首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
alpha-(4-Pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) radical adducts, which are formed in the reactions of soybean lipoxygenase with linoleic acid, arachidonic acid, and linolenic acid, were isolated using HPLC-ESR spectroscopy. Both linoleic acid and arachidonic acid gave one radical adduct, whereas in the case of linolenic acid, two radical adducts were isolated. These radical adducts all showed virtually identical uv spectra with lambda max at 292 and 220 nm in hexane. The absence of absorbance with lambda max at 234 nm indicates that a conjugated diene structure is not contained in these radical adducts. The mass spectra of the radical adducts formed from linoleic and arachidonic acids were identical and contained a molecular ion of m/z 264, consistent with the trapping of the pentyl radical by 4-POBN. Indeed, authentic 4-POBN pentyl radical adduct obtained from the reaction between pentylhydrazine and 4-POBN gave the same mass spectrum as the product obtained from the reaction of linoleic acid and arachidonic acid with 4-POBN. The two 4-POBN radical adducts formed in the linolenic acid reaction were shown by mass spectrometry to be isomers of pentenyl radicals. The 4-POBN-pentyl radical adduct was also detected in the reaction mixture of 13-hydroperoxy-linoleic acid, soybean lipoxygenase, and 4-POBN, indicating that the pentyl radical and pentenyl radical are formed by the decomposition of the hydroperoxides.  相似文献   

2.
Studies of the oxygenation of linoleic acid by soybean lipoxygenase utilizing electron spin resonance spectroscopy and oxygen uptake have been undertaken. The spin trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN) was included in the lipoxygenase system to capture short-lived free radicals. Correlation of radical adduct formation rates with oxygen uptake studies indicated that the major portion of radical adduct formation occurred when the system was nearly anaerobic. Incubations containing [17O]oxygen with nuclear spin of 5/2 did not have additional ESR lines as would be expected if an oxygen-centered 4-POBN-lipid peroxyl radical adduct were formed indicating that the trapped radical must be reassigned as a carbon-centered species. To establish the presence of [17O2]oxygen in our incubations, a portion of the gas from the lipoxygenase/linoleate experiments was used to prepare the 4-POBN-superoxide radical adduct utilizing a superoxide producing microsomal/paraquat/NADPH system.  相似文献   

3.
Using the combined techniques of on-line high performance liquid chromatography/electron spin resonance (LC/ESR) and mass spectrometry (MS), we previously identified spin-trapped adducts of all expected carbon-centered lipid-derived radicals ((*)L(d)) formed in linoleic acid peroxidation. In the present study, spin trapped lipid-derived carbon-centered radicals formed from the reactions of two omega-6 polyunsaturated fatty acids (PUFAs: linoleic and arachidonic acids) with soybean lipoxygenase in the presence of alpha-[4-pyridyl 1-oxide]-N-tert-butyl nitrone (POBN) were identified using a combination of LC/ESR and LC/MS. All expected lipid-derived carbon-centered radicals in lipoxygenase-dependent peroxidations of linoleic acid and arachidonic acid were detected and identified by the combination of LC/ESR and LC/MS with confirmation by tandem mass spectrometry (MS/MS). The five classes of (*)L(d) formed from both omega-6 PUFAs including lipid alkyl radicals (L(*)), epoxyallyic radicals (OL(*)), dihydroxyallyic radicals ((*)L(OH)(2)), and a variety of R(*) and (*)RCOOH from beta-scission of lipid alkoxyl radicals, gave distinct retention times: POBN/(*)L(OH)(2) approximately 4-6 min, POBN/R(*) and POBN/(*)RCOOH approximately 8-22 min, POBN/L(*) and PBON/OL(*) approximately 25-36 min. The major beta-scission products in peroxidations of omega-6 PUFAs were the pentyl radicals. The ratio of beta-scission products, however, varied significantly depending on pH, [PUFA], as well as [O(2)].  相似文献   

4.
With the combined techniques of on-line liquid chromatography/electron spin resonance (LC/ESR) and on-line liquid chromatography/mass spectrometry (LC/MS), we have previously characterized all classes of lipid-derived carbon-centered radicals (*Ld) formed from omega-6 polyunsaturated fatty acids (PUFAs: linoleic acid and arachidonic acid). In the present study, the carbon-centered radicals formed from two omega-3 PUFAs (linolenic acid and docosahexaenoic acid) resulting from their reactions with soybean lipoxygenase in the presence of alpha-[4-pyridyl 1-oxide]-N-tert-butylnitrone (POBN) were investigated using the combination of LC/ESR and LC/MS techniques. A total of 16 POBN trapped carbon-centered radicals formed from the peroxidation of linolenic acid and 11 formed from the peroxidation of docosahexaenoic acid were detected by LC/ESR, identified by LC/MS, and structurally confirmed by tandem mass analysis (MS/MS). The on-line ESR chromatograms and MS chromatograms obtained from two omega-3 PUFAs closely resembled each other not only because the four major beta-scission products, including an ethyl radical and three isomeric pentenyl radicals, were formed from each PUFA, but also because isomeric POBN adducts of lipid dihydroxyallylic radicals from both PUFAs had almost identical chromatographic retention times.  相似文献   

5.
利用停留仪快速反应动力学方法和自旋捕集ESR技术监测高铁离子自由基和自旋捕捉剂POBN的反应,发现高铁离子自由基本身不被自旋捕捉剂POBN捕捉,但是POBN可以捕捉到停流仪第三相中的OH,可能来自剩余的Fenton试剂或高铁离子自由基的衰变。以含两个双键的不饱和脂肪酸-亚油酸(LH)作为模型化合物,测定高铁离子自由基与亚油酸分子的反应速率。ESR结果表明,高铁离子自由基可能在一定程度上启动了亚油酸体系的脂质过氧化。  相似文献   

6.
Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical-lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)-MS/MS (tandem MS), four E,Z-linoleate allyl radical-CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical-CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content.  相似文献   

7.
Eight synthetic isomers of hydroxy-6-S-cysteinylglycine -7,9,11,14-eicosatetraenoic acid were compared with authentic guinea pig SRS-A using UV spectroscopy, high performance liquid chromatography and soybean lipoxygenase. It was found that only the 5S, 6R 7, 9trans 11,14cis isomer was similar to SRS-A in all respects. The 5S, 6R 7trans, 9,11,14 cis isomer shows similar UV and HPLC characteristics but differs in that it spontaneously undergoes a 1,7 hydride shift reaction and unexpectedly does not react with soybean lipoxygenase.  相似文献   

8.
Soybean lipoxygenase is shown to catalyze the breakdown of polyunsaturated fatty acid hydroperoxides to produce superoxide radical anion as detected by spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In addition to the DMPO/superoxide radical adduct, the adducts of peroxyl, acyl, carbon-centered, and hydroxyl radicals were identified in incubations containing linoleic acid and lipoxygenase. These DMPO radical adducts were observed just prior to the system becoming anaerobic. Only a carbon-centered radical adduct was observed under anaerobic conditions. The superoxide radical production required the presence of fatty acid substrates, fatty acid hydroperoxides, active lipoxygenase, and molecular oxygen. Superoxide radical production was inhibited when nordihydroguaiaretic acid, butylated hydroxytoluene, or butylated hydroxyanisole was added to the incubation mixtures. We propose that polyunsaturated fatty acid hydroperoxides are reduced to form alkoxyl radicals and that after an intramolecular rearrangement, the resulting hydroxyalkyl radical reacts with oxygen, forming a peroxyl radical which subsequently eliminates superoxide radical anion.  相似文献   

9.
1. The self-inactivation of lipoxygenase from rabbit reticulocytes with linoleic acid at 37 degrees C is caused by the product 13-hydroperoxylinoleic acid. This inactivation is promoted by either oxygen or linoleic acid. 2. Lipohydroperoxidase activity was demonstrated with 13-hydroperoxylinoleic acid plus linoleic acid as hydrogen donor under anaerobic conditions at 2 degrees C. The products were 13-hydroxylinoleic acid, oxodienes and compounds of non-diene structure similar to those produced by soybean lipoxygenase-1. 3. 13-Hydroperoxylinoleic acid also changed the absorbance and fluorescence properties of reticulocyte lipoxygenase. The results indicate that one equivalent of 13-hydroperoxylinoleic acid converts the enzyme from the ferrous state into the ferric state as described for soybean lipoxygenase-1. The spectral changes were reversed by sodium borohydride at 2 degrees C, but not at 37 degrees C; it is assumed that the ferric form of reticulocyte lipoxygenase suffers inactivation.  相似文献   

10.
Soybean lipoxygenase converted arachidonic acid to a group of polar products (lambda max, 300-301 nm), which were increasingly formed during the continued incubation at 20 degrees C after the initial incubation (2 hrs, at 4 degrees C). These products were identified as lipoxin A and B isomers, based on the chromatographic and spectrometric analyses. In further chromatographic analyses, the lipoxin A and B isomers were separated into at least three isomers, respectively. The exposure of 5,15-dihydroperoxyeicosatetraenoic acid to the soybean lipoxygenase produced the identical product profile of chromatography, substantiating the intermediacy of 5,15-dihydroperoxyeicosatetraenoic acid in the soybean lipoxygenase-catalyzed formation of lipoxins. Based on these results, it is proposed that the conversion of arachidonic acid into lipoxins by soybean lipoxygenase may bear a mechanistic resemblance to the formation of lipoxins in the human leukocytes.  相似文献   

11.
Incubation of [7-2H2]cholesterol with soybean lipoxygenase and linoleic acid in the presence of oxygen gave a mixture of 5-cholestene-3 beta,7 alpha-diol, 5-cholestene-3 beta,7 beta-diol, 3 beta-hydroxy-5-cholesten-7-one,5 alpha,6 alpha-epoxycholestan-3 beta-ol, and 5 beta,6 beta-epoxycholestan-3 beta-ol. The conversion into the 7-oxygenated products was associated with a very high intermolecular isotope effect (KH/KD = 15-17), suggesting that the rate-limiting step in the overall conversion is likely to be the abstraction of hydrogen at C-7 in a radical reaction. Evidence that linoleic acid is to some extent directly involved was obtained with the use of [7-3H]cholesterol. Incubation of [7-3H]cholesterol resulted in a significant incorporation of 3H in the reisolated linoleic acid fraction. The isotope effect associated with conversion of [7 alpha-2H]cholesterol into 7-oxygenated products in the lipoxygenase system was 2-3, indicating that the extraction of hydrogen is nonstereospecific. Incubation of [7-2H2]cholesterol with 13-hydroperoxy-9,11-octadecadienoic acid gave the above 7-oxygenated products with relatively small isotope effects (KH/KD = 3-4). It is concluded that the most important mechanism for oxidation of cholesterol at C-7 in the lipoxygenase system involves participation of radicals and that a carbon-centered linoleic acid radical can extract hydrogen directly from cholesterol. Fatty acid hydroperoxides and their secondary products seem to be less important as initiators in connection with oxidation of cholesterol.  相似文献   

12.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder leading to loss of motor neurons. We previously characterized the enhanced peroxidative activity of the human familial ALS (FALS) mutants of copper-zinc superoxide dismutase (CuZnSOD) A4V and G93A in vitro. Here, a similar activity is demonstrated for human FALS CuZnSOD mutants in an in vivo model system, the yeast Saccharomyces cerevisiae. Spin trap adducts of alpha-(pyridyl-4-N-oxide)-N-tert-butylnitrone (POBN) have been measured by electron paramagnetic resonance (EPR) in yeast expressing mutant (A4V, L38V, G93A, and G93C) and wild type CuZnSOD upon addition of hydrogen peroxide to the culture. The trapped radical is a hydroxyethyl adduct of POBN, identified by spectral parameters. Mutant CuZnSODs produced greater concentrations of the trapped adduct compared to the wild type enzyme. This observation provides evidence for an oxidative radical mechanism, whereby the mutants of CuZnSOD catalyze the formation of reactive oxygen species that may be related to the development or progression of FALS. This study also presents an in vivo model system to study free radical production in FALS-associated CuZnSOD mutations.  相似文献   

14.
Incubation of alpha-linolenic acid with soybean lipoxygenase at pH 6.5 led to formation of conjugated triene oxidation products exhibiting maximum uv absorption at 267 nm, which were converted into four 9,16-dihydroxyoctadecatrienoic acid isomers. In the precursor-substrate study, it seems that 9,16-dihydroxy acid isomers are derived from the doubly oxygenated products and the epoxide intermediate, which are both produced from hydrogen removal at C-14 of 9(S)-hydroperoxyoctadecatrienoic acid. Optimum pH and Km values for soybean lipoxygenase-1-catalyzed conversion of 9(S)-hydroperoxyoctadecatrienoic acid into the conjugated triene products were 8.5 and 80 microM, respectively.  相似文献   

15.
When dimethyl sulfoxide (DMSO) is oxidized via hydroxyl radical (HO(.-)), it forms methyl radicals ((.-)CH(3)) that can be spin trapped and detected by electron spin resonance (ESR). This ESR spin trapping technique has been widely used in many biological systems to indicate in vivo HO(.-) formation. However, we recently reported that (.-)CH(3) might not be the only carbon-centered radical that was trapped and detected by ESR from in vivo DMSO oxidation. In the present study, newly developed combination techniques consisting of dual spin trapping (free radicals trapped by both regular and deuterated alpha-[4-pyridyl 1]-N-tert-butyl nitrone, d(0)/d(9)-POBN) followed by LC/ESR and LC/MS were used to characterize and quantify all POBN-trapped free radicals from the interaction of HO(.-) and DMSO. In addition to identifying the two well-known free radicals, (.-)CH(3) and (.-)OCH(3), from this interaction, we also characterized two additional free radicals, (.-)CH(2)OH and (.-)CH(2)S(O)CH(3). Unlike ESR, which can measure POBN adducts only in their radical forms, LC/MS identified and quantified all three redox forms, including the ESR-active radical adduct and two ESR-silent forms, the nitrone adduct (oxidized adduct) and the hydroxylamine (reduced adduct). In the bile of rats treated with DMSO and POBN, the ESR-active form of POBN/(.-)CH(3) was not detected. However, with the addition of the LC/MS technique, we found approximately 0.75 microM POBN/(.-)CH(3) hydroxylamine, which represents a great improvement in radical detection sensitivity and reliability. This novel protocol provides a comprehensive way to characterize and quantify in vitro and in vivo free radical formation and will have many applications in biological research.  相似文献   

16.
The interaction of hypochlorite with linoleic acid hydroperoxides was studied by the coumarin C-525-enhanced chemiluminescence and ESR spin trapping techniques. Linoleic acid hydroperoxide was obtained in the reaction of lipoxygenase and linoleic acid. Alpha-(4-pyridyl-1-oxyl)-N-tert Butylnitron was used as a spin trap. It was shown that the addition of hypochlorite to the incubation media containing linoleic acid and lipoxygenase resulted in an intensive chemiluminescence flash. The intensity of this flash correlated with the hydroperoxide concentration. The analysis of ESR spectra of spin adducts produced in the reaction of hypochlorite with linoleic acid hydroperoxide showed the presence of O-centered, most likely peroxyl, radical with the splitting constants alphabetaH = 0.260 mT aN = 1.662 mT and C-centered penthyl radical with the splitting constants alphabetaH = 0.260 mT; aN = 1.662 mT. These data suggest that hypochlorite produced by phagocytes in vivo can induce the generation of free O- and C-centered radicals, promoters of free radical processes.  相似文献   

17.
The interaction of furan fatty acids (F-acids) with lipoxygenase was investigated by incubation experiments of a synthetic dialkyl-substituted F-acid with soybean lipoxygenase-1. Originally the oxidation of furan fatty acids was assumed to be directly effected by lipoxygenase. It is now demonstrated that this reaction is a two-step process that requires the presence of lipoxygenase substrates, e.g. linoleic acid. In the first step linoleic acid is converted by the enzyme to the corresponding hydroperoxide. This attacks, probably in a radical reaction, the furan fatty acid to produce a dioxoene compound that can be detected unequivocally by gas chromatography-mass spectrometry.  相似文献   

18.
Electron spin resonance (ESR) spectroscopy has been used to investigate free radical generation in rats with acute methanol poisoning. The spin trapping technique was used where a spin trapping agent, alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN), reacted with the corresponding alcohol-derived or alcohol-dependent radical to form radical adducts. One radical adduct was detected in both bile and urine samples 2 h after acute methanol poisoning in male Sprague Dawley rats. The hyperfine coupling constants for the radical adduct from [(13)C]-labeled methanol detected in the bile were a(N) = 15.58, a(beta)(H) = 2.81 G, and a(beta)(13C) = 4.53 G, which unambiguously identified this species as POBN/*CH@OH. The same radical adduct was detected in urine. The identification of a methanol-derived radical adduct in samples from bile and urine provided strong direct evidence for the generation of the alcohol-derived radicals during acute intoxication by methanol. Simultaneous administration of the alcohol dehydrogenase inhibitor 4-methylpyrazole and methanol resulted in an increase in the generation of the free radical metabolite detected in the bile. This is the first ESR evidence of methanol-derived free radical generation in an animal model of acute methanol intoxication.  相似文献   

19.
Polyunsaturated fatty acid (PUFA) peroxyl radicals play a crucial role in lipid oxidation. ESR spectroscopy with the spin-trapping technique is one of the most direct methods for radical detection. There are many reports of the detection of PUFA peroxyl radical adducts; however, it has recently been reported that attempted spin trapping of organic peroxyl radicals at room temperature formed only alkoxyl radical adducts in detectable amounts. Therefore, we have reinvestigated spin trapping of the linoleic, arachidonic, and linolenic acid-derived PUFA peroxyl radicals. The slow-flow technique allowed us to obtain well-resolved ESR spectra of PUFA-derived radical adducts in a mixture of soybean lipoxygenase, PUFA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). However, interpretation of the ESR spectra was complicated by the overlapping of the PUFA-derived alkoxyl radical adduct spectra. In order to understand these spectra, PUFA-derived alkoxyl radical adducts were modeled by various alkoxyl radical adducts. For the first time, we synthesized a wide range of DMPO adducts with primary and secondary alkoxyl radicals. It was found that many ESR spectra previously assigned as DMPO/peroxyl radical adducts based on their close similarity to the ESR spectrum of the DMPO/superoxide radical adduct, in conjunction with their insensitivity to superoxide dismutase, are indeed alkoxyl radical adducts. We have reassigned the PUFA alkylperoxyl radical adducts to their corresponding alkoxyl radical adducts. Using hyperfine coupling constants of model DMPO/alkoxyl radical adducts, the computer simulation of DMPO/PUFA alkoxyl radical adducts was performed. It was found that the trapped, oxygen-centered PUFA-derived radical is a secondary, chiral alkoxyl radical. The presence of a chiral carbon atom leads to the formation of two diastereomers of the DMPO/PUFA alkoxyl radical adduct. Therefore, attempted spin trapping of the PUFA peroxyl radical by DMPO at room temperature leads to the formation of the PUFA alkoxyl radical adduct.  相似文献   

20.
From the aerial parts of Anthemis tinctoria L. subsp. tinctoria var. pallida DC. (Asteraceae), one new cyclitol glucoside, conduritol F-1-O-(6'-O-E-p-caffeoyl)-beta-D-glucopyranoside (1), has been isolated together with four flavonoids, nicotiflorin (2), isoquercitrin (3), rutin (4) and patulitrin (5). The structures of the isolated compounds were established by means of NMR, MS, and UV spectral analyses. Methanolic extract and pure isolated compounds were examined for their free radical, scavenging activity, using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free stable radical, and for their inhibitory activity toward soybean lipoxygenase, using linoleic acid as substrate. Compounds 1 and 5 showed a strong scavenging effect in the DPPH radical assay. In addition 5 also exhibited high inhibitory activity on soybean lipoxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号