission of signals from the tips of filopodia to the central region of the growth cone. Here, we report on the distribution and dynamics of one possible element in this process, actin, in live growth cones which are reorienting in response to in situ guidance cues. In grasshopper embryonic limbs, pioneer growth cones respond to at least three types of guidance cues: a limb axis cue, intermediate target cells, and a circumferential band of epithelial cells. With time-lapse imaging of intracellularly injected rhodamine-phalloidin and rhodamine-actin, we monitored the distribution of actin during growth cone responses to these cues. In distal limb regions, accumulation of actin in filopodia and growth cone branches accompanies continued growth, while reduction of actin accompanies withdrawal. Where growth cones are reorienting to intermediate target cells, or along the circumferential epithelial band, actin selectively accumulates in the proximal regions of those filopodia that have contacted target cells or are extending along the band. Actin accumulations can be retrogradely transported along filopodia, and can extend into the central region of the growth cone. These results suggest that regulation and translocation of actin may be a significant element in growth cone steering.  相似文献   

3.
Guidance molecules present in both axonal and dendritic growth cones mediate neuronal responses to extracellular cues thereby ensuring correct neurite pathfinding and development of the nervous system. Little is known though about the mechanisms employed by neurons to deliver these receptors, specifically and efficiently, to the extending growth cone. A deeper understanding of this process is crucial if guidance receptors are to be manipulated to promote nervous system repair. Studies in other polarised cells, notably epithelial, have elucidated fundamental routes to the intracellular segregation of molecules mediated by endosomal pathways. Due to their extreme complexity and specialisation, neurons appear to have built upon these generic systems to evolve sophisticated trafficking networks. A striking feature is the axon initial segment which acts like a valve to tightly regulate the flux of molecules both entering and leaving the axon. Once in the growth cone, further controls operate to enhance the retention or rejection, as appropriate, of membrane receptors. We discuss the current state of knowledge regarding the intracellular trafficking of axon guidance receptors and how this relates to their developmental roles. We highlight the various facets still to be properly elucidated and by building on existing data regarding neuronal polarity and intracellular sorting mechanisms suggest ways to fill these gaps.  相似文献   

4.
Touch and go: guidance cues signal to the growth cone cytoskeleton   总被引:9,自引:0,他引:9  
Growth cones, the highly motile tips of growing axons, guide axons to their targets by responding to molecular cues. Growth cone behaviors such as advancing, retracting, turning and branching are driven by the dynamics and reorganization of the actin and microtubule cytoskeleton through signaling pathways linked to guidance cue receptors. Actin filaments play a major part in growth cone motility, and because of their peripheral locations were thought to be the primary target of molecular cues. However, recent studies have shown that dynamic microtubules can penetrate the growth cone periphery where guidance molecules can influence them directly. Moreover, guidance cues can regulate growth cone steering by modulating dynamic actin-microtubule interactions.  相似文献   

5.
The generation of a functional nervous system is dependent on precise pathfinding of axons during development. This pathfinding is directed by the distribution of local and long-range guidance cues, the latter of which are believed to be distributed in gradients. Gradients of guidance cues have been associated with growth cone function for over a hundred years. However, little is known about the mechanisms used by growth cones to respond to these gradients, in part owing to the lack of identifiable gradients in vivo. In the developing grasshopper limb, two gradients of the semaphorin Sema-2a are necessary for correct neuronal pathfinding in vivo. The gradients are found in regions where growth cones make critical steering decisions. Observations of different growth cone behaviors associated with these gradients have provided some insights into how growth cones respond to them. Growth cones appear to respond more faithfully to changes in concentration, rather than absolute levels, of Sema-2a expression, whereas the absolute levels may regulate growth cone size.  相似文献   

6.
To systematically understand the molecular events that underlie biological phenomena, we must develop methods to integrate an enormous amount of genomic and proteomic data. The integration of molecular data should go beyond the construction of biochemical cascades among molecules to include tying the biochemical phenomena to physical events. For the behavior and guidance of growth cones, it remains largely unclear how biochemical events in the cytoplasm are linked to the morphological changes of the growth cone. We take a computational approach to simulate the biochemical signaling cascade involving members of the Rho family of GTPases and examine their potential roles in growth-cone motility and axon guidance. Based on the interactions between Cdc42, Rac, and RhoA, we show that the activation of a Cdc42-specific GEF resulted in switching responses between oscillatory and convergent activities for all three GTPases. We propose that the switching responses of these GTPases are the molecular basis for the decision mechanism that determines the direction of the growth-cone expansion, providing a spatiotemporal integration mechanism that allows the growth cone to detect small gradients of external guidance cues. These results suggest a potential role for the cross talk between Rho GTPases in governing growth-cone movement and axon guidance and underscore the link between chemodynamic reactions and cellular behaviors.  相似文献   

7.
Nerve growth factor (NGF) and semaphorin3A (Sema3A) are guidance cues found in pathways and targets of developing dorsal root ganglia (DRG) neurons. DRG growth cone motility is regulated by cytoplasmic signaling triggered by these molecules. We investigated interactions of NGF and Sema3A in modulating growth cone behaviors of axons extended from E7 chick embryo DRGs. Axons extending in collagen matrices were repelled by Sema3A released from transfected HEK293 cells. However, if an NGF-coated bead was placed adjacent to Sema3A-producing cells, axons converged at the NGF bead. Growth cones of DRGs raised in 10(-9) M NGF were more resistant to Sema3A-induced collapse than when DRGs were raised in 10(-11) M NGF. After overnight culture in 10(-11) M NGF, 1-hr treatment with 10(-9) M NGF also increased growth cone resistance to Sema3A. Pharmacological studies indicated that the activities of ROCK and PKG participate in the cytoskeletal alterations that lead to Sema3A-induced growth cone collapse, whereas PKA activity is required for NGF-mediated reduction of Sema3A-induced growth cone collapse. These results support the idea that growth cone responses to a guidance cue can be modulated by interactions involving coincident signaling by other guidance cues.  相似文献   

8.
Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum-bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin-1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support-our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth-promoting to outgrowth-inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones.  相似文献   

9.
10.
Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum‐bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin‐1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth‐promoting to outgrowth‐inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 285–301, 2002  相似文献   

11.
Decoding the molecular mechanisms underlying axon guidance is key to precise understanding of how complex neural circuits form during neural development. Although substantial progress has been made over the last three decades in identifying numerous axon guidance molecules and their functional roles, little is known about how these guidance molecules collaborate to steer growth cones to their correct targets. Recent studies in Drosophila point to the importance of the combinatorial action of guidance molecules, and further show that selective fasciculation and defasciculation at specific choice points serve as a fundamental strategy for motor axon guidance. Here, I discuss how attractive and repulsive guidance cues cooperate to ensure the recognition of specific choice points that are inextricably linked to selective fasciculation and defasciculation, and correct pathfinding decision-making.  相似文献   

12.
Growth cones are highly motile structures at the end of neuronal processes, capable of receiving multiple types of guidance cues and transducing them into directed axonal growth. Thus, to guide the axon toward the appropriate target cell, the growth cone carries out different functions: it acts as a sensor, signal transducer, and motility device. An increasing number of molecular components that mediate axon guidance have been characterized over the past years. The vast majority of these molecules include proteins that act as guidance cues and their respective receptors. In addition, more and more signaling and cytoskeleton-associated proteins have been localized to the growth cone. Furthermore, it has become evident that growth cone motility and guidance depends on a dynamic cytoskeleton that is regulated by incoming guidance information. Current and future research in the growth cone field will be focussed on how different guidance cues transmit their signals to the cytoskeleton and change its dynamic properties to affect the rate and direction of growth cone movement. In this review, we discuss recent evidence that cell adhesion molecules can regulate growth cone motility and guidance by a mechanism of substrate-cytoskeletal coupling.  相似文献   

13.
Growth cones of sympathetic neurons from the superior cervical ganglia of neonatal rats were studied using video-microscopy to determine events following contact between growth cones and other cell surfaces, including other growth cones and neurites. A variety of behaviors were observed to occur upon contact between growth cones. Most commonly, one growth cone would collapse and subsequently retract upon establishing filopodial contact with the growth cone of another sympathetic neuron. Contacts resulting in collapse and retraction were often accompanied by a rapid and transient burst of lamellipodial activity along the neurite 30-50 microns proximal to the retracting growth cone. In no instances did interactions between growth cones and either fibroblasts or red blood cells result in the growth cone collapsing, suggesting that a specific recognition event was involved. On several occasions, growth cones were seen to track other growth cones, although fasciculation was rare. In some cases, there was no obvious response between contacting growth cones. Growth cone-growth cone contact was almost four times more likely to result in collapse and retraction than was growth cone-neurite contact (45% vs 12%, respectively). These observations suggest that the superior cervical ganglion may be composed of neurons with different cell surface determinants and that these determinants are more concentrated on the surface of growth cones than on neurites. These results further suggest that contact-mediated inhibition of growth cone locomotion may play an important role in growth cone guidance.  相似文献   

14.
During development, growth cones direct growing axons into appropriate targets. However, in some cortical pathways target innervation occurs through the development of collateral branches that extend interstitially from the axon shaft. How do such branches form? Direct observations of living cortical brain slices revealed that growth cones of callosal axons pause for many hours beneath their cortical targets prior to the development of interstitial branches. High resolution imaging of dissociated living cortical neurons for many hours revealed that the growth cone demarcates sites of future axon branching by lengthy pausing behaviors and enlargement of the growth cone. After a new growth cone forms and resumes forward advance, filopodial and lamellipodial remnants of the large paused growth cone are left behind on the axon shaft from which interstitial branches later emerge. To investigate how the cytoskeleton reorganizes at axon branch points, we fluorescently labeled microtubules in living cortical neurons and imaged the behaviors of microtubules during new growth from the axon shaft and the growth cone. In both regions microtubules reorganize into a more plastic form by splaying apart and fragmenting. These shorter microtubules then invade newly developing branches with anterograde and retrograde movements. Although axon branching of dissociated cortical neurons occurs in the absence of targets, application of a target-derived growth factor, FGF-2, greatly enhances branching. Taken together, these results demonstrate that growth cone pausing is closely related to axon branching and suggest that common mechanisms underlie directed axon growth from the terminal growth cone and the axon shaft.  相似文献   

15.
At the distal most aspect of motile extending axons and dendrites lies the growth cone, a hand like macroorganelle of membrane bound cytoskeleton, packed with receptors, adhesion molecules, molecular motors, and an army of regulatory and signaling proteins. Splayed out along the substratum in vitro, the growth cone resembles an open hand with bundles of filamentous actin, barbed ends outstretched, as if fingers extending from a central domain of dynamic microtubule plus ends. The growth cone acts first as a sensory platform, analyzing the environment ahead for the presence of guidance cues, secondly as a mechanical dynamo establishing focal contact with the extracellular matrix to drive processive forward outgrowth, and thirdly as a forward biochemical command center where signals are interrogated to inform turning, extension, retraction, or branching. During his career, Paul Letourneau has made major contributions to our understanding of how growth cones respond to their environment. Here, we will summarize some of these major advances in their historical context. Letourneau's contributions have provided insights into cytoskeletal organization, growth cone dynamics, and signaling pathways. His recent work has described some important molecules and molecular mechanisms involved in growth cone turning. Although much remains to be understood about this important and intriguing structure, Letourneau's contributions have provided us with "growth cone guidance."  相似文献   

16.
Directional guidance of nerve growth cones   总被引:4,自引:0,他引:4  
The intricate connections of the nervous system are established, in part, by elongating axonal fibers that are directed by complex guidance systems to home in on their specific targets. The growth cone, the major motile apparatus at the tip of axons, explores its surroundings and steers the axon along a defined path to its appropriate target. Significant progress has been made in identifying the guidance molecules and receptors that regulate growth cone pathfinding, the signaling cascades underlying distinct growth cone behaviors, and the cytoskeletal components that give rise to the directional motility of the growth cone. Recent studies have also shed light on the sophisticated mechanisms and new players utilized by the growth cone during pathfinding. It is clear that axon pathfinding requires a growth cone to sample and integrate various signals both in space and in time, and subsequently to coordinate the dynamics of its membrane, cytoskeleton and adhesion to generate specific responses.  相似文献   

17.
Neurons require precise targeting of their axons to form a connected network and a functional nervous system. Although many guidance receptors have been identified, much less is known about how these receptors signal to direct growth cone migration. We used Caenorhabditis elegans motoneurons to study growth cone directional migration in response to a repellent UNC-6 (netrin homolog) guidance cue. The evolutionarily conserved kinase MIG-15 [homolog of Nck-interacting kinase (NIK)] regulates motoneuron UNC-6-dependent repulsion through unknown mechanisms. Using genetics and live imaging techniques, we show that motoneuron commissural axon morphology defects in mig-15 mutants result from impaired growth cone motility and subsequent failure to migrate across longitudinal obstacles or retract extra processes. To identify new genes acting with mig-15, we screened for genetic enhancers of the mig-15 commissural phenotype and identified the ezrin/radixin/moesin ortholog ERM-1, the kinesin-1 motor UNC-116 and the actin regulator WVE-1 complex. Genetic analysis indicates that mig-15 and erm-1 act in the same genetic pathway to regulate growth cone migration and that this pathway functions in parallel to the UNC-116/WVE-1 pathway. Further, time-lapse imaging of growth cones in mutants suggests that UNC-116 might be required to stimulate protrusive activity at the leading edge, whereas MIG-15 and ERM-1 maintain low activity at the rear edge. Together, these results support a model in which the MIG-15 kinase and the UNC-116-WVE-1 complex act on opposite sides of the growth cone to promote robust directional migration.  相似文献   

18.
Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin‐1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F‐actin). ADF/cofilin (AC) family proteins facilitate F‐actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF‐ or netrin‐1‐treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin‐1 to increase growth cone protrusion and F‐actin levels. Extracellular gradients of NGF, netrin‐1, and a cell‐permeable AC elicit attractive growth cone turning and increased F‐actin barbed ends, F‐actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin‐1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 565–588, 2010  相似文献   

19.
The growth cone, a terminal structure on developing and regenerating axons, is specialized for motility and guidance functions. In vivo the growth cone responds to environmental cues to guide the axon to its appropriate target. These cues are thought to be responsible for position-specific morphological changes in the growth cone, but the molecules that control growth cone behavior are poorly characterized. We used scanning electron microscopy to analyze the morphology of retinal ganglion cell growth cones in vitro on different adhesion molecules that axons normally encounter in vivo. L1/8D9, N-cadherin, and laminin each induced distinctive morphological characteristics in growth cones. Growth cones elaborated lamellipodial structures in response to the cell adhesion molecules L1/8D9 and N-cadherin, whereas laminin supported filopodial growth cones with small veils. On L1/8D9, the growth cones were larger and produced more filopodia. Filopodial associations between adjacent growth cones and neurites were frequent on L1/8D9 but were uncommon on laminin or N-cadherin. These results demonstrate that different adhesion molecules have profoundly different effects on growth cone morphology. This is consistent with previous reports suggesting that changes in growth cone morphology in vivo occur in response to changes in substrate composition.  相似文献   

20.
The growth cones of developing neurons respond to specific guidance cues in their extracellular environment. Recent studies have shown that secreted signaling molecules from protein families that are best known for their roles as morphogens in specifying cell fate can function as axon guidance molecules. These signaling molecules seem to act directly on the growth cone and thus are likely to activate non-canonical signaling pathways that are coupled to the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号