首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human plasma gelsolin binds to fibronectin   总被引:3,自引:0,他引:3  
Human plasma gelsolin, a 93,000-dalton actin-binding protein binds to human plasma fibronectin. Qualitative data obtained from experiments employing quasi-elastic light scattering, sucrose gradient sedimentation, gel filtration chromatography, and fibronectin polymerization indicate that gelsolin and fibronectin form a complex in solution. Solid-phase binding studies show that both human plasma and rabbit macrophage gelsolin bind to immobilized fibronectin with a Kd of about 1 microM in a 1:1 complex. The ability of gelsolin to interact with actin was not affected by the presence of fibronectin. Fibronectin also increased the amount of gelsolin binding to fibrin clots. Binding of gelsolin to fibronectin may serve to localize plasma gelsolin in regions where fibronectin is deposited, such as inflammatory sites.  相似文献   

2.
An enzyme-linked immunosorbent assay was developed to study the ability of fibronectin to bind to actin. Plastic microtiter wells were coated with actin and the binding of fibronectin was detected using purified fibronectin antibodies conjugated to alkaline phosphatase. The binding was dependent on the concentration of actin used for coating and on the amount of fibronectin that was subsequently permitted to bind. The binding could be inhibited by actin and gelatin, but not by heparin or bovine serum albumin. No major inhibition was observed by amines known to interfere with some of the other interactions of fibronectin. The ability of gelatin to inhibit the binding suggests that actin and collagen cannot bind to fibronectin simultaneously, and that the cell-binding and actin-binding sites of fibronectin are separate since cells attach to collagen-bound fibronectin.  相似文献   

3.
We have previously shown that protein kinase Cepsilon (PKCepsilon) induces neurite outgrowth via its regulatory domain and independently of its kinase activity. This study aimed at identifying mechanisms regulating PKCepsilon-mediated neurite induction. We show an increased association of PKCepsilon to the cytoskeleton during neuronal differentiation. Furthermore, neurite induction by overexpression of full-length PKCepsilon is suppressed if serum is removed from the cultures or if an actin-binding site is deleted from the protein. A peptide corresponding to the PKCepsilon actin-binding site suppresses neurite outgrowth during neuronal differentiation and outgrowth elicited by PKCepsilon overexpression. Neither serum removal, deletion of the actin-binding site, nor introduction of the peptide affects neurite induction by the isolated regulatory domain. Membrane targeting by myristoylation renders full-length PKCepsilon independent of both serum and the actin-binding site, and PKCepsilon colocalized with F-actin at the cortical cytoskeleton during neurite outgrowth. These results demonstrate that the actin-binding site is of importance for signals acting on PKCepsilon in a pathway leading to neurite outgrowth. Localization of PKCepsilon to the plasma membrane and/or the cortical cytoskeleton is conceivably important for its effect on neurite outgrowth.  相似文献   

4.
Hemidesmosomes are stable adhesion complexes in basal epithelial cells that provide a link between the intermediate filament network and the extracellular matrix. We have investigated the recruitment of plectin into hemidesmosomes by the alpha6beta4 integrin and have shown that the cytoplasmic domain of the beta4 subunit associates with an NH(2)-terminal fragment of plectin that contains the actin-binding domain (ABD). When expressed in immortalized plectin-deficient keratinocytes from human patients with epidermol- ysis bullosa (EB) simplex with muscular dystrophy (MD-EBS), this fragment is colocalized with alpha6beta4 in basal hemidesmosome-like clusters or associated with F-actin in stress fibers or focal contacts. We used a yeast two-hybrid binding assay in combination with an in vitro dot blot overlay assay to demonstrate that beta4 interacts directly with plectin, and identified a major plectin-binding site on the second fibronectin type III repeat of the beta4 cytoplasmic domain. Mapping of the beta4 and actin-binding sites on plectin showed that the binding sites overlap and are both located in the plectin ABD. Using an in vitro competition assay, we could show that beta4 can compete out the plectin ABD fragment from its association with F-actin. The ability of beta4 to prevent binding of F-actin to plectin explains why F-actin has never been found in association with hemidesmosomes, and provides a molecular mechanism for a switch in plectin localization from actin filaments to basal intermediate filament-anchoring hemidesmosomes when beta4 is expressed. Finally, by mapping of the COOH-terminally located binding site for several different intermediate filament proteins on plectin using yeast two-hybrid assays and cell transfection experiments with MD-EBS keratinocytes, we confirm that plectin interacts with different cytoskeletal networks.  相似文献   

5.
《The Journal of cell biology》1994,126(6):1445-1453
Ezrin, previously also known as cytovillin, p81, and 80K, is a cytoplasmic protein enriched in microvilli and other cell surface structures. Ezrin is postulated to have a membrane-cytoskeleton linker role. Recent findings have also revealed that the NH2-terminal domain of ezrin is associated with the plasma membrane and the COOH-terminal domain with the cytoskeleton (Algrain, M., O. Turunen, A. Vaheri, D. Louvard, and M. Arpin. 1993. J. Cell Biol. 120: 129-139). Using bacterially expressed fragments of ezrin we now demonstrate that ezrin has an actin-binding capability. We used glutathione-S-transferase fusion proteins of truncated ezrin in affinity chromatography to bind actin from the cell extract or purified rabbit muscle actin. We detected a binding site for filamentous actin that was localized to the COOH-terminal 34 amino acids of ezrin. No binding of monomeric actin was detected in the assay. The region corresponding to the COOH- terminal actin-binding site in ezrin is highly conserved in moesin, actin-capping protein radixin and EM10 protein of E. multilocularis, but not in merlin/schwannomin. Consequently, this site is a potential actin-binding site also in the other members of the protein family. Furthermore, the actin-binding site in ezrin shows sequence homology to the actin-binding site in the COOH terminus of the beta subunit of the actin-capping protein CapZ and one of the potential actin-binding sites in myosin heavy chain. The actin-binding capability of ezrin supports its proposed role as a membrane-cytoskeleton linker.  相似文献   

6.
In addition to its kinase activity, myosin light chain kinase has an actin-binding activity, which results in bundling of actin filaments [Hayakawa et al., Biochem. Biophys. Res. Commun. 199, 786-791, 1994]. There are two actin-binding sites on the kinase: calcium- and calmodulin-sensitive and insensitive sites [Ye et al., J. Biol. Chem. 272, 32182-32189, 1997]. The calcium/calmodulin-sensitive, actin-binding site is located at Asp2-Pro41 and the insensitive site is at Ser138-Met213. The cyanogen bromide fragment, consisting of Asp2-Met213, is furnished with both sites and is the actin-binding core of myosin light chain kinase. Cross-linking between the two sites assembles actin filaments into bundles. Breaking of actin-binding at the calcium/calmodulin-sensitive site by calcium/calmodulin disassembles the bundles.  相似文献   

7.
Vacuolar H(+)-ATPase (V-ATPase) binds microfilaments, and that interaction may be mediated by an actin binding domain in subunit B of the enzyme. To test for possible physiologic functions of the actin binding activity of V-ATPase, early responses of resorbing osteoclasts to inhibition of phosphatidylinositol 3-kinase activity by wortmannin and LY294002 were examined. Rapid co-localization between V-ATPase and F-actin was demonstrated by immunocytochemistry, and corresponding association between V-ATPase and F-actin in immunoprecipitations and pelleting assays was detected. This response was reversed as osteoclasts recovered resorptive activity after inhibitors were removed. By expressing and characterizing fusion proteins containing segments of the actin-binding amino-terminal regions of the B subunits of V-ATPase, we mapped the actin-binding site to a 44-amino acid domain. An 11-amino acid segment with a sequence similar to the actin-binding site of human profilin I was detected within this region. 13-Mers containing these profilin-like segments bound actin in fluorescent anisotropy studies and competed with profilin for binding to actin. Using site-directed mutagenesis, the 11-amino acid profilin-like actin-binding motifs (amino acids 49-59 of B1 and 55-65 of B2) were replaced with an 11-amino acid spacer with a sequence based on the homologous sequence from subunit B of Pyrococcus horikoshii, an organism that lacks an actin cytoskeleton. These substitutions eliminated the actin-binding activity of the B subunit fusion proteins. In summary, binding between V-ATPase and F-actin in osteoclasts occurs in response to blocking phosphatidylinositol 3-kinase activity. This response was fully reversible. The actin binding activities of the B subunits of V-ATPase required 11-amino acid actin-binding motifs that are similar in sequence to the actin-binding site of mammalian profilin I.  相似文献   

8.
Ligation of integrins with extracellular matrix molecules induces the clustering of actin and actin-binding proteins to focal adhesions, which serves to mechanically couple the matrix with the cytoskeleton. During wound healing and development, matrix deposition and remodeling may impart additional tensile forces that modulate integrin-mediated cell functions, including cell migration and proliferation. We have utilized the ability of cells to contract floating collagen gels to determine the effect of fibronectin polymerization on mechanical tension generation by cells. Our data indicate that fibronectin polymerization promotes cell spreading in collagen gels and stimulates cell contractility by a Rho-dependent mechanism. Fibronectin-stimulated contractility was dependent on integrin ligation; however, integrin ligation by fibronectin fragments was not sufficient to induce either tension generation or cell spreading. Furthermore, treatment of cells with polyvalent RGD peptides or pre-polymerized fibronectin did not stimulate cell contractility. Fibronectin-induced contractility was blocked by agents that inhibit fibronectin polymerization, suggesting that the process of fibronectin polymerization is critical in triggering cytoskeletal tension generation. These data indicate that Rho-mediated cell contractility is regulated by the process of fibronectin polymerization and suggest a novel mechanism by which extracellular matrix fibronectin regulates cytoskeletal organization and cell function.  相似文献   

9.
Isogawa Y  Kon T  Inoue T  Ohkura R  Yamakawa H  Ohara O  Sutoh K 《Biochemistry》2005,44(16):6190-6196
Myosin XVIII is the recently identified 18th class of myosins, and its members are composed of a unique N-terminal domain, a motor domain with an unusual sequence around the ATPase site, one IQ motif, a segmented coiled-coil region for dimerization, and a C-terminal globular tail. To gain insight into the functions of this unique myosin, we characterized its human homologue, MYO18A, focusing on the functional roles of the characteristic N-terminal domain that contains a PDZ module known to mediate protein-protein interaction. GFP-tagged full-length and C-terminally truncated MYO18A molecules that were expressed in HeLa cells exhibited colocalization with actin filaments. Chemical cross-linking of these molecules showed that they form stable dimers as expected from their putative coiled-coil tails. Cosedimentation of the various types of truncated MYO18A constructs with actin filaments indicated the presence of an ATP-insensitive actin-binding site in the N-terminal domain. Further studies on truncated constructs of the N-terminal domain indicated that this actin-binding site is located outside the PDZ module, but within the middle region of this domain, which does not show any homology with the known actin-binding motifs. These results imply that this dimeric myosin might stably cross-link actin filaments by two ATP-insensitive actin-binding sites at the N-terminal domains for higher-order organization of the actin cytoskeleton.  相似文献   

10.
F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N-ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin-membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge.  相似文献   

11.
The ATPase site of myosin was located by three-dimensional electron microscopy using the avidin-biotin system. The site is about 5 nm from the tip of the myosin head, about 4 nm apart from the actin-binding site of myosin.  相似文献   

12.
Severin from Dictyostelium discoideum is a Ca2(+)-activated actin-binding protein that severs actin filaments, nucleates actin assembly, and caps the fast growing ends of actin filaments. Sequence comparison with functionally related proteins, such as gelsolin, villin, or fragmin revealed highly conserved domains which are thought to be of functional significance. To attribute the different activities of the severin molecule to defined regions, progressively truncated severin polypeptides were constructed. The complete cDNA coding for 362 (DS362) amino acids and five 3' deletions coding for 277 (DS277), 177 (DS177), 151 (DS151), 117 (DS117), or 111 (DS111) amino acids were expressed in Escherichia coli. The proteins were purified to homogeneity and then characterized with respect to their effects on the polymerization or depolymerization kinetics of G- or F-actin solutions and their binding to G-actin. Furthermore, the Ca2+ binding of these proteins was investigated with a 45Ca-overlay assay and by monitoring Ca2(+)-dependent changes in tryptophan fluorescence. Bacterially expressed DS362 showed the same Ca2(+)-dependent activities as native severin. DS277, missing the 85 COOH-terminal amino acids of severin, had lost its strict Ca2+ regulation and displayed a Ca2(+)-independent capping activity, but was still Ca2+ dependent in its severing and nucleating activities. DS151 which corresponded to the first domain of gelsolin or villin had completely lost severing and nucleating properties. However, a residual severing activity of approximately 2% was detectable if 26 amino acids more were present at the COOH-terminal end (DS177). This locates similar to gelsolin the second actin-binding site to the border region between the first and second domain. Measuring the fluorescence enhancement of pyrene-labeled G-actin in the presence of DS111 showed that the first actin-binding site was present in the NH2-terminal 111 amino acids. Extension by six or more amino acids stabilized this actin-binding site in such a way that DS117 and even more pronounced DS151 became Ca2(+)-independent capping proteins. In comparison to many reports on gelsolin we draw the following conclusions. Among the three active actin-binding sites in gelsolin the closely neighboured sites one and two share the F-actin fragmenting function, whereas the actin-binding sites two and three, which are located in far distant domains, collaborate for nucleation. In contrast, severin contains two active actin-binding sites which are next to each other and are responsible for the severing as well as the nucleating function. The single actin-binding site near the NH2-terminus is sufficient for capping of actin filaments.  相似文献   

13.
Analysis of the periodic distribution of amino acids in tropomyosin has revealed the presence of seven or 14 quasi-equivalent actin-binding sites. We tested the hypothesis of periodic actin-binding sites by making deletions of chicken striated alpha-tropomyosin cDNA using oligonucleotide-directed mutagenesis. The deletions corresponded to one-half (amino acid residues 47 to 67), two-thirds (residues 47 to 74) and one actin-binding site (residues 47 to 88), on the basis of there being seven sites. The mutant cDNAs were expressed as fusion and non-fusion proteins in Escherichia coli and analyzed for actin binding and regulatory function. Fusion tropomyosin binds to actin with an affinity similar to that of muscle tropomyosin. Of the mutant fusion tropomyosins, only that with a full site deleted retained actin affinity and the ability to inhibit the actomyosin S1 ATPase, though it was less effective than wild-type. We conclude that an integral number of half-turns of the tropomyosin coiled-coil, and the consequential sevenfold periodicity, as well as the correct orientation of the ends with respect to each other, are important for actin binding. On the other hand, non-fusion tropomyosin binds well to actin only in the presence of troponin, and the binding is calcium-sensitive. Assay of non-fusion mutant tropomyosins showed that mutants with deletion of one-half and one actin binding site both had high affinity for actin, equal to or slightly less than wild-type. The ability of these two mutants to regulate the actomyosin or acto-S1 ATPase with troponin in the absence of calcium was indistinguishable from that of the wild-type. The normal regulatory function of the mutant with a 1/14 deletion (removal of a quarter turn or half a site) indicates that a 14-fold periodicity is adequate for regulation, consistent with the presence of two sets of seven alpha and seven beta quasi-equivalent actin-binding sites. An alternative explanation is that the alpha-sites are of primary importance and that proper alignment of the alpha-sites in every second tropomyosin, as when half a site is deleted, is sufficient for normal regulatory function. Deletion of a non-integral period (2/3 of a site) severely compromised actin-binding and regulatory function, presumably due to the inability of the mutant to align properly on the actin filament.  相似文献   

14.
Vacuolar H+-ATPases (V-ATPases) are transported from cytosolic compartments to the ruffled plasma membrane of osteoclasts as they activate to resorb bone. Transport of V-ATPases is essential for bone resorption, and is associated with binding interactions between V-ATPases and microfilaments that are mediated by an actin-binding site in subunit B. This site is contained within 44 amino acids in the amino terminal domain, and requires a sequence motif that resembles an actin-binding motif found in mammalian profilin 1. Small alterations in the profilin-like sequence disrupt the actin-binding activity of subunit B. The interaction between V-ATPases and microfilaments in osteoclasts is regulated in response to changes in phosphatidylinositol-3 kinase activity. During internalization of V-ATPases from the plasma membrane of osteoclasts after a cycle of resorption, V-ATPases bind microfilaments that are in podosomes, dynamic actin-based structures, also present in metastatic cancer cells. Studies are ongoing to establish the physiological role of the microfilament-binding activity of subunit B in osteoclasts and in other cells.  相似文献   

15.
The platelet membrane glycoprotein (GP) Ib-IX complex is a major site of attachment of the platelet membrane skeleton to the plasma membrane. This association is mediated by the interaction of actin-binding protein with the GP Ib-IX complex. The aim of the present work was to identify domains on the GP Ib-IX complex that interact with actin-binding protein. Synthetic peptides corresponding to sequences of the GP Ib alpha-chain and beta-chain cytoplasmic domains were analyzed for their ability to bind to purified actin-binding protein. Two overlapping peptides encompassing a sequence (Thr-536-Phe-568) from the central region of the cytoplasmic domain of GP Ib alpha were the most effective in binding 125I-actin-binding protein, as assessed by a microtiter well approach and peptide affinity chromatography. One of the active peptides (Thr-536-Leu-554) was chosen to evaluate the likelihood that the central region of the cytoplasmic domain of GP Ib alpha is involved in binding of the intact complex to actin-binding protein. This peptide could be specifically cross-linked to purified actin-binding protein in solution. Rabbit polyclonal antibody against this peptide inhibited the binding of purified actin-binding protein to the purified GP Ib-IX complex. Finally, as in intact platelets, the calpain-induced hydrolytic fragments of purified actin-binding protein (M(r) = 200,000 and M(r) = 91,000) showed little binding to the GP Ib alpha peptide. Taken together, these results provided evidence that a region between Thr-536 and Phe-568 of the cytoplasmic domain of GP Ib alpha participates in the interaction of the GP Ib-IX complex with actin-binding protein.  相似文献   

16.
Phosphorylation of myristoylated alanine-rich protein kinase C substrate (MARCKS) by protein kinase C eliminates actin filament cross-linking activity, but residual filament binding activity docks phosphorylated MARCKS on filamentous actin. The postulated actin-binding region of MARCKS, which includes a Ca(2+)-calmodulin-binding site, has been portrayed with alpha-helical structure, analogous to other calmodulin-binding domains. Previous speculation suggested that MARCKS may dimerize to form the two functional actin-binding sites requisite for cross-linking activity. Contrary to these hypotheses, we show that MARCKS peptide with actin-cross-linking activity has an extended structure in aqueous solution but assumes a more compact structure upon phosphorylation. We hypothesize that structural changes in the MARCKS peptide induced by phosphorylation create a dynamic structure that, on average, has only one actin-binding site. Moreover, independent of the state of phosphorylation, this peptide is monomeric rather than dimeric, implying that two distinct actin-binding sites are responsible for the actin-cross-linking activity of unphosphorylated MARCKS. These studies uniquely elucidate the mechanism by which phosphorylation of MARCKS induces structural changes and suggest how these structural changes determine biological activity.  相似文献   

17.
Site-directed mutagenesis studies have suggested that additional peptide information in the central cell-binding domain of fibronectin besides the minimal Arg-Gly-Asp (RGD) sequence is required for its full adhesive activity. The nature of this second, synergistic site was analyzed further by protein chemical and immunological approaches using biological assays for adhesion, migration, and matrix assembly. Fragments derived from the cell-binding domain were coupled covalently to plates, and their specific molar activities in mediating BHK cell spreading were compared with that of intact fibronectin. A 37-kD fragment purified from chymotryptic digests of human plasma fibronectin had essentially the same specific molar activity as intact fibronectin. In contrast, other fragments such as an 11.5-kD fragment lacking NH2-terminal sequences of the 37-kD fragment had only poor spreading activity on a molar basis. Furthermore, in competitive inhibition assays of fibronectin-mediated cell spreading, the 37-kD fragment was approximately 325-fold more active than the GRGDS synthetic peptide on a molar basis. mAbs were produced using the 37-kD protein as an immunogen and their epitopes were characterized. Two separate mAbs, one binding close to the RGD site and the other to a site approximately 15 kD distant from the RGD site, individually inhibited BHK cell spreading on fibronectin by greater than 90%. In contrast, an antibody that bound between these two sites had minimal inhibitory activity. The antibodies found to be inhibitory in cell spreading assays for BHK cells also inhibited both fibronectin-mediated cell spreading and migration of human HT-1080 cells, functions which were also dependent on function of the alpha 5 beta 1 integrin (fibronectin receptor). Assembly of endogenously synthesized fibronectin into an extracellular matrix was not significantly inhibited by most of the anti-37-kD mAbs, but was strongly inhibited only by the antibodies binding close to the RGD site or the putative synergy site. These results indicate that a second site distant from the RGD site on fibronectin is crucial for its full biological activity in diverse functions dependent on the alpha 5 beta 1 fibronectin receptor. This site is mapped by mAbs closer to the RGD site than previously expected.  相似文献   

18.
Platelets have previously been shown to contain a membrane skeleton that is composed of actin filaments, actin-binding protein, and three membrane glycoproteins (GP), GP Ib, GP Ia, and a minor glycoprotein of Mr = 250,000. The present study was designed to determine how the membrane glycoproteins were linked to actin filaments. Unstimulated platelets were lysed with Triton X-100, and the membrane skeleton was isolated on sucrose density gradients or by high-speed centrifugation. The association of the membrane glycoproteins with the actin filaments was disrupted when actin-binding protein was hydrolyzed by activity of the Ca2+-dependent protease, which was active in platelet lysates upon addition of Ca2+ in the absence of leupeptin. Similarly, activation of the Ca2+-dependent protease in intact platelets by the addition of a platelet agonist also caused the membrane glycoproteins to dissociate from the membrane skeleton. Affinity-purified actin-binding protein antibodies immunoprecipitated the membrane glycoproteins from platelet lysates in which actin filaments had been removed by DNase I-induced depolymerization and high-speed centrifugation. These results demonstrate that actin-binding protein links actin filaments of the platelet membrane skeleton to three plasma membrane glycoproteins and that filaments are released from their attachment site when actin-binding protein is hydrolyzed by the Ca2+-dependent protease within intact platelets during platelet activation.  相似文献   

19.
Actin-binding site of pig cardiac myosin   总被引:1,自引:0,他引:1  
An actin-binding site is also present in the tryptic 20 kDa peptide fragment of the subfragment-1 heavy chain of pig cardiac myosin. As previously reported for skeletal myosin (Katoh, T., Katoh, H., and Morita, F. (1985) J. Biol. Chem. 260, 6723-6727), the site was further narrowed down to the 10 kDa peptide containing the reactive SH1 and SH2 groups. Thus it appears that the actin-binding site around the two thiols found in skeletal myosin is common to different types of myosin.  相似文献   

20.
Tamura M  Itoh K  Akita H  Takano K  Oku S 《FEBS letters》2006,580(1):261-267
Actin has been reported to enhance the superoxide-generating activity of neutrophil NADPH oxidase in a cell-free system and to interact with p47phox, a regulatory subunit of the oxidase. In the present study, we searched for an actin-binding site in p47phox by far-western blotting and blot-binding assays using truncated forms of p47phox. The amino-acid sequence 319-337 was identified as an actin-binding site, and a synthetic peptide of this sequence bound to actin. The sequence shows no homology to other known actin-binding motifs. It is located in the autoinhibitory region of p47phox and includes Ser-328, a phosphorylation site essential for unmasking. Although a phosphorylation-mimetic p47phox mutant bound to actin with a lower affinity than the wild type, the same mutant interacted with filamentous actin more efficiently than the wild type. A mutant peptide p47phox (319-337, Ser328Glu) bound to filamentous actin more tightly than to monomer actin. These results suggest that p47phox moves to cortical actin when it becomes unmasked in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号